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Tomás Caraballo, Maŕıa J. Garrido-Atienza and José Real
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Abstract

Some sufficient conditions concerning stability of solutions of stochastic differential

evolution equations with general decay rate are first proved. Then, these results are

interpreted as suitable stabilization ones for deterministic and stochastic systems. Also,

they permit us to construct appropriate linear stabilizers in some particular situations.
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1 Introduction

One of the most important problems in stability theory is the so called stabilization of

unstable deterministic or stochastic dynamical systems by noise sources. Indeed, it is very

interesting to analyze whether the presence of some random terms in the equations of the

models may produce a very different behaviour of their solutions. Although there exists a

wide literature on this topic, we would like to mention the pioneering work by Has’minskii

[7] where two white noise sources are used to stabilize a system. Since then, several works

have appeared providing partial answers to this problem. It is worth mentioning the works

by Arnold and his collaborators in Bremen (see [1], [2], [15], etc.) where the stabilization

results are obtained by using noisy terms in Stratonovich’s sense. On the other hand,

Mao [11] presented a theory on the exponential stabilization and destabilization for finite
∗Revised version of paper 01-146
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dimensional nonlinear systems by Brownian motion by using the Ito formulation of noise, and

Caraballo et al. [5] extended this theory to cover the case of partial differential equations.

A point to be noted is that, as far as we know, the works appeared in the literature are

concerned with the exponential stabilization problem, i.e. if the deterministic or stochastic

system is not stable, how can we add a noisy term such that the stochastically perturbed

model becomes pathwise exponentially stable? However, this type of results fails to be

applied, for instance, when the deterministic model is nonautonomous and has a super-

exponential instability. This fact has inspired this paper and, in fact, we shall establish

some results which will ensure stabilization with general decay rate.

The organization of the paper is as follows. In Section 2 we prove some results on the

pathwise asymptotic decay with general decay rate. Then, we use these to establish some

stabilization criteria and show how to construct effective linear feedback stabilizers in Section

3, where we finish with an infinite dimensional example. Some remarks and conclusions are

included in the final section.

2 Pathwise stability of stochastic PDEs with general

decay rate.

Let us first state the general framework for our analysis. We have chosen a variational

setting which contains, in particular, the finite dimensional situation. In this respect, let V

be a reflexive separable Banach space and H a real Hilbert space such that

V ⊂ H ≡ H ′ ⊂ V ′

where the injections are continuous and dense. In particular, we also assume both V and

V ′, the dual space of V , are uniformly convex.

We denote by ‖·‖ and |·| the norms in V and H respectively; by (·, ·) the inner product

in H, and by 〈·, ·〉 the duality between V and V ′.

Let {Ω,F , P} be a complete probability space on which an increasing and right continu-

ous family {Ft}t≥0 of complete sub-σ-algebra of F is defined. Let βn(t), n ≥ 1, be a sequence

of real valued one-dimensional standard {Ft}-Brownian motions mutually independent on

{Ω,F , P} . Let K be a separable real Hilbert space with norm |·|K , and {en}n≥1 a complete

orthonormal basis in K. Consider the cylindrical K-valued Wiener process defined formally
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by

W (t) =
∞∑

n=1

βn(t)en, t ≥ 0.

Let L2(K, H) be the space of all Hilbert-Schmidt operators from K into H. Then L2(K,H)

is a separable Hilbert space equipped with the norm

|φ|2L2(K,H) =
∞∑

n,m=1

|(φen, fm)|2 = tr [φφ∗] ,

where {en}n≥1 and {fm}m≥1are complete orthonormal bases in K and H, respectively,

and tr [A] denotes the trace of a nuclear operator A. Also, the sequence of operators

{fm ⊗ en}m,n≥1 is a complete orthonormal basis in L2(K, H), where for arbitrary k ∈ K,

h ∈ H we denote by h⊗ k : H → K the linear operator defined by

(h⊗ k)(h̃) = k(h, h̃), for all h̃ ∈ H.

The construction and properties of the stochastic Ito integral
∫ t

0
φ(s)dW (s), t ∈ [0, T ],

where φ(t) is a measurable and {Ft}-adapted process with values in L2(K, H) such that
∫ T

0
|φ(s)|2ds < +∞ P -a.s., and W is the above cylindrical Wiener process, can be found in

Da Prato and Zabczyk [6].

