
tracking properties of trajectories

on random attracting sets

Tomás Caraballo and José A. Langa
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Abstract

The theory of random attracting sets highlights interesting proper-

ties of the asymptotic behaviour of some stochastic differential equa-

tions. In this paper some results on the relation between the dynamics

on random attractors and stochastic inertial manifolds, and the dy-

namics in the associated random dynamical system are studied. In

particular, some tracking properties of trajectories on random attrac-

tors and a general result on the asymptotic completeness of stochastic

inertial manifolds are shown.

1 INTRODUCTION

One of the main concepts for the study of the asymptotic behaviour of dis-

sipative dynamical systems is the global attractor (see Constantin et al. [4],

Hale [18], Temam [26] and the references therein). This is a compact, in-

variant set attracting uniformly every trajectory starting in a bounded set



of the phase space. The understanding of the dynamics on the global at-

tractor gives us relevant information about the asymptotic behaviour of the

dynamical system.

One of the most important results in the theory of global attractors claims

that the fractal, and so the Hausdorff, dimension of this set is finite, even if

the dynamical system is posed in an infinite-dimensional phase space. That

is, although the trajectories depend on an infinite number of degrees of free-

dom, the finite dimensionality of the attractors seems to be describing the

asymptotic behaviour of the dynamical system with a finite number of time-

dependent coordinates. This makes even more interesting the study of the

dynamics on the global attractor, as we expect that this dynamics can be

described by a system of ordinary differential equations (see Eden et al. [12],

chapter 10, and Robinson [23],[24]). In fact, this is what we obtain in the

theory of inertial manifolds (smooth invariant manifolds which attracts every

trajectory exponentially fast, see Foias et al. [16]), that is, the dynamics on

the inertial manifold, governed by a system of ordinary differential equations,

is determining the asymptotic behaviour of the dynamical system. From a

geometrical point of view, this fact can be seen when it is proved that every

trajectory of the system can be followed arbitrarily close, as time grows to

infinite, by another trajectory moving on the inertial manifold. We say in

this case that the inertial manifold satisfies a tracking property (Foias et al.

[17]) or that it is asymptotically complete (Robinson [22]).

In recent years, Crauel and Flandoli [7] (see also Schmalfuss [25] and

Crauel et al. [6]) have introduced a concept for the attractor of some stochas-

tic differential equations. The generalization to this situation is not trivial,

as in this case the system is non autonomous and the new forcing term may

have very large fluctuations which make that solutions are pushed out from

any bounded ball in the phase space. However, it is possible to define in these

cases a generalized concept of global attractor as a moving (in the parameters

time and omega of the random term) compact set, invariant with respect to



the shift associated to the random dynamical system (see section 2) and at-

tracting, backwards in time, all the trajectories starting in any bounded set.

This set is called random attractor and, although the convergence property

is proved, roughly speaking, from −∞, it is easy to show that we also have

convergence in probability, forward in time, to the random attractor.

On the other hand, there are some results on the finite dimensionality

(with probability one) of the random attractor (see Debussche [10], [11]),

which motivates again the study of the dynamics on these random attracting

sets to know in what sense it is determining the asymptotic behaviour of these

stochastic differential equations. In this direction, Flandoli and Langa [14]

have proved a result on determining modes for random dynamical systems

which generalizes the results of Foias and Prodi [15] to the stochastic case.

In section 3, we present a generalization of a result already known in the

deterministic case (see Langa and Robinson [21]).

There are also some papers extending the concept of inertial manifold to

the stochastic case (see Bensoussan and Flandoli [3], Chueshov and Girya [8]

or Da Prato and Debussche [9]). A stochastic inertial manifold is a random

invariant Lipschitz manifold which attracts every trajectory exponentially

fast. As in the deterministic case, the inertial manifold is given as the graph

of some (random) Lipschitz function. In section 4, a result that shows the

asymptotic completeness property of these stochastic inertial manifolds is

proved. In fact, it is even more general than classical results on asymptotic

completeness on inertial manifolds in the deterministic case, since it is still

true for general invariant exponentially attracting sets and not necessarily

smooth manifolds given as graphs of some functions. The result can be

applied to the problems studied in [3] and [8]. Finally, some conclusions and

possible generalizations are presented in last section.



