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ABSTRACT

Existence and uniqueness of strong solutions for a class of stochastic
functional differential equations in Hilbert spaces are established. Suf-
ficient conditions which guarantee the transference of mean square and
pathwise exponential stability from stochastic partial differential equa-
tions to stochastic functional partial differential equations are studied.
The stability results derived are also applied to stochastic ordinary dif-
ferential equations with hereditary characteristics. In particular, as a di-
rect consequence our main results improve some of those from Mao and
Shah [13] in which it is proved that under certain conditions pathwise ex-
ponential stability is transferred from nondelay equations to delay ones if
the constant time lag appearing in the problem is sufficiently small, while
in our treatment the transference actually holds for arbitrary bounded
delay variables not only in finite but in infinite dimensions.
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1. INTRODUCTION

The study of stochastic functional differential equations is motivated by the fact that when
one wants to model some evolution phenomena arising in Physics, Biology and Engineering
etc., some hereditary characteristics such as aftereffect, time lag and time delay can appear
in the variables (see, for example, Kolmanovskii and Myshkis [8], Mohammed [15]). On
the other hand, one of the most important and interesting problems in the analysis of
stochastic functional differential equations is their stability, the theory of which (mainly
for finite dimensional systems) has been greatly developed over the last several years.

As is well known, in the case without any hereditary features, Lyapunov’s technique
is available to obtain sufficient conditions for the stability of solutions of stochastic (par-
tial) differential equations. However, in the case of stochastic differential equations with
hereditary properties, for instance, even with constant time delays, Lyapunov’s method
becomes difficult to apply effectively as Krasovskii [10] pointed out for the study of sta-
bility of ordinary differential equations, and as Kushner [11] and El’sgol’ts and Norkin [5]
(among others) did for stochastic differential equations. The main reason is that it is much
more difficult (or even impossible in some cases) to construct proper Lyapunov functions
(or functionals) for stochastic functional differential equations than for those without any
hereditary characteristics. As a consequence, a comparison technique has been developed
by various authors such as Krasovskii [10] and Mao and Shah [13] (among others). Let us
illustrate this point of our motivation in more detail.

Consider the following stochastic functional differential equation

x(t) =
∫ t

0

f(s, x(s), x(s− h1)) ds+
∫ t

0

∫ 0

−h2

g(s, x(s+ r))h(r)drdw(s) , t > 0, (1)

where h1 > 0, h2 > 0, or equivalently,

x(t) =
∫ t

0

f(s, x(s), x(s)) ds+
∫ t

0

g(s, x(s)) dw(s)

+
∫ t

0

[
f(s, x(s), x(s− h1))− f(s, x(s), x(s))

]
ds

+
∫ t

0

[ ∫ 0

−h2

g(s, x(s+ r))h(r)dr − g(s, x(s))
]
dw(s).

(2)

We can regard (1) as the perturbed system of the corresponding stochastic differential
equation without hereditary characteristics

x(t) =
∫ t

0

f(s, x(s), x(s)) ds+
∫ t

0

g(s, x(s)) dw(s) , t > 0. (3)

Clearly, if the time lag scales h1 > 0, h2 > 0 are sufficiently small, the perturbation term∫ t

0

[
f(s, x(s), x(s− h1))− f(s, x(s), x(s))

]
ds
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+
∫ t

0

[ ∫ 0

−h2

g(s, x(s+ r))h(r)dr − g(s, x(s))
]
dw(s),

could be expected to be so small that the perturbed equation (1) would behave asymp-
totically as Equation (3) does. For instance, we could expect that if Equation (3) is
exponentially stable and the time lags h1 > 0, h2 > 0 are small enough, then Equation (1)
will remain exponentially stable. So, in order to find out whether the functional equation
(1) is exponentially stable, one can check the exponential stability of the equation (3) and
then compute whether the time lags h1 > 0, h2 > 0 are sufficiently small. In other words,
the difficult problem of stability for functional equations would have been transferred to
an easier one (the stability of equations without hereditary characteristics).

Motivated by the intuitive ideas described above, Mao and Shah [13] obtained some
sufficient conditions for the p-th moment exponential stability (and also pathwise stability)
of stochastic ordinary differential delay equations. For example, consider the following one-
dimensional stochastic delay differential equation

dx(t) = f(t, x(t), x(t− h)) dt+ g(t, x(t)) dw(t) , t > 0, (4)

where h > 0, or equivalently,

dx(t) = f(t, x(t), x(t)) dt+ g(t, x(t)) dw(t)
+ [f(t, x(t), x(t− h))− f(t, x(t), x(t))] dt.