Let Ip(0, T ; V ) be (for p ≥ 2) the closed subspace of Lp(Ω×(0, T ),F⊗B([0, T ]), P⊗dt;V )

of all stochastic processes which are Ft-adapted for almost every t in (0, T ) (in what fol-

lows, a.e.t), where B([0, T ]) denotes the Borel σ-algebra of subsets in [0, T ]. We write

L2(Ω; C(0, T ; H)) instead of L2(Ω,F , P ; C(0, T ; H)), where C(0, T ; H) denotes the Banach

space of all continuous functions from [0, T ] into H equipped with sup norm.

In this section we shall consider the following infinite-dimensional stochastic differential

equation in V ′ for T > 0:




dX(t) = f(t,X(t))dt + g(t,X(t))dW (t), t ∈ [0, T ],

X(0) = X0,
(1)

where f(t, ·) : V → V ′ and g(t, ·) : V → L2(K, H) are suitable families of (nonlinear)

operators, and X0 ∈ Lp(Ω,F0, P ; V ) is an arbitrarily fixed initial datum.

As we are mainly interested in the stability analysis, we shall assume that for each T > 0

and every X0 ∈ Lp(Ω,F0, P ; V ) there exists a process X(t) ∈ Ip(0, T ; V )∩L2(Ω;C(0, T ;H))

which is solution to (1). In other words, X(t) satisfies the following equation in V ′:

X(t) = X0 +
∫ t

0

f(s, X(s))ds +
∫ t

0

g(s,X(s))dW (s), ∀t ∈ [0, T ], P − a.s. (2)
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and that f(t, 0) = g(t, 0) = 0 for almost all t ∈ (0, T ) (so that we are analyzing the stability

of the trivial solution). This holds, for instance, under some suitable assumptions on the

operators f and g (see, e.g., Pardoux [14]).

Note that (1) can be seen as a stochastic perturbation of the system




d
dt

X(t) = f(t,X(t)), t ∈ [0, T ],

X(0) = X0.
(3)

Also, note that under suitable assumptions of boundedness, coercivity and monotonicity on

the operator f , there exists a unique variational solution to problem (3) X(t) ∈ Lp(0, T ; V )∩
C(0, T ; H) (see, for instance, Lions [8]).

If problem (3) is not stable, we are now interested in trying to stabilize it by using a

suitable stochastic perturbation of the type g(t,X(t))Ẇ (t).

In addition, observe that given the deterministic problem (3), we can analyze whether

the perturbed problem (1) is more stable or not. As we mentioned in the Introduction, this

kind of problems in the exponential context has already been analyzed (see Caraballo et al.

[5]), but as it may happen that an unstable system cannot be exponentially stabilized since

its instability is super-exponential, we shall now investigate this point.

Let us define some operators which will be used later on jointly with Ito’s formula. In

what follows, unless otherwise is stated, we will assume that U(t, x) is a C1,2(R+ ×H;R+)

function such that for any x ∈ V , t ∈ R+, U ′
x(t, x) ∈ V, and satisfies some additional

assumptions which will enable us to apply Ito’s formula for the process X(t) solution to

(2) (see, e.g. Pardoux [14, p. 63]). In the sequel, we will refer to this function U as an

appropriate Lyapunov function.

If U is an appropriate Lyapunov function we can define operators L and Q as follows:

for x ∈ V , t ∈ R+

LU(t, x) = U ′
t(t, x) + 〈U ′

x(t, x), f(t, x)〉+
1
2
tr [U ′′

xx(t, x)g(t, x)g∗(t, x)] ,

QU(t, x) = |g∗(t, x)U ′
x(t, x)|2K .

We will introduce a precise definition of almost sure stability with general decay function

λ(t). We would like to mention that the concept of stability with polynomial decay rate

was initially introduced by Mao (see e.g. [10]), in the finite dimensional framework. Then

this concept was generalized to the stability with general decay rate (see Mao [13] and Liu

and Mao [9]) although under stronger assumptions on the decay function than the ones we

impose here.
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Definition 1 Let the positive function λ(t) ↑ +∞ be defined for all sufficiently large t > 0.

The solution X(t) to (1) is said to decay to zero almost surely with decay function λ(t) and

order at least γ > 0, if its generalized Lyapunov exponent is less than or equal to −γ with

probability one, i.e.

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −γ, P − a.s.

If in addition 0 is solution to (1), the zero solution is said to be almost surely asymptotically

stable with decay function λ(t) and order at least γ, if every solution to (1) decays to zero

almost surely with decay function λ(t) and order at least γ.

