
Dimension of attractors of nonautonomous
partial differential equations

T. Caraballo∗ J.A. Langa† J. Valero‡

Abstract

The concept of nonautonomous (or cocycle) attractor has become a
proper tool for the study of the asymptotic behaviour of general nonau-
tonomous partial differential equations. This is a time-dependent fam-
ily of compact sets, invariant for the associated process and attracting
“from −∞”. In general, the concept is rather different from the clas-
sical one of global attractor for autonomous dynamical systems. We
prove a general result on the finite fractal dimensionality of each com-
pact set of this family. In this way, we generalize previous results of
Chepyzhov and Vishik in [6]. Our results are also applied to differ-
ential equations with a nonlinear term having polynomial growth at
most.
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1 Introduction

In this paper, we develop a general theory on the finite dimension of at-
tractors for nonautonomous partial differential equations and we apply it, in
particular, to estimate the fractal dimension of the attractor for the following
nonautonomous equation





∂u

∂t
−∆u + f (t, u) = h (t) ,

u |∂Ω= 0,
u (τ) = uτ ,

where the function h (t) is allowed to have polynomial growth in time (see
condition (9) below). For these kind of nonautonomous systems it is not pos-
sible in general to obtain a uniform global attractor in the sense of [5], since
the trajectories can be unbounded when time rises to infinity. A different
approach was developed in [8], [9], [25] (see also [2], [17], [16], [24]), where
the existence of attractors for some stochastic and nonautonomous equations
is studied. The main definitions and theorems from the abstract theory of
attractors for such systems are given in Section 2.

It is worth pointing out that in such systems the global attractor is not a
compact set, but a parameterized family A (t) of compact sets. We are inter-
ested in proving the finite dimensionality of each of the sets A (t). We note
that the union of all the attractors, i.e. ∪t∈RA (t) can be infinite-dimensional.

In the case of stochastic equations of parabolic and hyperbolic types such
results were obtained in [10], [12], [13]. There are some technical tools in
the proofs of these papers that do not seem to be applicable to the nonau-
tonomous case. As far as we know, the only result in the nonautonomous
case, was proved in [4] under the assumption of being the function h (t) uni-
formly bounded in the variable t. In such case, the union of the whole family
of attractors ∪t∈RA (t) is bounded, and the well known technique of Lya-
punov exponents, developed in [7], can be adapted with slight modifications.
However, when the function h (t) is allowed to have polynomial growth, the
supremum of the norm of the global attractor A (t) can have also polynomial
growth, so that we cannot expect that the union of attractors is bounded.

In this paper we extend the general theory on the finite-dimensionality of
compact invariant sets in Hilbert spaces (see [1], [15], [20], [23], [27]) to the
case of a parameterized family of global attractors with polynomial growth at
most. The invariance property for nonautonomous attractors is now stated
for a time-dependent family of compact sets {A(t)}t∈R and the attraction
is defined for trajectories with initial time going to −∞. Thus, the idea is
to construct a sequence of coverings of A(t) by iterating n times an initial
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covering of A(t− nT ∗), as n →∞.
Further we apply this abstract theorem to the attractor of the equation

given above. We note that we are able to obtain the estimation of dimension
in the case where the function f (t, u) is globally Lipschitz on the second vari-
able u. In the autonomous case it is possible to change the global Lipschitz
condition by a local one by proving that the global attractor is bounded
in L∞ (Ω) (see [14], [21], [28]). In our case, in order to use a similar idea
we would need to obtain an estimation of the norm in L∞ (Ω) of the union
∪τ≤tA (τ) ,∀t, which is not possible in general as we have already remarked.

2 Attractors of nonautonomous equations

In this section, we introduce the general framework in which the theory of
attractors for nonautonomous systems is going to be studied (see Crauel et al.
[9] and Schmalfuss [26]). In a first step, we define semiprocesses as two-time
dependent operators related with the solutions of nonautonomous differential
equations. In this way, we are able to treat these equations as dynamical
systems. Secondly, we write the general definitions of invariance, absorption
and attraction and we finish with a general theorem on the existence of global
attractors for these equations.

Let (H, d) be a complete metric space (with the metric d) and {S(t, s)}t≥s,
t, s ∈ R be a family of mappings satisfying:

i) S (t, t, ·) = Id,

ii) S(t, s, S(s, τ, u)) = S(t, τ, u), for all τ ≤ s ≤ t, u ∈ H,

iii) u 7→ S(t, τ, u) is continuous in H.

This map is called a process (this term was introduce by Dafermos [11]).
In general, we have to consider S(t, τ, u) as the solution of a nonautonomous
equation at time t with initial condition u at time τ.