(5)

It was proved in [13] that under some circumstances pathwise exponential stability is
transferred from the nondelay equation (i.e., h = 0 in (5)) to the delay one (4) if the
constant time lag h > 0 appearing in the problem is sufficiently small.

Nevertheless, it is worth pointing out that the results derived in [13] are somewhat
restrictive for many practical applications. In fact, the situation turns out to be rather
complicated when one considers the general functional differential equations, even the usual
stochastic delay differential systems. For instance, there exist a wide variety of interesting
problems in which it is possible to ensure that if nondelay equations are exponentially
stable, then delay ones remain exponentially stable whatever the delay interval could be,
what is more even if, the delays are not constants. In this work, by a completely different
approach from that in [13] we shall carry out a much more delicate investigation. For
instance, by applying some general results to be derived in Section 4 to the equation
(1), we can prove that under some circumstances mean square and pathwise exponential
stability of (1) are transferable from the equation (3) for arbitrary delay constant h1 > 0,
but for the time lag h2 > 0 which must be sufficiently small.

One of the main aims of this paper is to give sufficient conditions which contain as a
special case the corresponding results in finite dimension (that is, for stochastic ordinary
differential equations) to transfer the exponential stability of stochastic partial differential
equations to stochastic functional partial differential equations. The problem we are refer-
ring to is devoted to the consideration of an infinite dimensional version of (1) in which f
has the following form:

f(t, x, y) = A(t, x) + f1(t, y),
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with the family of (non-linear) operators A(t, ·) satisfying some kinds of coercivity condi-
tions (see Section 2) as well as f1 satisfying Lipschitz continuous ones. We would also like
to mention that, in some sense, a suitable coercivity condition implies the (exponential)
stability of solutions in mean square (and also pathwise exponential stability) in nondelay
cases (see Caraballo and Liu [3] and Chow [4]). In addition to this, we will be able to
assure exponential stability in mean square (and, as a consequence, pathwise exponential
stability) for a great number of finite dimensional stochastic functional differential equa-
tions while the results of Mao and Shah [13] only give this kind of stability for certain
delay systems in which the delay must be constant and sufficiently small.

Here, we shall analyze only the second moment of solutions. Although we should
emphasize that this study can be extended to the p-th moment (p ≥ 2), which is important
if it permits us to obtain some information about the stability of sample paths. We
also remark that, as is well known, mean square exponential stability, energy equality
and Borel–Cantelli’s lemma could imply pathwise exponential stability (see, for instance,
Caraballo and Liu [3], Mao [12]).

In Section 2 we begin with some preliminary results. We have not seen a general
treatment on existence and uniqueness of strong solutions of stochastic functional differen-
tial equations in infinite dimensions in the literature. In Section 3 we shall first establish
a result, which is easy to verify in many situations, of existence and uniqueness of strong
solutions for a class of stochastic partial functional differential equations. The results of
exponential stability are studied in Section 5. Finally, two examples are given in Section
6 to illustrate the theory derived in the preceding sections.

2. PRELIMINARIES

First of all, we introduce the framework in which our analysis is going to be carried out.
Let V, H, K be real, separable Hilbert spaces such that

V ↪→ H ≡ H ′ ↪→ V ′ ,

where V ′ is the dual of V and the injections are continuous and dense. In particular, we
also assume both V and V ′ are uniformly convex. We denote by ‖ · ‖ , | · | and ‖ · ‖∗ the
norms in V , H and V ′ respectively; by 〈·, ·〉 the duality product between V ′, V , and
by (·, ·) the scalar product in H .

Let w(t) be a Wiener process defined on a certain complete probability space (Ω,F , P )
and take values in the separable Hilbert space K, with incremental covariance operator W .
Let (Ft)t≥0 be the σ-algebras generated by {w(s), 0 ≤ s ≤ t}, then w(t) is a martingale
relative to (Ft)t≥0 and we have the following representation of w(t) :

w(t) =
∞∑
i=1

βi(t)ei,

where {ei}i≥1 is an orthonormal set of eigenvectors of W , βi(t) are mutually indepen-
dent real Wiener processes with incremental covariance λi > 0, Wei = λiei and trW =∑∞
i=1 λi <∞ (tr denotes the trace of an operator, see Pardoux [16]).
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For an operator G ∈ L(K,H), the space of all bounded linear operators from K into
H, we denote by ‖G‖2 its Hilbert-Schmidt norm, i.e.