Remark 1 Clearly, replacing in the above definition the decay function λ(t) by O(et) leads

to the usual exponential stability definition.

Now, based on the existence of an appropriate Lyapunov function, we can establish a

general sufficient condition ensuring pathwise stability with general decay rate.

Theorem 1 Let U(t, x) be an appropriate Lyapunov function. Assume that X(t) is a

solution to (1) satisfying that |X(t)| 6= 0 for all t ≥ 0 and P−a.s. provided |X0| 6= 0

P−a.s. Let ϕ1(t) ∈ R, ϕ2(t) ≥ 0 be two continuous functions. Assume there exist constants

q > 0,m > 0, ν ≥ 0, µ ≥ 0 and θ ∈ R such that

(a) |x|qλ(t)m ≤ U(t, x), (t, x) ∈ R+ × V .

(b) LU(t, x) ≤ ϕ1(t)U(t, x), (t, x) ∈ R+ × V.

(c) QU(t, x) ≥ ϕ2(t)U(t, x)2, (t, x) ∈ R+ × V.

(d) lim sup
t→∞

∫ t

0
ϕ1(s)ds

log λ(t)
≤ θ, lim inf

t→∞

∫ t

0
ϕ2(s)ds

log λ(t)
≥ 2ν, lim sup

t→∞
log t

log λ(t)
≤ µ

2
.

Then, it holds

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −γ∗, P − a.s.,

where

γ∗ =





m−[2(µν)1/2+θ−ν]
q , if 0 ≤ µ < ν,

m−[µ+θ]
q , if ν ≤ µ.

(4)

In particular, if γ∗ > 0, the solution X(t) decays to zero almost surely with decay function

λ(t) and order at least γ∗.

Proof. Fix |X0| 6= 0 P−a.s. Applying Ito’s formula we have

log U(t,X(t)) = log U(0, X0) +
∫ t

0

LU(s,X(s))
U(s,X(s))

ds− 1
2

∫ t

0

QU(s,X(s))
U(s,X(s))2

ds + M(t) (5)
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where M(t) =
∫ t

0

1
U(s,X(s))

(U ′
x(s,X(s)), g(s,X(s))dW (s)).

Since M(t) is a real continuous local martingale, the exponential martingale inequality

(see Mao [12]) yields that

P

{
ω : sup

0≤t≤w

[
M(t)− u

2

∫ t

0

QU(s,X(s))
U(s,X(s))2

ds

]
> v

}
≤ e−uv

for any positive constants u, v and w. In particular, for each fixed 0 < α < 1 and setting

u = α, v = 2α−1 log(k − 1), w = k, k = 2, 3, ...

we can apply Borel-Cantelli’s lemma to obtain that, for almost all ω ∈ Ω, there exists an

integer k0(ω) > 0 such that

M(t) ≤ 2α−1 log(k − 1) +
α

2

∫ t

0

QU(s,X(s))
U(s,X(s))2

ds

for 0 ≤ t ≤ k, k ≥ k0(ω). Substituting this into (5)

log U(t,X(t)) ≤ log U(0, X0) + 2α−1 log(k − 1)

+
∫ t

0

LU(s,X(s))
U(s,X(s))

ds− 1
2
(1− α)

∫ t

0

QU(s,X(s))
U(s,X(s))2

ds

and using conditions (b) and (c), we obtain that

log U(t, X(t)) ≤ log U(0, X0) + 2α−1 log(k − 1) +
∫ t

0

ϕ1(s)ds− 1
2
(1− α)

∫ t

0

ϕ2(s) ds

for 0 ≤ t ≤ k, k ≥ k0(ω). Now, condition (d) implies that given ε > 0 ∃k1(ε) such that

log U(t,X(t)) ≤ log U(0, X0) + (θ + ε) log λ(t)

− 1
2

(1− α) (2ν − ε) log λ(t) +
(µ + ε)

α
log λ(t)

for k − 1 ≤ t ≤ k, k ≥ k0(ω) ∨ k1(ε), which yields that

lim sup
t→∞

log U(t,X(t))
log λ(t)

≤ α−1 (µ + ε) + θ + ε− 1
2

(1− α) (2ν − ε), P − a.s.

Taking into account that ε > 0 is arbitrary and using (a) we can deduce that

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −m− (α−1µ + θ − ν (1− α))
q

, γα, P − a.s.