LetD be a non-empty set of parameterized families of non-empty bounded
sets D̂ = {D (t)}t∈R. In particular, D̂ = {D (t)}t∈R ∈ D, where D (t) ≡ B
for all t, and B ⊂ H is a bounded set. In what follows, we will consider fixed
this set D, so that the concepts of absorption and attraction in our analysis
are always referred to it.

For A,B ⊂ H we define the Hausdorff semidistance as,

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b).
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Definition 2.1 Given t0 ∈ R, we say that K(t) ⊂ H is attracting at time t0
if for every D̂ = {D (t)} ∈ D we have that

lim
τ→−∞

dist(S(t0, τ,D (τ)), K(t0)) = 0.

A family K̂ = {K(t)}t∈R is attracting if K(t0) is attracting at time t0, for
all t0 ∈ R.

The previous concept considers a fixed final time and moves the initial
time to −∞. Note that this does not mean that we are going backwards in
time, but we consider the state of the system at time t0 starting at τ → −∞.
This is called pullback attraction in the literature (cf. [18], [26]).

Definition 2.2 Given t0 ∈ R, we say that B(t0) ⊂ H is absorbing at time

t0 if for every D̂ = {D (t)} ∈ D there exists T = T (t, D̂) ∈ R such that

S(t0, τ, D (τ)) ⊂ B(t0), for all τ ≤ T.

A family B̂ = {B(t)}t∈R is absorbing if B(t0) is absorbing at time t0, for all
t0 ∈ R.

Note that every absorbing set at time t0 is attracting.

Definition 2.3 Let B̂ = {B(t)}t∈R be a family of subsets of H. This family
is said to be invariant with respect to the process S if

S(t, τ, B(τ)) = B(t), for all (τ, t) ∈ R2, τ ≤ t.

Note that this property is a generalization of the classical property of
invariance for semigroups. However, in this case we have to define the invari-
ance with respect to a family of sets depending on a parameter.

We define the omega-limit set at time t0 of D̂ ≡ {D (t)} ∈ D as

Λ(D̂, t0) =
⋂
s≤t0

⋃
τ≤s

S(t0, τ, D (τ)).

From now on, we assume that there exists a family K̂ = {K(t)}t∈R of
compact absorbing sets, that is, K(t) ⊂ H is non-empty, compact and ab-

sorbing for each t ∈ R. Note that, in this case, Λ(D̂, t0) ⊂ K(t0), for all

D̂ = {D (t)} ∈ D, t0 ∈ R. As in the autonomous case, it is not difficult to

prove that under these conditions Λ(D̂, t0) is non-empty, compact and at-

tracts D̂ = {D (t)} ∈ D at time t0. The proof is similar to that of [9, Lemma
1.1], where the set D consists only of bounded sets.
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Definition 2.4 The family of compact sets Â = {A(t)}t∈R is said to be
the global attractor associated to the process S if it is invariant, attracting
every D̂ = {D (t)} ∈ D (for all t0 ∈ R) and minimal in the sense that if

Ĉ = {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t)
for all t ∈ R.

Remark 2.5 Chepyzhov and Vishik [4] define the concept of kernel sections
for nonautonomous dynamical systems which corresponds to our definition
of global nonautonomous attractor with D̂ = {D(t) ≡ B}t∈R where B ⊂ H
is bounded.

The general result on the existence of nonautonomous attractors is a gen-
eralization of the abstract theory for autonomous dynamical systems (Temam
[27], Hale [19]):

Theorem 2.6 Assume that there exists a family of compact absorbing sets.
Then, the family Â = {A(t)}t∈R defined by

A(t) =
⋃

bD∈DΛ(D̂, t)

is the global nonautonomous attractor.

As the proof of this theorem repeats the same one of [9, Theorem 1.1]
with slight modifications, we will omit it.

Remark 2.7 All the general theory of nonautonomous attractors can be
written in the framework of cocycles (cf., among others, Cheban et al. [2],
Crauel and Flandoli [8], Kloeden and Schmalfuss [18], Schmalfuss [26]). We
could have also followed this notation here, but we think that, in this case, it
is more clear to keep the explicit dependence on time of the attractor, which
in addition, allows us to compare more straightforward the results in [4].

3 Dimension of nonautonomous attractors

In [4], Chepyzhov and Vishik prove a general result for the Hausdorff dimen-
sion of kernel sections A(t) associated to a process {S(t, τ)} generated by
a nonautonomous differential equation. The main hypothesis is the uniform
boundedness of the set ∪t∈RA(t). In applications, this is related to the ex-
istence of a uniform bound for the nonautonomous terms in the system. In
our case, we allow these terms to be unbounded in t, so that their results are
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not suitable for our situation. However, we are able to prove a general result
on the finite fractal dimensionality of the nonautonomous attractor. Due to
the weaker properties on the nonautonomous terms, it is not expected that
a uniform bound for all t is obtained.