‖G‖22 = tr(GWG∗).

Given h ≥ 0, p ≥ 2 and T > 0, we denote by Ip(−h, T ; V ) the space of all V –valued
processes (x(t))t∈[−h,T ] (we will write x(t) for short) measurable (from [−h, T ] × Ω into
V ), and satisfying:

(1). x(t) is Ft-measurable almost surely in t (in the sequel, we will write a.e.t.), where
we set Ft = F0 for t ≤ 0;

(2). E
∫ T
−h ‖x(t)‖p dt < +∞.

It is not difficult to check that the space Ip(−h, T ; V ) is a closed subspace of Lp(Ω ×
[−h, T ],F ⊗ B([−h, T ]), dP ⊗ dt; V ), where B([−h, T ]) denotes the Borel σ–algebra on
[−h, T ]. We also write L2(Ω; C(−h, T ;H)) instead of L2(Ω,F , dP ; C(−h, T ;H)), where
C(−h, T ; H) denotes the space of all continuous functions from [−h, T ] into H.

Let C = C([−h, 0], H) be the space of all continuous functions from [−h, 0] into
H with sup-norm ‖ψ‖C = sup−h≤s≤0 |ψ(s)|, ψ ∈ C, LpV = Lp([−h, 0]; V ) and LpH =
Lp([−h, 0]; H).

Given a stochastic process x(t) ∈ Ip(−h, T ;V ) ∩ L2(Ω; C(−h, T ; H)), we associate
with an LpV ∩ C-valued stochastic process xt : Ω → LpV ∩ C, t ≥ 0, by setting xt(s)(ω) =
x(t+ s)(ω), s ∈ [−h, 0].

The first purpose of this paper is to establish an existence and uniqueness result for
a class of nonlinear stochastic partial functional differential equations of the form{

dx(t) = (A(t, x(t)) + f(t, xt))dt+ g(t, xt)dw(t), t ∈ [0, T ]
x(t) = ψ(t), t ∈ [−h, 0],

(6)

where, in general, the operators are assumed to be nonlinear. In fact, we are interested in
the case in which A(t, ·) : V → V ′ is a family of nonlinear monotone and coercive operators,
f(t, ·) : C → H and g(t, ·) : C → L(K,H) are Lipschitz continuous. It is worth pointing
out that, in many applications, A usually denotes a partial differential operator (linear or
nonlinear), while f and g are first order partial differential ones (cf. [3][16][17]). We will
first establish the desired results by a variational type of argument, which is similar to
that one carried out by Pardoux’s [16] for a case without delays, but subject to necessary
changes to make our scheme go through when f(t, ·) : C → H and g(t, ·) : C → L(K,H).
Then we will treat the more general case with f(t, ·) : L2

V → H and g(t, ·) : L2
V → L(K,H)

by using a Galerkin approximation technique.
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let A(t, ·) : V → V ′ be a family of (nonlinear) operators defined a.e.t. and p ≥ 2. Assume
the following hypotheses:

(a.1) Coercivity: ∃α > 0, λ, ν ∈ R1 such that:

−2〈A(t, x), x〉+ λ|x|2 + ν ≥ α‖x‖p , ∀x ∈ V , a.e.t.;

(a.2) Monotonicity:

−2〈A(t, x)−A(t, y), x− y〉+ λ|x− y|2 ≥ 0 , ∀x, y ∈ V , a.e.t.;

(a.3) Boundedness: ∃ γ > 0 :

‖A(t, x)‖∗ ≤ γ‖x‖p−1 , ∀x ∈ V , a.e.t.;

(a.4) Hemicontinuity:

θ ∈ R1 → 〈A(t, x+ θy), z〉 ∈ R1 is continuous ∀x, y, z ∈ V , a.e.t.;

(a.5) Measurability:

t ∈ (0, T )→ A(t, x) ∈ V ′ is Lebesgue−measurable ∀x ∈ V , a.e.t..