Now, denoting by γ∗ = sup0<α<1 γα, it is straightforward to check that

γ∗ =





m−[2(µν)1/2+θ−ν]
q , if 0 ≤ µ < ν,

m−[µ+θ]
q , if ν ≤ µ,
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and the proof is, therefore, finished. ¤
As is well known, the construction of suitable Lyapunov functions satisfying conditions

in Theorem 1 is a difficult task. However, in some occasions, it is not difficult to proceed

with U(t, x) = λ(t)m|x|2, where we suppose λ ∈ C1(R+).

Theorem 2 Assume X(t) is a solution to (1) satisfying that |X(t)| 6= 0 for all t ≥ 0 and

P−a.s. provided |X0| 6= 0 P−a.s. Let ρ(t) ≥ 0, δ(t) ∈ R be two continuous functions.

Assume there exist constants ρ0 ≥ 0, µ ≥ 0, δ0 ∈ R such that

(a) 2 〈x, f(t, x)〉+ |g(t, x)|2L2(K,H) ≤ δ(t)|x|2, (t, x) ∈ R+ × V .

(b)|g∗(t, x)x|2K ≥ ρ(t) |x|4 , (t, x) ∈ R+ × V.

(c) lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
≤ δ0, lim inf

t→∞

∫ t

0
ρ(s)ds

log λ(t)
≥ ρ0, lim sup

t→∞
log t

log λ(t)
≤ µ

2
.

Then, it holds

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −ζ, P − a.s.,

where

ζ =





ρ0 − (2ρ0µ)1/2 − δ0
2 , if µ < 2ρ0,

− [µ+δ0]
2 , if µ ≥ 2ρ0.

(6)

In particular, if ζ > 0, the solution X(t) decays to zero almost surely with decay function

λ(t) and order at least ζ.

Proof. Fix |X0| 6= 0 P−a.s. Consider U(t,X(t)) = λ(t)m |X(t)|2 for m ≥ 0. Then

LU(t,X(t)) = mλ′(t)λ(t)m−1 |X(t)|2 + 2λ(t)m 〈X(t), f(t, X(t))〉+ λ(t)m |g(t,X(t))|2L2(K,H)

≤
(

m
λ′(t)
λ(t)

+ δ(t)
)

U(t,X(t)),

and,

QU(t, X(t)) = 4λ(t)2m |g∗(t,X(t))X(t)|2K ≥ 4ρ(t)U(t,X(t))2.

Thus, setting ϕ1(t) = mλ′(t)
λ(t) + δ(t) and ϕ2(t) = 4ρ(t), we have

lim sup
t→∞

∫ t

0
ϕ1(s)ds

log λ(t)
≤ m + δ0, lim inf

t→∞

∫ t

0
ϕ2(s)ds

log λ(t)
≥ 4ρ0.

Taking into account Theorem 1, it finally follows

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −ζ, P − a.s.

where, it can easily be checked that

ζ =





ρ0 − (2ρ0µ)1/2 − δ0
2 , if 0 ≤ µ < 2ρ0,

− [µ+δ0]
2 , if 2ρ0 ≤ µ,
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and the proof is complete. ¤
Note that the previous results impose a restriction on the growing rate of the function

λ(·) (see condition (d) in Theorem 1 and condition (c) in Theorem 2). However, when the

function Q is bounded above by a suitable term, we can omit this restriction. Also, although

it is possible to prove a more general theorem, we content ourselves with a particular case

in which the Lyapunov function U(t, x) can be taken as λ(t)m|x|2, with λ ∈ C1(R+).

Theorem 3 Let δ(t) ∈ R, σ(t) ≥ 0, ρ(t) ≥ 0 be three continuous functions. Assume that

there exist constants δ0 ∈ R, ρ0 > 0, σ0 ≥ 0 such that

(a) 2 〈x, f(t, x)〉+ |g(t, x)|2L2(K,H) ≤ δ(t)|x|2, (t, x) ∈ R+ × V .

(b) σ(t) |x|4 ≥ |g∗(t, x)x|2K ≥ ρ(t) |x|4 , (t, x) ∈ R+ × V.

(c) lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
≤ δ0, lim inf

t→∞

∫ t

0
ρ(s)ds

log λ(t)
≥ ρ0, lim sup

t→∞

∫ t

0
σ(s)ds

log λ(t)
≤ σ0.

Then, if X(t) is a solution to (2) satisfying that |X(t)| 6= 0 for all t ≥ 0 and P−a.s.

provided |X0| 6= 0 P−a.s., it holds

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −2ρ0 − δ0

2
, P − a.s.