2 RANDOM DYNAMICAL SYSTEMS AND

ATTRACTORS

Let (Ω,F , P ) be a probability space and {θt : Ω → Ω, t ∈} a family of mea-

sure preserving transformations such that (t, ω) 7→ θtω is measurable, θ0 = id,

θt+s = θtθs, for all s, t ∈. The flow θt together with the probability space

(Ω,F , P, (θt)t∈) is called a (measurable) dynamical system. Furthermore, we

suppose that the shift θt is ergodic.

A random dynamical system (RDS) on a Polish space (X, d) with Borel

σ-algebra B over θt on (Ω,F , P ) is a measurable map

ϕ :+ ×Ω×X → X

(t, ω, x) 7→ ϕ(t, ω)x

such that P − a.s.

i) ϕ(0, ω) = id (on X)

ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), ∀ t, s ∈+ (cocycle property).

A RDS is continuous or differentiable if ϕ(t, ω) : X → X is continuous or dif-

ferentiable. The theory of random dynamical systems covers all systems with

randomness, in particular random and stochastic difference and differential

equations (see Arnold and Crauel [2]).

A random set K(ω) is said to absorb the set B ⊂ X if P − a.s. there

exists tB(ω) such that for all t ≥ tB(ω)

ϕ(t, θ−tω)B ⊂ K(ω).

Finally, a random set A(ω) is a random attractor associated to the RDS ϕ if

P − a.s.

i) A(ω) is a random compact set,

ii) ϕ(t, ω)A(ω) = A(θtω), ∀t ≥ 0 (invariance) and



iii) for all B ⊂ X bounded (and nonrandom)

lim
t→+∞ dist(ϕ(t, θ−tω)B,A(ω)) = 0,

where dist( . , . ) denotes the Hausdorff semidistance

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), A,B ⊂ X.

In this situation, we have the following theorem about existence of random

attractors due to Crauel and Flandoli ([7], theorem 3.11).

Theorem 1 Suppose there exists a compact set D(ω) absorbing every bounded

nonrandom set B ⊂ X. Then, the set

A(ω) =
⋃

B⊂X

ΛB(ω)

is a random attractor for ϕ, where the union is taken over all B ⊂ X bounded,

and ΛB(ω) denotes the omega-limit set of B which is given by

ΛB(ω) =
⋂

n≥0

⋃

t≥n

ϕ(t, θ−tω)B.
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Moreover, in Crauel [5] it is shown that random attractors are unique and,

under the ergodicity assumption on θt, there exists a compact set K ⊂ X

such that P − a.s. the random attractor is the omega limit set of K, that is,

A(ω) =
⋂

n≥0

⋃

t≥n

ϕ(t, θ−tω)K.

3 A TRACKING PROPERTY ON RANDOM

ATTRACTORS

In this section we shall prove a property on random attractors already known

for (deterministic) global attractors (see Langa and Robinson [21]). It says,



roughly speaking, that given a random dynamical system for which there ex-

ists a random attractor, every random trajectory can be followed arbitrarily

closely by skipping from one solution to another on the random attractor.

Let us consider the following partial differential equation on the Hilbert

space H (norm |.|) perturbed by an additive H−valued white noise process

on the probability space (Ω,F , P ) with shift θt on Ω

du = −Audt + f(u)dt + dW (t), (1)

where A is a linear operator, selfadjoint, positive and with compact inverse,

whose domain is D(A), and f is the nonlinear term. In these conditions,

there exist an increasing sequence of eigenvalues of A, λn ↗ +∞, and the

corresponding sequence of eigenfunctions {en}∞n=1, which forms an orthogonal

basis in H.