Let f(t, ·) : L2
H → H be a family of nonlinear operators defined a.e.t., and satisfy:

(f.1) f(t, 0) = 0 ;

(f.2) Lipschitz condition: ∃ k1 = k1(h) > 0 such that

|f(t, η)− f(t, ξ)| ≤ k1‖η − ξ‖C ,∀η, ξ ∈ C , a.e.t.;

(f.3) Measurability: t ∈ (0, T )→ f(t, η) ∈ H is Lebesgue–measurable, ∀η ∈ L2
H .

And let g(t, ·) : L2
H → L(K,H) be another nonlinear operator family defined a.e.t. and

satisfy:

(g.1) g(t, 0) = 0 ;

(g.2) Lipschitz condition: ∃ k2 = k2(h) > 0 such that

‖g(t, η)− g(t, ξ)‖2 ≤ k2‖η − ξ‖C ,∀η, ξ ∈ C , a.e.t.;

(g.3) Measurability: t ∈ (0, T ) → g(t, η) ∈ L(K,H) is Lebesgue–measurable ∀η ∈
L2
H .

Given an initial value

ψ ∈ Ip(−h, 0;V ) ∩ L2(Ω;C(−h, 0;H)) ,
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the objective in this section is that under the conditions described above, we hopefully
find a unique process x(t) ∈ Ip(−h, T ;V ) ∩ L2(Ω;C(−h, T ;H)) such that

x(t) = ψ(0) +
∫ t

0

[A(s, x(s)) + f(s, xs)] ds

+
∫ t

0

g(s, xs) dw(s) , P − a.s., ∀t ∈ [0, T ],

x(t) = ψ(t), P − a.s., ∀t ∈ [−h, 0].

(∗)

Remark. (1) First, it is worth mentioning that although the results can be proved for
p > 1, the interesting situations in the applications appear when p ≥ 2. Because of this,
we content ourselves with the analysis of the case p ≥ 2.

(2). We observe that if x ∈ L2(0, T ; C), then in view of (f.1)–(f.3), f(x) ∈ L2(0, T ; H)
where f(x)(t) = f(t, xt) . Moreover, the mapping x ∈ L2(0, T ; C) 7→ f(x) ∈ L2(0, T ;H)
is continuous and so measurable. Since η ∈ C 7→ f(t, η) ∈ H is continuous a.e.t., it
follows that if x(t) , t ∈ [−h, T ] is an H–valued and Ft–adapted stochastic process, so is
f(t, xt) , t ≥ 0. In addition, if x ∈ L2(Ω × (0, T ); C) , then f(x) ∈ L2(Ω × (0, T ); H) .
Finally, if xn is a bounded sequence in L2(Ω× (0, T ); C) , f(xn) is bounded in L2(Ω×
(0, T );H) once again.

Similar results are deduced from (g.1)–(g.3) for g : L2(0, T ; C)→ L2(0, T ;L(K,H))
defined by g(x)(t) = g(t, xt) . These remarks imply that the integrals appearing in (∗) are
well defined.

(3). In order to avoid unnecessary technicalities in the following stability analysis, we
content ourselves with the consideration of Equation (∗) instead of a more general one.
However, it is worth pointing out that under some similar conditions, it is possible to
extend the results derived here to more general stochastic systems involving coefficients
such as f(t, x(t), xt) and g(t, x(t), xt) as well as to remove Conditions (f.1), (g.1).

3.1. Uniqueness of solutions

Now we shall prove that there exists at most one solution of (∗). This result will be deduced
mainly from (a.2) and Itô’s formula.

Theorem 1. Assume the preceding hypotheses hold. Then, there exists at most one
solution of (∗) in Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) .

Proof. Suppose that x, y ∈ Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) are two solutions of (∗).
Then, applying Itô’s formula to (∗) and taking into account (a.2), we obtain

|x(t)− y(t)|2 = 2
∫ t

0

〈A(s, x(s))−A(s, y(s)), x(s)− y(s)〉 ds

+ 2
∫ t

0

(f(s, xs)− f(s, ys), x(s)− y(s)) ds
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+ 2
∫ t

0

(x(s)− y(s), (g(s, xs)− g(s, ys)) dw(s))

+
∫ t

0

‖g(s, xs)− g(s, ys)‖22 ds.

≤ λ

∫ t

0

|x(s)− y(s)|2 ds

+ 2
∫ t

0

|x(s)− y(s)||f(s, xs)− f(s, ys)| ds

+ 2
∫ t

0

(x(s)− y(s), (g(s, xs)− g(s, ys)) dw(s))

+
∫ t

0

‖g(s, xs)− g(s, ys)‖22 ds.