Let H be a Hilbert space and A ⊂ H be a compact subset of H. We
firstly recall the definition of the Hausdorff and fractal dimensions of A.

We shall denote by B(a, r) a closed ball of radius r centered at a. Let U
be a covering of A by a finite family of balls B(xi, ri) such that supi(ri) =
δ(U) ≤ δ. Then the d-dimensional Hausdorff measure of A is defined as
follows:

µH(A, d) = lim
δ→0

µH(A, d, δ),

where
µH(A, d, δ) = inf

δ(U)≤δ

∑
i

rd
i ,

where the inf is extended to all the possible covering U of A such that δ(U) ≤
δ. It is known that there exists d = dH(A) ∈ [0, +∞] such that µH(A, d) = 0
for d > dH(A) and µH(A, d) = ∞ for d < dH(A). The value dH(A) is called
the Hausdorff dimension of A.

The fractal dimension of A is given by

df (A) = inf{d > 0 | µf (A, d) = 0},

where
µf (A, d) = lim

ε→0
µf (A, ε, d) = lim

ε→0
εdnε,

and nε is the minimum number of balls of radius r = ε which is necessary
to cover A. Since µH(A, d) ≤ µf (A, d) it is clear that dH(A) ≤ df (A), the
converse being false in general (Eden et al. [15]).

Before proving our main result in this section, we will recall a technical
lemma which will be repeatedly used in the proof (see Lemma 1 in [1]).

Lemma 3.1 Let B(a, γ) ⊂ RN be a closed ball centered at a of radius γ.
For any 0 < λ < γ the minimum number of balls nλ of radius λ which is

necessary to cover B(a, γ) is less or equal to
(
3γ

λ

)N
.

We consider now a process S (t, τ, u) : R×R×H → H, t ≥ τ , having the

family of global attractors Â = {A (t)}t∈R.

Theorem 3.2 Suppose there exist constants K0, K1, θ > 0 such that

‖A (t)‖+ ≤ K0 |t|θ + K1,∀t ∈ R, (1)
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where ‖A (t)‖+ = supy∈A(t) ‖y‖ .
Also assume that for any t ∈ R there exist T ∗ = T ∗ (t), l = l (t, T ∗) ∈

[1, +∞), δ = δ (t, T ∗) ∈ (0, 1√
2
) and N = N(t), such that for any u, v ∈

A (τ) , τ ≤ t− T ∗,

‖S(τ + T ∗, τ, u)− S(τ + T ∗, τ, v)‖ ≤ l ‖u− v‖ , (2)

‖QN (S(τ + T ∗, τ, u)− S(τ + T ∗, τ, v))‖ ≤ δ ‖u− v‖ , (3)

where QN is the projector mapping H onto some subspace H⊥
N of codimension

N ∈ N. Then, for any η = η (t) > 0 such that σ = σ (t) =
(
6
√

2l
)N (√

2δ
)η

<
1, the next inequality holds

dH(A (t)) ≤ df (A (t)) ≤ N + η. (4)

Proof. Let us fix t ∈ R and choose η > 0 such that σ < 1. We also take

an arbitrary τ ≤ t − T ∗, and denote ε (τ) = 2
(
K0 |τ |θ + K1

)
. Let U0 be a

covering of A (τ) by one ball B(a1, ε (τ)), a1 ∈ A (τ), of radius ε (τ) centered
at a1. Hence, A (τ) ⊂ B(a1, ε (τ)).

Since A (τ + T ∗) = S(τ + T ∗, τ,A (τ)) and using condition (2) we have

A (τ + T ∗) ⊂ B(S(τ + T ∗, τ, a1), lε (τ)).

Let us denote by PN the orthoprojector onto the subspace HN of dimension
N which is orthogonal to H⊥

N (and then PN ⊕ QN = I, HN⊕ H⊥
N = H). It

is clear that PN B(S(τ + T ∗, τ, a1), lε (τ)) ⊂ BN(PNS(τ + T ∗, τ, a1), lε (τ)),
where BN(a, β) denotes a closed ball in HN of radius β and centered at a.

In view of the preceding lemma we can cover BN(PNS(τ+T ∗, τ, a1), lε (τ))
by balls BN( a1j,

δ
2
ε (τ)), j = 1, ...,m1, a1j ∈ HN and

m1 = m1(t) ≤
(

6
l

δ

)N

.