Let ϕ : + × Ω × H → H be a random dynamical system associated to

problem (1) and assume the following property of continuity with respect to

initial conditions: there exists L > 0 such that, given s ≥ 0, it follows that,

for all u, v ∈ H, for all t ≥ 0, and P − a.s.

|ϕ(t, θsω)u− ϕ(t, θsω)v| ≤ eLt|u− v|. (2)

In addition to the precedent hypotheses, suppose the ones for the ex-

istence of a random attractor are satisfied, so that there exists a random

compact set A(ω), invariant, and such that, for all B ⊂ H bounded and

P − a.s.

lim
t→+∞ dist(ϕ(t, θ−tω)B,A(ω)) = 0.

Since the shift θt is measure preserving, it is known (see Crauel and Flandoli

[7]) that this last convergence implies convergence in probability, that is, for

all ε > 0,

lim
t→+∞P (dist(ϕ(t, ω)B,A(θtω)) < ε) = 1. (3)

¿From (2) and (3) the following result holds:



Proposition 1 Writing a trajectory of problem (1) as ϕ(t, ω)u0, u0 ∈ H,

and given 0 < ε < 1, 0 < δ < 1, and T > 0, there exists a time τ(ε, δ, T ) > 0

such that, for all τ ≥ τ(ε, δ, T ), there exists Ω̃ with P (Ω̃) > 1− δ such that,

if ω ∈ Ω̃, there exists a point vτ ∈ A(θτω) satisfying

|ϕ(t + τ, ω)u0 − ϕ(t, θτω)vτ | < ε , for all 0 ≤ t ≤ T.

Proof. Given 0 < ε, δ < 1, T > 0, from (3) we deduce that there exists

τ = τ(ε, δ, T ) > 0 such that, ∀t ≥ τ(ε),

P (dist(ϕ(t, ω)u0,A(θtω)) < εe−LT ) ≥ 1− δ.

In particular, for t = τ , there exists Ωτ , P (Ωτ ) ≥ 1 − δ such that, for all

ω ∈ Ωτ ,

dist(ϕ(τ, ω)u0,A(θτω)) < εe−LT .

As A(θτω) is compact, there exists vτ ∈ A(θτω) such that

|ϕ(τ, ω)u0 − vτ | ≤ εe−LT ,

and, by (2),

|ϕ(t, θτω)ϕ(τ, ω)u0 − ϕ(t, θτω)vτ | ≤ |ϕ(τ, ω)u0 − vτ |eLt ≤ ε,

for all t ∈ [0, T ], and this gives the proposition by the cocycle property.
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As a consequence of this result we obtain the following tracking property

for trajectories of problem (1).

Corollary 1 Given 0 < δ < 1, T > 0, and {εn}∞n=1, εn > 0, εn ↘ 0, there

exist a sequence of times {τn}∞n=1, τn ↗ +∞,

τn+1 > τn ∀n ∈ N, τn+1 − τn →∞ as n →∞,

and a subset Ω̃ ⊂ Ω with P (Ω̃) > 1 − δ, such that, for each ω ∈ Ω̃, there

exists vτn ∈ A(θτnω) satisfying

|ϕ(t + τn, ω)u0 − ϕ(t, θτnω)vτn| < εn, 0 ≤ t ≤ nT, ∀n ∈



Proof. Given 0 < δ < 1, we choose a decreasing sequence of {δn}∞n=1 such

that ∞∑

n=1

δn < δ (for instance, δn =
δ

2n+1
). (4)

Then, applying Proposition 1 for ε1, δ1 and T , there exists τ1 = τ(δ1, ε1, T )

such that, for all τ ≥ τ(δ1, ε1, T ), there exists Ωτ ⊂ Ω with P (Ωτ ) > 1 − δ1

satisfying that, for each ω ∈ Ωτ , there exists vτ ∈ A(θτω) with

|ϕ(t + τ, ω)u0 − ϕ(t, θτω)vτ | < ε1 , for all 0 ≤ t ≤ T.

Now, again by Proposition 1 for ε2, δ2 and 2T , we get that there exists

τ2 = τ(δ2, ε2, T ) ≥ τ1 such that, for all τ ≥ τ2, there exists Ωτ ⊂ Ω with

P (Ωτ ) > 1− δ2 such that, for each ω ∈ Ωτ , there exists vτ ∈ A(θτω) with

|ϕ(t + τ, ω)u0 − ϕ(t, θτω)vτ | < ε2 , for all 0 ≤ t ≤ 2T.