Now, it follows from (f.2) and (g.2) that for any t ∈ [0, T ]

E sup
0≤s≤t

|x(s)− y(s)|2 ≤ (|λ|+ 1)
∫ t

0

E|x(s)− y(s)|2ds+ (k2
1 + k2

2)
∫ t

0

E‖xs − ys‖2Cds

+ 2E sup
0≤s≤t

∫ s

0

(x(r)− y(r), (g(r, xr)− g(r, yr))dw(r)).

(7)
However, by Burkholder-Davis-Gundy’s inequality, we have

E sup
0≤s≤t

∫ s

0

(x(r)− y(r), (g(r, xr)− g(r, yr))dw(r))

≤ 3E
{

sup
0≤s≤t

|x(s)− y(s)|
[ ∫ t

0

‖g(s, xs)− g(s, ys)‖22 ds
]1/2}

≤ 1
4
E sup

0≤s≤t
|x(s)− y(s)|2 +K

∫ t

0

E‖g(s, xs)− g(s, ys)‖22 ds

≤ 1
4
E sup

0≤s≤t
|x(s)− y(s)|2 +K · k2

2

∫ t

0

E‖xs − ys‖2Cds

(8)

for some positive constant K > 0. On the other hand, since x(s) = y(s) for s ≤ 0, we
easily get ∫ t

0

E‖xs − ys‖2C ds =
∫ t

0

E sup
−h≤r≤0

|xs(r)− ys(r)|2ds

=
∫ t

0

E sup
−h≤r≤0

|x(s+ r)− y(s+ r)|2ds

≤
∫ t

0

E sup
0≤r≤s

|x(r)− y(r)|2ds.

(9)
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Thus, it follows from (7)–(9)

E sup
0≤s≤t

|x(s)−y(s)|2 ≤ 2
[
|λ|+1+k2

1+k2
2+2k2

2K
] ∫ t

0

E sup
0≤r≤s

|x(r)−y(r)|2ds, ∀t ∈ [0, T ].

Now, Gronwall’s lemma obviously implies uniqueness.

Remark. (1) Observe that if we assume the following monotonicity hypothesis

(a.2)’ For all ξ, η ∈ Lp(−h, T ; V ) with ξ0 = η0 such that

−2〈A(t, ξ(t))+ f(t, ξt)−A(t, η(t))− f(t, ηt), ξ(t)− η(t)〉+ λ|ξ(t)− η(t)|2

≥ ‖g(t, ξt)− g(t, ηt)‖22 a.e.t ∈ [0, T ],

instead of (a.2), uniqueness would have been easily deduced. Indeed, notice that in this
case, Itô’s formula and (a.2)’ imply

E|x(t)− y(t)|2 ≤ λ
∫ t

0

E|x(s)− y(s)|2 ds ∀t ∈ [0, T ],

for arbitrary two solutions x, y of the problem. Moreover, it is sufficient to assume an
integral version of (a.2)’, namely,

(a.2)” For all ξ, η ∈ Lp(−h, T ; V ) with ξ0 = η0 such that

−2
∫ t

0

〈A(s, ξ(s))+ f(s, ξs)−A(s, η(s))− f(s, ηs), ξ(s)− η(s)〉ds

+ λ

∫ t

0

|ξ(s)− η(s)|2ds ≥
∫ t

0

‖g(s, ξs)− g(s, ηs)‖22ds a.e.t ∈ [0, T ].

(2) Conversely, it is not difficult to prove by carrying out similar computations to the
ones in (8) that (a.2), (f.2) and (g.2) imply (a.2)” (of course, with different parameter λ
from that one in (a.2)).

3.2. Existence of strong solutions

First of all, we state a theorem on existence and uniqueness of solutions of stochastic
evolution equations. Next, by means of this result we will prove the desired existence of
solution of (∗).