Let us denote M1j = (P−1
N BN(a1j,

δ
2
ε (τ))) ∩ A (τ + T ∗). We take ar-

bitrary y1j ∈ M1j. We shall show that the set of balls B(y1j, γε (τ)),
j = 1, ..., m1, γ =

√
2δ (note that we have assumed that γ < 1), is a new

covering of A (τ + T ∗). Since

A (τ + T ∗) ⊂
m1⋃
j=1

M1j,

it is sufficient to prove thatM1j ⊂ B(y1j, γε (τ)), ∀j. Let y ∈M1j. There ex-
ist v1, v2 ∈ B(a1, ε (τ))∩A (τ) such that S(τ+T ∗, τ, v1) = y, S(τ+T ∗, τ, v2) =
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y1j. Then ‖v1 − v2‖ ≤ ε (τ) and in view of (3), ‖QN y −QN y1j‖ ≤ δε (τ). On
the other hand, ‖PN y −PN y1j‖ ≤ ‖PN y − a1j‖ + ‖PN y1j − a1j‖ ≤ δε (τ).

Hence, ‖y − y1j‖ ≤
√

(δε (τ))2 + (δε (τ))2 = γε (τ).

We have obtained a covering U1 of A (τ + T ∗) by balls of radius γε (τ)
such that the number of balls is m1. Therefore,

nγε(τ) ≤ m1 ≤
(

6
l

δ

)N

,

where nγε(τ) denotes now the minimum number of balls of radius equal to
γε (τ) which is necessary to cover A (τ + T ∗). Then,

µf (A (τ + T ∗) , γε (τ) , d) = nγε(τ) (γε (τ))d ≤
(

6
l

δ

)N (√
2δε (τ)

)d

.

Taking d = d(t) = N + η, we get

µf (A (τ + T ∗) , γε (τ) , N + η) ≤
(√

2δ
)η (

6
√

2l
)N

ε (τ)N+η = σε (τ)N+η .

Suppose now that τ ≤ t−2T ∗. Take the covering U1 = {B (y1i, γε (τ))}m1

i=1

ofA (τ + T ∗) and defineMi = S (τ + 2T ∗, τ + T ∗, A (τ + T ∗) ∩B(y1i, γε (τ)))∩
A (τ + 2T ∗) , i = 1, ..., m1.

Now, since A (τ + 2T ∗) = S(τ + 2T ∗, τ + T ∗,A (τ + T ∗))) and using con-
dition (2), we have

A (τ + 2T ∗) ⊂
m1⋃
i=1

Mi ⊂
m1⋃
i=1

B(S(τ + 2T ∗, τ + T ∗, y1i), lγε (τ)).

It is clear that PN B(S(τ + 2T ∗, τ + T ∗, y1i), lγε (τ)) ⊂ BN(PNS(τ +
2T ∗, τ +T ∗, y1i), lγε (τ)),∀i. In view of the preceding technical lemma, we can
cover each BN(PNS(τ + 2T ∗, τ + T ∗, y1i), lγε (τ)) by balls BN( aij,

δ
2
γε (τ)),

j = 1, ..., ni, aij ∈ HN and

ni = ni(t) ≤
(

6
l

δ

)N

, ∀i.

Let us denote Mij = (P−1
N BN(aij,

δ
2
γε (τ))) ∩ Mi. We take arbitrary

yij ∈ Mij. We shall show that the set of balls B(yij, γ
2ε), i = 1, ..., m1, j =

1, ..., ni, γ =
√

2δ, is a new covering of A (τ + 2T ∗). Indeed, since

A (τ + 2T ∗) ⊂
⋃
ij

Mij,
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it is sufficient to prove that Mij ⊂ B(yij, γ
2ε), ∀i, j. Let y ∈ Mij. There

exist v1, v2 ∈ B(y1i, γε (τ)) ∩ A (τ + T ∗) such that S(τ + 2T ∗, τ + T ∗, v1) =
y, S(τ + 2T ∗, τ + T ∗, v2) = yij. Then ‖v1 − v2‖ ≤ γε (τ) and in view of
(3), ‖QN y −QN yij‖ ≤ δγε (τ). On the other hand, ‖PN y − PN yij‖ ≤
‖PN y − aij‖+ ‖PN yij − aij‖ ≤ δγε (τ). Hence,

‖y − yij‖ ≤
√

(δγε)2 + (δγε)2 = γ2ε (τ) .

We have obtained a covering U2 of A (τ + 2T ∗) by balls of radius γ2ε such
that the number of balls is m2 = m2(t) =

∑m1

i=1 ni. Therefore,

nγ2ε ≤
m1∑
i=1

ni ≤ m1

(
6

l

δ

)N

≤
(

6
l

δ

)2N

.