In general, given εn, δn and nT , there exists τn = τ(δn, εn, T ) ≥ τn−1 such

that, for all τ ≥ τn, there exists Ωτ ⊂ Ω with P (Ωτ ) > 1− δn such that, for

each ω ∈ Ωτ , there exists vτ ∈ A(θτω) with

|ϕ(t + τ, ω)u0 − ϕ(t, θτω)vτ | < εn, for all 0 ≤ t ≤ nT.

Let us call Ωn ⊂ Ω the set with the property that, for all ω ∈ Ωn, there exists

vτn ∈ A(θτnω) satisfying

|ϕ(t + τn, ω)u0 − ϕ(t, θτnω)vτn | < εn, 0 ≤ t ≤ nT.

We have that P (Ωn) ≥ 1−δn. Denoting Ω̃ = ∩∞n=1Ωn, it is clear from (4) that

P (Ω̃) > 1 − δ. Now, taking ω ∈ Ω̃ we have that there exists vτn ∈ A(θτnω)

with

|ϕ(t + τn, ω)u0 − ϕ(t, θτnω)vτn | < εn, 0 ≤ t ≤ nT,

for all n ∈, and thus

P (|ϕ(t + τn, ω)u0 − ϕ(t, θτnω)vτn| < εn, 0 ≤ t ≤ nT, ∀n ∈) > 1− δ.
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3.1 Application. A reaction-diffusion equation with

additive noise

Let D ⊂n be an open bounded set with regular boundary and

f(u) =
2p−1∑

k=0

ak uk, a2p−1 < 0.

We consider the following partial differential equation of reaction-diffusion

type in D with an additive white noise process:




du = ∆udt + f(u)dt +
∑d

i=1 φidW i
t in D

u = 0 on ∂D

u(0) = u0

(5)

where W i
t : Ω →, t ∈, are independent one dimensional two-sided Wiener

processes on a probability space (Ω,F , P ).

As it is well known, (5) can be expressed as a differential equation in H =

L2(D), 



du = Audt + F (u)dt +
∑d

i=1 φidW i
t in H

u(0) = u0

(6)

where A : D(A) ⊂ H → H, Au = ∆u, F : Z → Z ′, Z = L2p(D) and

Z ′ = L(2p)′(D), with (2p)′ = (2p− 1)/2p, and is defined as F (u) = f(u). We

take φi ∈ D(A).

We can define a random dynamical system ϕ(t, ω) : H → H on (Ω,F , P, (θt)

(t ∈), with the shift θt ergodic, for which the existence of a random attractor

A(ω) has already been proved (for the study of the random atractor of this

problem, see Crauel and Flandoli [7], Crauel et al. [6], and Debussche [10]).

Due to the condition on the nonlinear term f , and under standard compu-

tations (see, for instance, Debussche [10]), it can be shown that P − a.s.

|u(t, ω; u0)− u(t, ω; v0)| ≤ ekt|u0 − v0|,

so that the continuity property with respect to initial conditions (2) is satis-

fied and, consequently, the results in this section are true for this problem.



4 ASYMPTOTIC COMPLETENESS OF STOCHAS-

TIC INERTIAL MANIFOLDS

The generalization of the concept of inertial manifold to some differential

equations with additive noise was introduced in Bensoussan and Flandoli

[3] and Chueshov and Girya [8]. After them, Da Prato and Debussche [9]

constructed a stochastic inertial manifold for a differential equation with

multiplicative noise. As random attractors, a stochastic inertial manifold is

a time and omega depending family of sets (manifolds), as can be seen in the

following definition

Definition 1 Given a random dynamical system ϕ(t, ω) on a Hilbert space

H, associated to a stochastic differential equation, a random family of man-

ifolds M(ω) ⊂ H is a stochastic inertial manifold if P − a.s. satisfies

i) M(ω) is a Lipschitz manifold

ii) ϕ(t, ω)M(ω) = M(θtω) for all t ≥ 0 and

iii) ∃ν > 0 such that P − a.s.

lim
t→+∞ eνtdist (ϕ(t, ω)u0, M(θtω)) = 0, for all u0 ∈ H.