Proof. Fix |X0| 6= 0 P−a.s. From Ito’s formula for the function log(λ(t)m |X(t)|2), where

m ≥ 0, we can derive that

log(λ(t)m |X(t)|2) = log(λ(0)m |X0|2) +
∫ t

0

m
λ′(s)
λ(s)

ds +
∫ t

0

2 〈X(s), f(s,X(s))〉
|X(s)|2 ds

+
∫ t

0

1
|X(s)|2 |g(s,X(s))|2L2(K,H) ds (7)

+
∫ t

0

2
|X(s)|2 (X(s), g(s,X(s))dW (s))

−
∫ t

0

2
|X(s)|2 |g(s,X(s))|2L2(K,H) ds.

Let M(t) =
∫ t

0
2

|X(s)|2 (X(s), g(s,X(s))dW (s)), and let us denote by 〈M(t)〉 the quadratic

variation process associated to M(t). From our assumptions we know that M(t) is a real

continuous local martingale vanishing at t = 0 and
∫ t

0

4ρ(s) ds ≤ 〈M(t)〉 =
∫ t

0

4 |g∗(s,X(s))X(s)|2K
|X(s)|2 ds ≤

∫ t

0

4σ(s) ds.

As ρ0 > 0, it follows that limt→∞ 〈M(t)〉 = +∞ and by means of the strong law of large

numbers we obtain limt→∞
M(t)
〈M(t)〉 = 0, P−a.s. Then, assumption (d) implies that

lim sup
t→∞

M(t)
log λ(t)

≤ lim sup
t→∞

|M(t)|
〈M(t)〉

∫ t

0
4σ(s) ds

log λ(t)
= 0, P − a.s.
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Consequently, (7) yields to

m + 2 lim sup
t→∞

log |X(t)|
log λ(t)

≤ m + lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
− 2 lim sup

t→∞

∫ t

0
ρ(s)ds

log λ(t)

≤ m + δ0 − 2ρ0, P − a.s.

Finally we can deduce

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −2ρ0 − δ0

2
, P − a.s. ¤

3 Stabilization with general decay rate

Observe that the results in Section 2 can be interpreted as stabilization results of determinis-

tic systems by noise since they provide criteria to determine whether a randomly perturbed

system becomes pathwise stable as a by product of the noise action. This will be studied in

more details in this section.

3.1 Stabilization of deterministic PDEs

Suppose that the zero solution of problem (3) is not stable, or that we do not know whether

it is stable or not. We will show that in some occasions we can use the above results to

determine stability with a general decay rate of the problem (3) when a stochastic extra

term is considered in the equation. In addition, we point out that this stabilization can be

produced by effect of a noisy term containing just a real standard Brownian motion. Indeed,

let us consider that W (t) = β1(t), where β1 is a one-dimensional standard Brownian motion

on {Ω,F , P} (so, in this case, K = R), then problem (1) can be written as




dX(t) = f(t,X(t))dt + g1(t,X(t))dβ1(t), t ∈ [0, T ],

X(0) = X0 ∈ Lp(Ω,F0, P ;V ),
(8)

where f(t, ·) : V → V ′ and g1(t, ·) : V → H are suitable families of operators. To ensure

that there exists a unique solution X(t) ∈ Ip(0, T ;V )∩L2(Ω; C(0, T ; H)), p ≥ 2, of problem

(8) for each T > 0, one only needs to assume appropriate coercivity, boundedness, hemicon-

tinuity and monotonicity hypotheses (see Pardoux [14] or Caraballo et al. [3] for a detailed

exposition on this topic). Now, if U is an appropriate Lyapunov function, operators L and

Q defined in Section 2 are given by L1 and Q1 as follows: for x ∈ V , t ∈ R+

L1U(t, x) = U ′
t(t, x) + 〈U ′

x(t, x), f(t, x)〉+
1
2
(U ′′

xx(t, x)g1(t, x), g1(t, x)),

Q1U(t, x) = (U ′
x(t, x), g1(t, x))2,

9



then, Theorem 1 holds true if we replace L by L1 and Q by Q1 and, consequently, if g1 is

such that constant γ∗ is positive, we would have proved stabilization of problem (3). On

the other hand, we can also establish similar one-dimensional versions of Theorems 2 and 3.

For instance, let us state one of them:

Theorem 4 Let δ(t) ∈ R, σ(t) ≥ 0, ρ(t) ≥ 0 be three continuous functions. Assume that

there exist constants δ0 ∈ R, ρ0 > 0, σ0 ≥ 0 such that

(a) 2 〈x, f(t, x)〉+ |g1(t, x)|2 ≤ δ(t)|x|2, (t, x) ∈ R+ × V .