Let k ∈ N. If we suppose that τ ≤ t−kT ∗, we can obtain, in the same way
as before, a sequence of coverings Uj, j = 1, 2, ..., k of the sets A (τ + jT ∗)
by balls of radius γjε and such that the number of balls is less than or equal

to
(
6 l

δ

)jN
. Therefore,

nγjε ≤
(

6
l

δ

)jN

,

where nγjε(τ) denotes now the minimum number of balls of radius equal to
γjε (τ) which is necessary to cover A (τ + jT ∗).

Hence, choosing τ = t− kT ∗ we obtain

µf (A (t) , γkε (τ) , N + η) ≤
(√

2δ
)kη (

6
√

2l
)kN

ε (τ)N+η

≤ σk
(
K1 + K0 |(t− kT ∗)|θ

)N+η

.

This implies that limα→0 µf (A (t) , α, d) = 0, for d = N + η. Indeed, as for k
large enough the sequence

r (k) = γkε (t− kT ∗) = γk
(
K1 + K0 |t− kT ∗|θ

)

is decreasing, we have that for any α > 0 small enough, one can find some

k ∈ N such that r (k) ≤ α < r (k − 1). It is clear that nα ≤ nr(k) ≤
(
6 l

δ

)kN
.

Then

lim
α→0

µf (A (t) , α, N + η) = lim
α→0

nααN+η ≤ lim
k→∞

(
6

l

δ

)kN

(r (k − 1))N+η

= lim
k→∞

σk

(
K1 + K0 |t− (k − 1) T ∗|θ

γ

)N+η

= 0.

Hence, dH(A (t)) ≤ df (A (t)) ≤ N + η.
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Corollary 3.3 Let conditions (1)-(3) hold. Then

dH(A (t)) ≤ df (A (t)) ≤ N (t)

(
1− log 6

√
2l (t, T ∗)

log
√

2δ (t, T ∗)

)
. (5)

Remark 3.4 Note that if the constants T ∗, N, l and δ do not depend on t,
then the estimate is uniform for all A (t) .

4 Applications to a nonautonomous partial

differential equation

Consider now the nonautonomous partial differential equation





∂u

∂t
−∆u + f (t, u) = h (t) ,

u |∂Ω= 0,
u (τ) = uτ ,

(6)

where f ∈ C1 (R2,R) , h (·) ∈ L2
loc (R, L2 (Ω)) , Ω is a bounded open subset

of Rn and there exist r ≥ 0, p ≥ 2, ci > 0, i = 1, .., 7, such that

c1 |u|p − c2 ≤ f (t, u) u ≤ c3 |u|p + c4, (7)

fu (t, u) ≥ −c5, (8)

‖h (t)‖L2 ≤ c6 |t|r + c7, (9)

for all u, t ∈ R.
Denote H = L2 (Ω) with norm || · ||, V = H1

0 (Ω) . For a norm in another
space X we shall use the notation || · ||X .

Theorem 4.1 For any τ, T ∈ R, T > τ, uτ ∈ L2 (Ω) there exists a unique
solution u (·) ∈ C ([τ, T ] , H) ∩ L2 (τ, T ; V ) ∩ Lp (τ, T ; Lp (Ω)) . Moreover, for
all uτ , vτ ∈ L2 (Ω), t ∈ [τ, T ] it holds

‖u (t)− v (t)‖ ≤ exp (c5 (t− τ)) ‖uτ − vτ‖ . (10)

Proof. The existence of a solution for any uτ ∈ L2 (Ω) was proved in [6,
Theorem 2.1]. The uniqueness property and (10) can be obtained exactly in
the same way as in [21, Theorem 1.1] or [6, Theorem 3.1].
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Denote S (t, τ, uτ ) = u (t), where u (τ) = uτ , which is a process. We

denote by SE (H) the class of families of bounded sets B̂ = {B (τ)}τ∈R
(B (τ) ⊂ H) such that

lim
τ→∞

max
{
log ‖B (τ)‖+ , 0

}

τ
= 0, (11)

that is, the class of sets with subexponential growth on the time variable. In
this case D = SE (H) (see the notation in Section 2).