As in the deterministic case (see Foias et al. [16]), all the examples in the

literature give the stochastic inertial manifold as the graph of certain random

Lipschitz function φt(ω) : PmH → (I − Pm)H on a finite dimensional space

PmH(m ∈), that is, for t ≥ 0 and P − a.s.

M(θtω) = {Pmu + φt(ω)(Pmu), u ∈ H, Pm : H → PmH},

where Pm is the finite dimensional orthogonal projector on H defined as

Pmu =
∑m

i=1(u, ei)ei, with (., .) the inner product in H and {ei}∞i=1 an or-

thonormal basis in H. All the examples in the literature give the Lipschitz

constant Lφ of φt(ω) uniform in t ≥ 0 and ω ∈ Ω. We also assume (2).



In this situation, the exponential convergence property can be written as

follows: there exists ν > 0 such that P − a.s.

lim
t→+∞ eνt|Qmϕ(t, ω)u0 − φt(ω)(Pmϕ(t, ω)u0)| = 0, (7)

where Qm = I − Pm. Indeed, we can prove the following equivalence:

dist(ϕ(t, ω)u0,M(θtω)) ≤ c1e
−νt

if and only if

|Qmϕ(t, ω)u0 − φt(ω)(Pmϕ(t, ω)u0)| ≤ c2e
−νt.

In order to prove this, observe that

|Qmϕ(t, ω)u0 − φt(ω)(Pmϕ(t, ω)u0)|2
≤ 2|Qmϕ(t, ω)u0 − φt(ω)(p)|2 + 2|φt(ω)(p)− φt(ω)(Pmϕ(t, ω)u0)|2
≤ 2|Qmϕ(t, ω)u0 − φt(ω)(p)|2 + 2L2

φ|p− Pmϕ(t, ω)u0|2

for all p ∈ PmH, so that this inequality is also true if we take the lower value

moving p ∈ PmH, that is,

2|Qmϕ(t, ω)u0 − φt(ω)(p)|2 + 2|φt(ω)(p)− φt(ω)(Pmϕ(t, ω)u0)|2
≤ cdist(ϕ(t, ω)u0,M(θtω))2 ≤ cc2

1e
−2νt.

A similar argument proves the other implication.

Clearly, a stochastic inertial manifold describes the asymptotic behaviour

of a random dynamical system with a finite number of degrees of freedom.

In particular, the results on determining modes in Flandoli and Langa [14]

are straightforward in this situation, as the following lemma shows

Lemma 1 Let M(ω) be a stochastic inertial manifold given as the graph of

the Lipschitz function φt(ω) : PmH → QmH. If for u0, v0 ∈ H and P − a.s.

lim
t→+∞ |Pm(ϕ(t, ω)u0 − ϕ(t, ω)v0)| = 0,

then, P − a.s.

lim
t→+∞ |ϕ(t, ω)u0 − ϕ(t, ω)v0| = 0,



Proof. From the exponential convergence property (7) and the hyphothe-

ses in the lemma we have

|ϕ(t, ω)u0 − ϕ(t, ω)v0|
≤ |Pm(ϕ(t, ω)u0 − ϕ(t, ω)v0)|+ |Qm(ϕ(t, ω)u0 − ϕ(t, ω)v0)|
≤ |Pm(ϕ(t, ω)u0 − ϕ(t, ω)v0)|+ |Qmϕ(t, ω)u0 − φt(ω)(Pmϕ(t, ω)u0)|+

+|φt(ω)(Pmϕ(t, ω)u0)− φt(ω)(Pmϕ(t, ω)v0)|
+|φt(ω)(Pmϕ(t, ω)v0)−Qmϕ(t, ω)v0|

≤ (1 + Lφ)|Pm(ϕ(t, ω)u0 − ϕ(t, ω)v0)|+
+|Qmϕ(t, ω)u0 − φt(ω)(Pmϕ(t, ω)u0)|+ |φt(ω)(Pmϕ(t, ω)v0)−Qmϕ(t, ω)v0|,

which tends to zero, and the lemma is complete.