Theorem 2. Assume (a.1)–(a.5) hold with λ = 0 . Then, there exists a unique process
x ∈ Ip(0, T ; V ) ∩ L2(Ω;C(0, T ; H)) such that

x(t) = ψ(0) +
∫ t

0

[A(s, x(s)) + f1(s)] ds+M(t) , P − a.s. , ∀t ∈ [0, T ] ,
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where f1 ∈ I2(0, T ; H), ψ(0) ∈ L2(Ω,F0, P ; H) and M(t) is an H–valued continuous,
square integrable Ft–martingale. In addition, the following energy equality also holds:

|x(t)|2 = |ψ(0)|2 + 2
∫ t

0

〈A(s, x(s)), x(s)〉 ds

+ 2
∫ t

0

(f1(s), x(s)) ds+ 2
∫ t

0

(x(s), dM(s)) + tr〈〈M〉〉t , P − a.s. , ∀t ∈ [0, T ] ,

where 〈〈M〉〉t denotes the quadratic variation of M(t) .

Proof. See Métivier and Pellaumail [14].

Now we are in a position to prove the existence of solution to the problem (∗).

Theorem 3. Assume that (a.1)–(a.5), (f.1)–(f.3) and (g.1)–(g.3) hold. Then, for each
ψ ∈ Ip(−h, 0; V )∩L2(Ω;C(−h, 0; H)) there exists a unique solution of the problem (∗) in
Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) .

Proof. Uniqueness holds from Theorem 1.

For the existence, we consider the equations

x1(t) = ψ(0) +
∫ t

0

[
A(s, x1(s))− λ

2
x1(s)

]
ds, t ∈ [0, T ], (10)

x1(t) = ψ(t), t ∈ [−h, 0],

xn+1(t) = ψ(0) +
∫ t

0

[
A(s, xn+1(s))− λ

2
xn+1(s)

]
ds+

∫ t

0

λ

2
xn(s) ds

+
∫ t

0

f(s, xns ) ds+
∫ t

0

g(s, xns ) dw(s), t ∈ [0, T ], ∀n ≥ 1
(11)

xn+1(t) = ψ(t), t ∈ [−h, 0], ∀n ≥ 1. (12)

By virtue of (a.1)–(a.5), the family A1(t, .) : V → V ′ defined as A1(t, x) = A(t, x) −
(λ/2)x , satisfies the assumptions in Theorem 2. Consequently, (10)–(12) has a unique
solution x1 ∈ Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) .

We note that, from (f.2) and (g.2) it follows:

i) The mapping (t, ω) ∈ (0, T )× Ω 7→ f(t, x1
t ) ∈ H belongs to I2(0, T ; H) ;

ii) The mapping (t, ω) ∈ (0, T ) × Ω 7→ g(t, x1
t ) ∈ L(K,H) belongs to the space

I2(0, T ; L(K,H)) and therefore
∫ ·

0
g(t, x1

s) dw(s) is a continuous and square integrable
Ft–martingale.

Consequently, bearing these remarks in mind we can use Theorem 2 and get that there
exists a unique process x2 ∈ Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) , which is the solution
of (11)–(12) for n = 1 . By recurrence, we obtain a sequence of solutions for (10)–(12),
{xn}n≥1 ⊂ Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) .
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Now, we want to prove that the sequence {xn} is convergent to a process x in
Ip(−h, T ; V ) ∩ L2(Ω;C(−h, T ; H)) , which will be the solution of (∗). For this end, we
shall first prove the following lemmas.

Lemma 1. {xn} is a Cauchy sequence in L2(Ω;C(−h, T ; H)).

Proof. Indeed, for n > 1 and the process xn+1(t)− xn(t) , it follows from Itô’s formula

|xn+1(t)− xn(t)|2 = 2
∫ t

0

〈A(xn+1)−A(xn), xn+1 − xn〉 ds

− λ
∫ t

0

|xn+1 − xn|2 ds+ λ

∫ t

0

(
xn+1 − xn, xn − xn−1

)
ds

+ 2
∫ t

0

(
f(xn)− f(xn−1), xn+1 − xn

)
ds

+ 2
∫ t

0

(
xn+1 − xn, (g(xn)− g(xn−1)) dw(s)

)
+
∫ t

0

‖g(xn)− g(xn−1)‖22 ds ,

(13)

where, by definition, xn := xn(s) , A(xn) := A(s, xn(s)) , f(xn) := f(s, xns ) and
g(xn) := g(s, xns ) . ¿From (a.2), it is easy to deduce

|xn+1(t)− xn(t)|2 ≤ |λ|
∫ t

0

|xn+1 − xn||xn − xn−1| ds

+ 2
∫ t

0

|f(xn)− f(xn−1)||xn+1 − xn| ds

+ 2
∣∣∣∣∫ t

0

(
xn+1 − xn, (g(xn)− g(xn−1)) dw(s)

)∣∣∣∣
+
∫ t

0

‖g(xn)− g(xn−1)‖22 ds .