Lemma 4.2 For any t ∈ R, there exists a bounded set B0 (t) in H such that

for any family B̂ ∈ SE (H) and any t0 < t, there exists T = T
(
B̂, t0

)
< t0

such that
S (t1, τ, B (τ)) ⊂ B0 (t) ,∀τ ≤ T, ∀t1 ∈ [t0, t], (12)

Proof. Multiplying (6) by u (s) = S(s, τ, uτ ), uτ ∈ B (τ), and using (7),
(9) we have

1

2

d

ds
‖u‖2 + ‖∇u‖2 + c1 ‖u‖p

Lp

≤ c2µ (Ω) + ‖u‖ ‖h(s)‖
≤ c2µ (Ω) +

λ1

2
‖u‖2 +

1

2λ1

‖h(s)‖2

≤ c2µ (Ω) +
1

2
‖∇u‖2 +

1

2λ1

(c6 |s|r + c7)
2
, (13)

where µ (Ω) is the Lebesgue measure of Ω in Rn. Therefore,

d

ds
‖u‖2 + λ1 ‖u‖2 + 2c1 ‖u‖p

Lp ≤ d

ds
‖u‖2 + ‖∇u‖2 + 2c1 ‖u‖p

Lp

≤ 2c2µ (Ω) +
1

λ1

(c6 |s|r + c7)
2
.

By the Gronwall lemma

‖u (t1)‖2 ≤ exp (−λ1 (t1 − τ)) ||uτ ||2

+

∫ t1

τ

exp (−λ1 (t1 − s))

(
2c2µ (Ω) +

1

λ1

(c6 |s|r + c7)
2

)
ds,

so that the ball

B0 (t) =
{

y ∈ H : ‖y‖ ≤
√

K (t) + α
}

,
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with α > 0, K (t) =
∫ t

−∞ exp (−λ1 (t− s))
(
2c2µ (Ω) + 1

λ1
(c6 |s|r + c7)

2
)

ds,

satisfies (12). Indeed, in view of condition (11), we can find T
(
B̂, t0

)
such

that exp (−λ1 (t1 − τ)) ‖uτ‖2
H ≤ α, ∀τ ≤ T

(
B̂, t0

)
,∀uτ ∈ B (τ) ,∀t0 ≤ t1 ≤

t.

Corollary 4.3 For any uτ ∈ B (τ) , τ < T
(
B̂, t0

)
,

∫ t

t0

(‖∇u‖2 + 2c1 ‖u‖p
Lp

)
ds ≤ R(t0, t),

where

R(t0, t) = 2c2µ (Ω) (t− t0) +
1

λ1

∫ t

t0

(c6 |s|r + c7)
2
ds + K (t) + α.

Proof. It is a consequence of Lemma 4.2 and (13).

Lemma 4.4 For any t ∈ R, t0 < t there exists a set B1 (t0, t) bounded

in V and compact in H such that for any B̂ ∈ SE (H) there exists T =

T
(
B̂, t0

)
< t0 such that ∀τ ≤ T,

S (t, τ, B (τ)) ⊂ B1 (t0, t) . (14)

Proof. Multiplying (6) by −∆u, where u (r) = S (r, τ, uτ ) , uτ ∈ B (τ),
and integrating by parts we have

1

2

d

dr
‖∇u‖2 + ‖∆u‖2 + (fu (r, u)∇u,∇u) = (h, ∆u)

≤ 1

2
‖h (r)‖2 +

1

2
‖∆u‖2 .

Using (8) we obtain

d

dr
‖∇u‖2 ≤ d

dt
‖∇u‖2 + ‖∆u‖2 ≤ ‖h (r)‖2 + 2c5 ‖∇u‖2 . (15)

Denote a1 = a1(t) =
∫ t

t0
‖h (r)‖2 dr, a2 = a2(t) = exp (2c5 (t− t0)). As-

sume that t0 ≤ s ≤ r ≤ t and multiply (15) by exp (−2c5 (r − t0)). Then

d

dr

(
exp (−2c5 (r − t0)) ‖∇u‖2) ≤ ‖h (r)‖2 exp (−2c5 (r − t0)) ≤ ‖h (r)‖2 .

12



Integrating over (s, t) we obtain

‖∇u (t)‖2 ≤ exp (2c5 (t− s)) ‖∇u (s)‖2 + exp (2c5 (t− t0))

∫ t

s

‖h (r)‖2 dr

≤ (‖∇u (s)‖2 + a1

)
a2.

Finally, integrating with respect to s over (t0, t) and using Corollary 4.3
we have

(t− t0) ‖∇u (t)‖2 ≤ (R(t0, t) + a1 (t− t0)) a2,∀τ < T
(
B̂, t0

)
,

so that, taking into account the compact embedding V ⊂ H, the closure in
H of the set

B1 (t0, t) =

{
u ∈ H1

0 (Ω) : ||∇u||2 ≤
(

R(t0, t)

t− t0
+ a1

)
a2

}

is the desired set.