(b) σ(t) |x|4 ≥ (g1(t, x), x)2 ≥ ρ(t) |x|4 , (t, x) ∈ R+ × V.

(c) lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
≤ δ0, lim inf

t→∞

∫ t

0
ρ(s)ds

log λ(t)
≥ ρ0, lim sup

t→∞

∫ t

0
σ(s)ds

log λ(t)
≤ σ0.

Then, if X(t) is a solution to (8) satisfying that |X(t)| 6= 0 for all t ≥ 0 and P−a.s.

provided |X0| 6= 0 P−a.s., it holds

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −2ρ0 − δ0

2
, P − a.s.

Therefore, once we have proved some stabilization results an interesting problem concerns

the way in which one can construct the stabilizing term g1(t, x). In somes cases, we can

construct even linear stabilizers as we will see in the next paragraph.

3.2 Construction of linear feedback stabilizers

First of all, we shall motivate our analysis with a simple but illustrative example.

Let us consider the deterministic problem




d
dt

X(t) = atX(t), t > 0,

X(0) = X0 ∈ R,

whose solution is given by X(t) = X0ea t2
2 , so that for any a > 0 the trivial solution (and

henceforth, each solution) to this problem is super-exponentially unstable.

Now, consider the following stochastically perturbed problem




dX(t) = atX(t)dt + g1(t,X(t))dβ1(t), t > 0,

X(0) = X0 ∈ R,
(9)

where g1(·, ·) is a function to be determined and β1(t) is a real valued one-dimensional

standard Brownian motion on a probability space. Is it possible to choose g1(·, ·) such that

this new problem becomes pathwise stable with certain decay rate?
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A first sensible attempt is to look for functions of the form g1(t, x) = b(t)x owing to the

linearity of the deterministic part. In this respect, it is worth pointing out that, on the one

hand, Mao [11] proved some results on the stochastic stabilization of nonlinear deterministic

(or stochastic) systems; however, we cannot apply those results to this situation because the

function f(t, x) = atx, x ∈ R, t ≥ 0, does not satisfy the strong assumption |f(t, x)| ≤ K |x| ,
x ∈ R, t ≥ 0, for some K > 0. On the other hand, we would try to apply the theory developed

by Caraballo et al. [5]. To this end, we should estimate

2 〈x, f(t, x)〉+ |b(t)x|2 =
(
2at + b(t)2

) |x|2

and check whether lim supt→+∞
1
t

∫ t

0

(
2as + b(s)2

)
ds is bounded above, what obviously

does not happen. However, our previously developed theory can be easily applied. Indeed,

we can take λ(t) = exp t2 and introduce the Lyapunov function U(t, x) = |x|2. Now, we can

set δ(t) = 2at + b(t)2 and, as a consequence of the straightforward relation (g1(t, x), x)2 =

(b(t)x, x)2 = b(t)2 |x|4 , we can choose σ(t) = ρ(t) = b(t)2. The next step is to determine the

constants δ0, ρ0 and σ0 in Theorem 4. Observe that setting b(t) = b1t
1/2, it easily follows

δ0 = lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
= lim sup

t→∞

∫ t

0
(2as + b(s)2)ds

t2
= a +

b2
1

2
,

σ0 = ρ0 = lim sup
t→∞

∫ t

0
σ(s)ds

log λ(t)
= lim inf

t→∞

∫ t

0
ρ(s)ds

log λ(t)
= lim

t→∞

∫ t

0
b(s)2ds

t2
=

b2
1

2
.

Thus, from Theorem 4 we deduce that each solution of the perturbed problem (9) defined

in the future satisfies

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −2ρ0 − δ0

2
= −1

2

(
b2
1

2
− a

)
, P − a.s.

so that we have pathwise stability of the stochastic problem with decay function exp t2 and

order at least 1
2

(
b21
2 − a

)
provided b2

1 > 2a. Consequently, for b2
1 large enough we have proved

super-exponential stabilization, where we have perturbed the deterministic problem in the

form: 



dX(t) = atX(t)dt + b1t
1/2dβ1(t), t > 0,

X(0) = X0 ∈ R.
(10)

This example motivates the construction of general linear stabilizers for some nonlinear

deterministic systems satisfying certain kind of dissipativity property. Indeed, consider the

deterministic problem (3) where the function satisfies that there exists a continuous function