2

One of the most geometrical properties about how the dynamics on an

attracting set determines the asymptotic behaviour of the dynamical system

is the asymptotic completeness of inertial manifolds (see Foias et al. [17],

Henry [19] or Robinson [22]). In this last paper, it is proved that if an

inertial manifold is flow normally hyperbolic (see definition below), then it is

asymptotically complete. In this section, we shall show how this result also

holds for stochastic inertial manifolds. Firstly, let us give the definition of

this new concept.

Definition 2 A stochastic inertial manifold is said to be asymptotically

complete if for all u0 ∈ H there exists v0 ∈M(ω) such that

lim
t→+∞ |ϕ(t, ω)u0 − ϕ(t, ω)v0| = 0.

Remark. Note that, for all t ≥ 0, ϕ(t, ω)v0 ∈ M(θtω), that is, ϕ(t, ω)v0

describes a trajectory on the inertial manifold. Since the inertial manifold

is usually defined as the graph of a (random) Lipschitz function on a finite-

dimensional space, the asymptotic completeness highlights geometrically the

finite-dimensional asymptotic dynamics of the random dynamical system.



Note that, as in the deterministic case (see Ladyzhenskaya [20], lemma 2.1),

due to the strict invariance of the stochastic inertial manifold, we can define,

for each v0 ∈ M(ω), the negative semitrajectory ϕ(−t, ω)v0 ∈ M(θ−tω), for

all t > 0. Furthermore, if, P − a.s. and for all t > 0, ϕ(t, ω) is one to one,

the whole trajectory (t ∈) is unique. Indeed, a complete trajectory passing

through v0 ∈M(ω) and lying on the manifold is a function v :→ H satisfying

i) v(t) ∈M(θtω) ∀t ∈, v(0) = v0

ii) ϕ(t, θsω)v(s) = v(t + s), ∀s ∈, ∀t ≥ 0.

In particular, v(t) = ϕ(t, ω)v0, for t ≥ 0.

Now, given v0 ∈M(ω), we can easily construct a complete trajectory v(t).

For t ≥ 0, set v(t) = ϕ(t, ω)v0. For t < 0, we use the invariance of the man-

ifold and, since ϕ(1, θ−1ω)M(θ−1ω) = M(ω), there exists v−1 ∈ M(θ−1ω)

such that ϕ(1, θ−1ω)v−1 = v0. Again, asM(ω), ϕ(1, θ−2ω)M(θ−2ω) = M(θ−1ω),

then there exists v−2 ∈M(θ−2ω) with ϕ(1, θ−2ω)v−2 = v−1. In general, there

exists v−n ∈ M(θ−nω) with ϕ(1, θ−nω)v−n = v−(n−1). Finally, we join these

points in the following way: for t < 0, t ∈ [−n,−n + 1],

v(t) = ϕ(t + n, θ−nω)v−n.

It is not difficult to show, by the cocycle property, that v(t) is a complete

trajectory. However, the construction shows that the negative semitrajectory

could not be unique. But, if the random dynamical system is one to one,

P − a.s., that is, if ϕ(t, ω) is invertible, for all t ≥ 0 and P − a.s., it is clear

that the choice in the above construction is unique. Thus, we can extend the

random dynamical system to the whole line on the inertial manifold, and

write ϕ(t, ω) for t < 0, taking into account that ϕ(t, ω) = ϕ(−t, θtω)−1. We

can now define the following concept

Definition 3 A stochastic inertial manifold M(ω) is said to be flow nor-

mally hyperbolic if there exists γ < ν and D(ω) such that P − a.s.

|ϕ(−t, ω)v1 − ϕ(−t, ω)v2| ≤ D(ω)eγt|v1 − v2| (8)



for all t ≥ 0 and v1, v2 ∈M(ω).