Theorem 4.5 The process S has the global attractor Â = {A (t)}t∈R . More-
over, there exist K0, K1, θ > 0 such that

‖A (t)‖+ ≤ K0 |t|θ + K1,∀t ∈ R, (16)

so that Â ∈ SE (H) .

Proof. The existence of the global attractor is a consequence of Lemma
4.4 and Theorem 2.6.

Further, we note that, choosing t0 in Lemma 4.4 such that t− t0 = l > 0,
we have

‖B1 (t0, t)‖+
H ≤ β sup

y∈B1(t0,t)

‖∇y‖

≤ β

((
R(t0, t)

l
+ a1

)
a2

) 1
2

≤ β

((
ν +

∫ t

t0

(c6 |s|r + c7)
2
ds

)
a2

) 1
2

,

where

ν =
2c2µ (Ω) l + 1

λ1

∫ t

t0
(c6 |s|r + c7)

2
ds + K (t) + α

l
.

It follows from the definition of K (t) the existence of R1, R2, ζ > 0 such that

‖K (t)‖+ ≤ R1 |t|ζ + R2, ∀t.
Hence, since A (t) ⊂ B1 (t0, t) ,∀t, estimation (16) follows.

13



Theorem 4.6 Suppose there exists a positive and nondecreasing function
ξ (t) defined for all t ∈ R and such that for all τ ≤ t, u, v ∈ R,

|f (τ, u)− f (τ, v)| ≤ ξ (t) |u− v| . (17)

Then, there exist L1, L2 > 0 depending on Ω and n such that

dH(A (t)) ≤ df (A (t)) ≤ max
{

L1 (ξ (t))
n
2 , L2 (c5)

n
2

}
. (18)

Proof. The proof is similar to that of [1, Theorem 7]. Let us first prove
condition (2). We take a fixed t ∈ R, and arbitrary solutions u (·) , v (·) . It
is easy to obtain in a standard way that

1

2

d

ds
‖u(s)− v(s)‖2 + ‖∇ (u(s)− v(s))‖2

+ (f(s, u(s))− f(s, v(s)), u (s)− v (s)) = 0. for all s ∈ R.

In view of (8)

d

ds
‖u(s)− v(s)‖2 ≤ 2c5 ‖u (s)− v (s)‖2 .

Let us now take T ∗ > 0 to be determined later on and depending on t.
Gronwall’s Lemma implies that for any τ ∈ R,

‖u(τ + T ∗)− v(τ + T ∗)‖2 ≤ exp (2c5T
∗) ‖u(τ)− v(τ)‖2 , (19)

so that (2) holds with l (t, T ∗) = exp (c5T
∗) .

Denote m(s) = u(s)− v(s). Multiplying

dm (s)

ds
−∆m (s) + f (s, u (s))− f (s, v (s)) = 0

by QN m(s), we get

1

2

d

ds
‖QN m(s)‖2 + ‖∇QN m(s)‖2 + (f(s, u(s))− f(s, v(s)), QN m(s)) = 0.

Let 0 < λ1 ≤ λ2 ≤ ... ≤ λN → ∞ be the eigenvalues of −∆ in H1
0 (Ω).

Since ‖∇QNm(s)‖ ≥ λN+1 ‖QNm(s)‖2, and using condition (17) and (19),
we obtain for s ≤ τ + T ∗ ≤ t,

d

ds
‖QNm(s)‖2 ≤ −2λN+1 ‖QNm(s)‖2 + 2ξ (t) ‖m(s)‖2

≤ −2λN+1 ‖QNm(s)‖2 + 2ξ (t) exp(2c5 (s− τ)) ‖u (τ)− v (τ)‖2 .
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Multiplying both sides by exp(2λN+1 (s− τ)), we have

d

ds

(‖QNm(s)‖2 exp(2λN+1 (s− τ))
) ≤ 2ξ (t) exp(2(c5+λN+1) (s− τ)) ‖u (τ)− v (τ)‖2 .

Integrating over (τ, τ + T ∗) we get

‖QNm(τ + T ∗)‖2 exp(2λN+1 (T ∗))

≤ ‖u (τ)− v (τ)‖2

(
1 +

ξ (t)

c5 + λN+1

(exp (2(c5 + λN+1)T
∗)− 1)

)
.

Hence,

‖QNm(τ + T ∗)‖2 ≤ ‖u (τ)− v (τ)‖2 (
c5 + λN+1 − ξ (t)

c5 + λN+1

exp(−2λN+1T
∗)

+
ξ (t)

c5 + λN+1

exp(2c5T
∗))

≤ ‖u (τ)− v (τ)‖2

[
exp(−2λN+1T

∗) +
ξ (t)

c5 + λN+1

exp(2c5T
∗)

]

= δ2(t, T ∗, N) ‖u (τ)− v (τ)‖2 .