ν(·) such that

2 〈x, f(t, x)〉 ≤ ν(t)|x|2, for almost all t > 0 and all x ∈ V. (11)
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Assume that there exists a positive and differentiable function λ(t) such that λ′(t) > 0 and

limt→+∞ λ(t) = +∞ and satisfying

lim sup
t→+∞

∫ t

0
ν(s)ds

log λ(t)
≤ ν0 ∈ R. (12)

Then, we can choose g1(t, x) = b(t)x with b(t)2 = b2
1

λ′(t)
λ(t) , b1 ∈ R so that the stochastic

problem 



dX(t) = f(t,X(t))dt + g1(t,X(t))dβ1(t), t > 0,

X(0) = X0 ∈ V,

is pathwise asymptotically stable with decay function λ(t) and positive order. Indeed, ob-

serve that

2 〈x, f(t, x)〉+ |g1(t, x)|2 ≤ (
ν(t) + b(t)2

) |x|2, (x, g1(t, x))2 = b(t)2|x|4, and

lim sup
t→+∞

∫ t

0

(
ν(s) + b(s)2

)
ds

log λ(t)
≤ ν0 + b2

1.

Now we apply Theorem 4 and obtain that the stochastic system is pathwise stable with

decay function λ(t) and order at least b2
1 − ν0 > 0 if b1 is large enough.

Although our previous argument is based on the knowledge of the function λ(·), we

can also determine it in some situations. For instance, assume that the operator f in our

problem (3) satisfies (11) with ν(·) a continuous nonnegative function, then, we can set

λ(t) = exp
∫ t

0
ν(s)ds which obviously satisfies (12) with ν0 = 1. Therefore, we can construct

g1(t, x) = b(t)x with b(t) = b1ν(t)1/2 and |b1| > 1 and our previous analysis ensures that

the zero solution of the perturbed problem is pathwise stable with decay function λ(t) and

order at least b2
1 − 1.

3.3 Stabilization of stochastic PDEs

We have proved in Section 3.1 that when ζ > 0 the solution to problem (8) decays to zero

almost surely with decay function λ(t) and order al least ζ. But, as our results are sufficient

conditions, we do not know in general if it is stable or not when ζ ≤ 0. However, we are going

to show that it can also be stabilized by adding another stochastic term of the same kind

and so that the solutions to both problems have the same mean value. Although we could

apply the same argument working with problem (1) instead of (8), we prefer to consider this

for the sake of clarity. To this end, consider the following stochastic perturbation of (8):




dX(t) = f(t,X(t))dt + g1(t,X(t))dβ1(t) + g2(t, X(t))dβ2(t), t ∈ [0, T ],

X(0) = X0 ∈ Lp(Ω,F0, P ;V ),
(13)
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where g2(t, ·) : V → H is another family of operators satisfying the same properties than

g1, and β2 is another one-dimensional standard Brownian motion on the same probability

space {Ω,F , P} and independent with β1.

As we have done before, we can establish the particular versions of Theorems 1, 2 and 3

in this case. For instance, taking into account that, given the appropriate Lyapunov function

U, operators L and Q become L2 and Q2 defined as

L2U(t, x) = U ′
t(t, x) + 〈U ′

x(t, x), f(t, x)〉+
1
2

2∑

i=1

(U ′′
xx(t, x)gi(t, x), gi(t, x))

Q2U(t, x) =
2∑

i=1

(U ′
x(t, x), gi(t, x))2,

Theorem 1 can be easily rewritten to cover the stabilization of (8) if we consider L2 and Q2

instead L and Q, respectively. To be more explicit, we will write the particular version of

Theorem 3:

Theorem 5 Let δ(t) ∈ R, σ(t) ≥ 0, ρ(t) ≥ 0 be three continuous functions. Assume that

there exist constants δ0 ∈ R, ρ0 > 0, σ0 ≥ 0 such that

(a) 2 〈x, f(t, x)〉+ |g1(t, x)|2 + |g2(t, x)|2 ≤ δ(t)|x|2, (t, x) ∈ R+ × V .

(b) σ(t) |x|4 ≥ (g1(t, x), x)2 + (g2(t, x), x)2 ≥ ρ(t) |x|4 , (t, x) ∈ R+ × V.

(c) lim sup
t→∞

∫ t

0
δ(s)ds

log λ(t)
≤ δ0, lim inf

t→∞

∫ t

0
ρ(s)ds

log λ(t)
≥ ρ0, lim sup

t→∞

∫ t

0
σ(s)ds

log λ(t)
≤ σ0.