Remark. This definition can be read as follows: a stochastic inertial mani-

fold is flow normally hyperbolic if the rate of attraction towards the inertial

manifold is greater than the backward separation of two trajectories on the

inertial manifold. As noted before, Robinson proved in [22] (in the deter-

ministic case) that this is a sufficient condition for an inertial manifold to be

asymptotically complete.

It is worth mentioning that, in the deterministic case, the flow normally

hyperbolic property is a generalization of the classical concept of normal

hyperbolicity (see Fenichel [13]) based on a linearization of the flow around

a small neighbourhood of the manifold and it is used to prove results on the

persistence of invariant manifolds.

We can now state the main result of this section

Theorem 2 Suppose a stochastic inertial manifold M(ω) is flow normally

hyperbolic and the random variable D(θtω) has at most a polynomial growth

in t. Then M(ω) is asymptotically complete. Moreover, the rate of attraction

is the same as the rate of attraction towards the inertial manifold.

Proof. Since M(ω) is a stochastic inertial manifold, then P − a.s. and

for all u0 ∈ H

dist(ϕ(t, ω)u0, M(θtω)) ≤ C(ω)e−νt, ∀t ≥ 0

and so, for all t ≥ 0, there exists vt ∈M(θtω) such that

|ϕ(t, ω)u0 − vt| ≤ C(ω)e−νt, ∀t ≥ 0. (9)

Define

v∞(t, ω) = lim
T→+∞

ϕ(t− T, θT ω)vT . (10)



Notice that ϕ(t− T, θT ω)vT is the value at time t of the trajectory which is

in vT at time T , where vT satisfies (9) and so

vT ∈M(θT ω),

which implies

ϕ(t− T, θT ω)vT ∈M(θtω), ∀T ≥ 0,

and, as a consequence, if the limit in (10) exists,

v∞(t, ω) ∈M(θtω), ∀t ≥ 0.

Observe that ϕ(t − T, θT ω)vT is well defined due to the strict invariance of

the inertial manifold.

We are going to show that v∞(t, ω) is well defined, is a solution of the stochas-

tic differential equation associated to the random dynamical system, and is

the tracking trajectory of ϕ(t, ω)u0.

First of all, we want to evaluate, for s ≥ t and h > 0

|ϕ(t− (s + h), θs+hω)vs+h − ϕ(t− s, θsω)vs|

which is, by the cocycle property,

|ϕ(t− s, θsω)ϕ(−h, θs+hω)vs+h − ϕ(t− s, θsω)vs|

and by the flow normally hyperbolicity

≤ D(θsω)e−γ(t−s)|ϕ(−h, θs+hω)vs+h − vs|
≤ D(θsω)e−γ(t−s)|ϕ(−h, θs+hω)vs+h − ϕ(−h, θs+hω)ϕ(h, θsω)vs|

≤ D(θsω)D(θs+hω)e−γ(t−s)eγh|vs+h − ϕ(h, θsω)vs| (11)

and, by definition of vs+h, vs and the Lipschitz property of the random dy-

namical system,

|vs+h − ϕ(h, θsω)vs|
≤ |vs+h − ϕ(s + h, ω)u0|+ |ϕ(h, θsω)ϕ(s, ω)u0 − ϕ(h, θsω)vs|
≤ C(ω)e−ν(s+h) + eLhC(ω)e−νs.



Thus, returning to (11)

|ϕ(t− (s + h), θs+hω)vs+h − ϕ(t− s, θsω)vs|
≤ D(θsω)D(θs+hω)e−γ(t−s)eγhC(ω)e−νs(e−νh + eLh),

and thus, for all h ≤ h0, (previously chosen),

≤ D(θsω)D(θs+hω)e−γte−(ν−γ)sC(ω)K. (12)

¿From (12) we can conclude that (10) converges uniformly on bounded in-

tervals of [0, +∞) since, for any τ > T,

|ϕ(t− τ, θτω)vτ − ϕ(t− T, θT ω)vT |

≤ Ke−γtC(ω)e−(ν−γ)T
∞∑

n=0

D(θT+nhω)D(θT+(n+1)hω)e−(ν−γ)nh

and, by the condition on D(ω), the series above is convergent, so that the

last expression is

= K0e
−γte−(ν−γ)T

which tends to zero uniformly for t ∈ [0, t0], for all t0 > 0, as T → +∞.