Choosing appropriate N = N(t) and T ∗, we obtain δ(t) = δ(t, T ∗, N) <
1√
2
. Then, condition (3) is satisfied. It follows from Theorems 4.5 and 3.2

that
df (A (t)) ≤ N + η,

where η is given by condition
(
6
√

2l (t)
)N (√

2δ (t)
)η

= σ (t) < 1.
We shall further prove (18). It is well known (see [3, p.201], [22, p.136])

that λN = O(N
2
n ), as N →∞, so that there exists D > 0 such that λN

N
2
n
≥ D,

∀N ∈ N. If we put η = N then

σ2 (t) = (12δ (t) l (t))2N

= 122

(
exp(−2λN+1T

∗ + 2c5T
∗) +

ξ (t)

c5 + λN+1

exp(4c5T
∗)

)
.

Denote γ = 12. We have to choose T ∗ and λN+1 in such a way that

exp(−2(λN+1 − c5)T
∗) =

1

2γ2
, (20)

ξ (t)

c5 + λN+1

exp(4c5T
∗) ≤ 1

2γ2 + α
, (21)
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where α > 0.
It follows from (20) that T ∗ = log 2γ2

2(λN+1−c5)
. Hence, (21) will be satisfied if

the next inequality holds

(λN+1 − c5) log

(
c5 + λN+1

(2γ2 + α) ξ (t))

)
≥ 4c5 log

√
2γ.

Using the inequality λN+1 ≥ D(N + 1)
2
n we get

(λN+1 − c5) log

(
c5 + λN+1

(2γ2 + α) ξ (t)

)
≥

(
(N + 1)

2
n D − c5

)
log

(
c5 + D(N + 1)

2
n

(2γ2 + α) ξ (t)

)
.

Choosing N = N(t) such that D(N + 1)
2
n ≥ 5c5 and c5+D(N+1)

2
n

(2γ2+α)ξ(t)
≥ √

2γ the

inequality (21) holds. Hence, it is sufficient to choose N satisfying

N ≥ max

{
(D1ξ (t))

n
2 − 1,

(
5c5

D

)n
2

− 1

}
,

where D1 =
√

2γ(2γ2+α)
D

. We take N = max
{

[(D1ξ (t))
n
2 ],

[(
5c5
D

)n
2

]}
, where

[x] denotes the integer part of x, and then N ≤ max
{

(D1ξ (t))
n
2 ,

(
5c5
D

)n
2

}
.

Finally, Theorem 3.2 implies that

df (A (t)) ≤ 2N ≤ 2 max

{
(D1ξ (t))

n
2 ,

(
5c5

D

)n
2

}

= max
{

L1 (ξ (t))
n
2 , L2 (c5)

n
2

}
,

where L1 = 2 (D1)
n
2 , L2 = 2

(
5
D

)n
2 .

From the previous result we can also obtain a uniform bound in t for the
fractal dimension of the attractors:

Corollary 4.7 There exists a positive constant K depending on n, Ω, c5 and
ξ (·) (but not on t) such that

dH (A (t)) ≤ df (A (t)) ≤ K,

for all t ∈ R.

Proof. Fix some t∗ ∈ R. Since ξ (t) is non-decreasing, Theorem 4.6 gives

df (A (t)) ≤ max
{

L1 (ξ (t))
n
2 , L2 (c5)

n
2

}

≤ max
{

L1 (ξ (t∗))
n
2 , L2 (c5)

n
2

}
, for all t ≤ t∗.
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On the other hand, note that (19) implies that S(t + T, t) is Lipschitz with
constant ec5T , for all T > 0. Then, by Proposition 13.2 in [23] we get

df (A (t + T )) = df (S(t + T, t)A (t)) ≤ df (A (t)) , (22)

so that

df (A (t)) ≤ max
{

L1 (ξ (t∗))
n
2 , L2 (c5)

n
2

}
= K, for all t ∈ R. (23)

Remark 4.8 We note that (23) is satisfied for all t∗ ∈ R. Hence, the best
estimate is obtained by the limit

K = lim
t∗→−∞

max
{

L1 (ξ (t∗))
n
2 , L2 (c5)

n
2

}
,

which exists because the function is non-decreasing and bounded below by 0.
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de systèmes variationelles a des sous-espaces, J. Math. Pures Appl.
57(1978), 133-156.

[23] J.C. Robinson, Infinite-dimensional Dynamical Systems, (Cambridge:
Cambridge University Press), (2001).
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