Then, if X(t) is a solution to (13) satisfying that |X(t)| 6= 0 for all t ≥ 0 and P−a.s.

provided |X0| 6= 0 P−a.s., it holds

lim sup
t→∞

log |X(t)|
log λ(t)

≤ −2ρ0 − δ0

2
, P − a.s.

As an application, consider our example (10). If b21
2 − a > 0 we already know that problem

(10) is asymptotically stable with decay function λ(t) = exp t2. But if b21
2 − a ≤ 0 we do not

know what happens. Then, we can perturb (10) in the following way:




dX(t) = atX(t)dt + b1t
1
2 X(t)dβ1(t) + b2t

1
2 X(t)dβ2(t), t > 0,

X(0) = X0 ∈ R,

where a > 0, b1, b2 ∈ R. Now, if b2 is large enough, we can prove that the perturbed problem

is asymptotically stable. Indeed, we can apply Theorem 5 in a straightforward way since

2 〈x, f(t, x)〉+ |g1(t, x)|2 + |g2(t, x)|2 = (2a + b2
1 + b2

2)t |x|2 ,

(g1(t, x), x)2 + (g2(t, x), x)2 = (b2
1 + b2

2)t |x|4 ,
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so we can set δ(t) = (2a + b2
1 + b2

2)t, and ρ(t) = σ(t) = (b2
1 + b2

2)t, and deduce that δ0 =

a + b21+b22
2 , σ0 = ρ0 = b21+b22

2 , where we are considering λ(t) = exp t2. Therefore if b21
2 − a ≤ 0,

we obtain super-exponential stabilization with order at least b21
4 + b22

4 − a
2 provided b2 is large

enough, since in this case

1
2
(2ρ0 − δ0) =

1
2

(
b2
1 + b2

2 − a− b2
1

2
− b2

2

2

)
=

b2
1

4
+

b2
2

4
− a

2
.

3.4 An infinite-dimensional example

Let O be an open bounded subset in RN with regular boundary and let 2 ≤ p < +∞.

Consider the Sobolev spaces V = W 1,p
0 (O), H = L2(O) with their usual inner products,

duality and norms, and consider the monotone operator f(t, ·) : V → V ′ defined as

〈v, f(t, u)〉 = −
N∑

i=1

∫

O

∣∣∣∣
∂u(x)
∂xi

∣∣∣∣
p−2

∂u(x)
∂xi

∂v(x)
∂xi

dx +
∫

O
a(t)u(x)v(x)dx, u, v ∈ V,

where a(·) is, in principle, a continuous function. Observe that 2 〈v, f(t, v)〉 = −2 ‖v‖p +

2a(t) |v|2 , so that, if a(t) ≤ −a0 < 0, for all t > 0, then the deterministic problem (3) is

exponentially stable (it is easy to prove that |X(t)|2 ≤ |X0|2 exp{−a0t},∀t ≥ 0). If a(t) ≥ 0

but there exists K > 0 such that |a(t)| ≤ K for all t ≥ 0, we then can stabilize exponentially

the problem (3) by simply adding the random term g(t, v)β̇1(t) = b1vβ̇1(t) with b1 large

enough (see Caraballo et al. [5]). However, when |a(t)| ↑ +∞, these results cannot be

applied but we can use the ones in the present work. Indeed, if we consider, for instance,

a(t) = a0t, we could stabilize the deterministic system (3) as we did for problem (10)

by setting the term g1(t, v) = b1t
1/2v with |b1| large enough, obtaining super-exponential

stability with probability one (we leave the details to the reader). Also a stabilization of

the stochastic system could be obtained in a similar way as we have done in the previous

example.

4 Final remarks and conclusions

We have proved several results on the stability of stochastic PDEs which enabled us to obtain

some stabilization results with general decay rate. However, much more work could be done

in this problem. For instance, our analysis relies on the existence of suitable Lyapunov

functions, so an interesting problem is to stabilize a system when one does not know the

existence of such functions. Another point to be considered is to study if it is possible to

carry out a similar programme when the noisy term is considered in Stratonovich’s sense,
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at least in the finite dimensional context (see Caraballo and Langa [4] for a discussion on

this problem).

Of course, the construction of effective stabilizers in more general cases than the ones

considered in this work is an interesting and challenging aim which is well worth being

analysed. In conclusion, what we have done can be interpreted as a first step in the general

problem of stabilization of PDE by noise on which we plan to work in the future.
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