Therefore, the limit in (10) exists and satisfies the equation of the differential

equation, since it is the uniform limit of solutions of the problem.

Moreover, it is now clear that v∞(t, ω) satisfies the tracking property for

ϕ(t, ω)u0, since

|v∞(t, ω)− ϕ(t, ω)u0|
≤ |v∞(t, ω)− vt(ω)|+ |vt(ω)− ϕ(t, ω)u0|
≤ | lim

T→∞
ϕ(t− T, θT ω)vT − ϕ(t− t, θtω)vt|+ |vt(ω)− ϕ(t, ω)u0|

≤ KC(ω)e−γt
∞∑

n=0

D(θt+nhω)D(θt+(n+1)hω)e−(ν−γ)(t+nh) + C(ω)e−νt

≤ K0C(ω)e−γte−(ν−γ)t + C(ω)e−νt

≤ C(ω)K̃0e
−νt.
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Remark. Note that in the proof we have not made any reference to

the inertial manifold given as a graph of some Lipschitz function, so that

the theorem is true for a general invariant exponentially attracting closed

random set which satisfies the flow normally hyperbolic property.

4.1 Application. A Semilinear Stochastic Differential

Equation with Additive Noise

In Bensoussan and Flandoli [3] (see also Chueshov and Girya [8]) it is proved

the existence of a stochastic inertial manifold for the following differential

equation with additive noise

du(t) + Au(t)dt = R(u(t))dt + dW (t)

u(0) = u0,

where A is a selfadjoint positive linear operator with a discrete spectrum and

compact inverse, so that there exists a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·

whose corresponding eigenvectors form an orthogonal basis of H. R is the

nonlinear term which is Lipschitz continuous with constant LR.

Under the hypotheses on R(u), it is clear that condition (2) is satisfied,

and that the random variable D(ω) in (8) is independent of ω. Furthermore,

in [3] it is proved that under the spectral gap condition

λn+1 − λn > 4LR (13)

there exists a stochastic inertial manifold M(ω) given as the graph of some

random function. In this case γ = (1 + M)LR + λn. Indeed, a bound on the

separation of trajectories on M(ω) is given by a bound on the separation of

trajectories of the ODE

dp + Apdt = PmR(p + φt(ω)p)dt + dPmWt,



and the Lipschitz constant of Ap + PmR(p + φt(ω)p) is (1 + M)LR + λn.

On the other part, we have that the rate of attraction ν = λn+1−LR(1+

M), where M = Lφ, and it can be chosen to be less or equal to one (see [3]).

Thus, from (13) we obtain

γ = (1 + M)LR + λn < 2LR + λn < λn+1 − 2LR < λn+1 − LR(1 + M) = ν,

so that, as γ < ν, M(ω) is flow normally hyperbolic and, by theorem 2, it is

asymptotically complete.

CONCLUSIONS

Some results on the relation between the dynamics on random attracting sets

and dissipative random dynamical systems have been studied.

On the other hand, it has been proved a general result for the asymptotic

completeness of invariant exponentially attracting random sets, which can be

successfully applied to some interesting problems in the literature for which

the existence of stochastic inertial manifolds has been proved.

The application of these results to other possible examples with random

attractors or stochastic inertial manifolds is an interesting problem which

could lead us to more general results on tracking properties of trajectories

for random attracting sets. This would improve the understanding of the

asymptotic behaviour of interesting stochastic systems.
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[25] B. Schmalfuss, Backward cocycles and attractors of stochastic differ-

ential equations. In V. Reitmann, T. Riedrich and N Koksch, editors, In-

ternational Seminar on Applied Mathematics-Nonlinear Dynamics: At-

tractor Approximation and Global Behaviour, pp. 185-192 (1992)

[26] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and

Physics, Springer-Verlag, New York 1988.