(14)

Consequently, (14) yields

E

[
sup

0≤θ≤t
|xn+1(θ)− xn(θ)|2

]
≤ |λ|E

∫ t

0

|xn+1 − xn||xn − xn−1| ds

+ 2E
∫ t

0

|f(xn)− f(xn−1)||xn+1 − xn| ds

+ 2E

[
sup

0≤θ≤t

∣∣∣∣∣
∫ θ

0

(
xn+1 − xn, (g(xn)− g(xn−1)) dw(s)

)∣∣∣∣∣
]

+ E

∫ t

0

‖g(xn)− g(xn−1)‖22 ds .

(15)

11



Now, we estimate the terms on the right-hand side of (15) by using the inequality

2ab ≤ a2

l2
+ l2b2, a, b ∈ R1 , l > 0 ,

for an appropriate l > 0. Firstly, it can be deduced

|λ|E
∫ t

0

|xn+1 − xn||xn − xn−1|ds ≤ 1
4
E

[
sup

0≤θ≤t
|xn+1(θ)− xn(θ)|2

]
+ λ2T

∫ t

0

E

[
sup

0≤θ≤s
|xn(θ)− xn−1(θ)|2

]
ds.

(16)

On the other hand, since xn(s) = xn−1(s), −h ≤ s ≤ 0, we can get from (g.2)

E

∫ t

0

‖g(xn)− g(xn−1)‖22ds ≤ k2
2E

∫ t

0

‖xns − xn−1
s ‖2Cds

= k2
2E

∫ t

0

sup
−h≤r≤0

|xns (r)− xn−1
s (r)|2ds

≤ k2
2E

∫ t

0

sup
0≤r≤s

|xn(r)− xn−1(r)|2ds,

(17)

and, in a similar manner, from (f.2) we can obtain

2E
∫ t

0

|f(xn)− f(xn−1)||xn+1 − xn|ds ≤ 1
4T

E

∫ t

0

|xn+1 − xn|2ds

+ 4k2
1TE

∫ t

0

‖xns − xn−1
s ‖2C ds

≤ 1
4
E

[
sup

0≤r≤t
|xn+1(r)− xn(r)|2

]
+ 4k2

1T

∫ t

0

E

[
sup

0≤r≤s
|xn(r)− xn−1(r)|2

]
ds.

(18)
Now, Burkholder–Davis–Gundy’s inequality implies

2E
[

sup
0≤r≤t

∣∣∣ ∫ r

0

(
xn+1 − xn, (g(xn)− g(xn−1)) dw(s)

) ∣∣∣]

≤ 6E
[(

sup
0≤r≤t

|xn+1(r)− xn(r)|2
)∫ t

0

‖g(xn)− g(xn−1)‖22 ds
]1/2

≤ 1
4
E

[
sup

0≤r≤t
|xn+1(r)− xn(r)|2

]
+ 72k2

2

∫ t

0

E

[
sup

0≤r≤s
|xn(r)− xn−1(r)|2

]
ds .

(19)

12



If we set

ϕn(t) = E

[
sup

0≤θ≤t
|xn+1(θ)− xn(θ)|2

]
, (20)

then from (15)–(19), it could be deduced that there exists a positive constant c > 0 such
that

ϕn(t) ≤ 3
4
ϕn(t) + c

∫ t

0

ϕn−1(s) ds , (21)

and consequently there exists k > 0 such that

ϕn(t) ≤ k
∫ t

0

ϕn−1(s) ds . (22)

By iteration from (22), we get

ϕn(t) ≤ kn−1Tn−1

(n− 1)!
ϕ1(T ) , ∀n > 1 , ∀t ∈ [0, T ] . (23)

Therefore,

E

[
sup

0≤θ≤T
|xn+1(θ)− xn(θ)|2

]
≤ kn−1Tn−1

(n− 1)!
ϕ1(T ) , ∀n > 1 . (24)

Obviously, since xn+1(θ) = xn(θ) for θ ∈ [−h, 0], (24) implies that {xn} is a Cauchy
sequence in L2(Ω; C(−h, T ; H)).

Lemma 2. The sequence {xn} is bounded in Ip(−h, T ; V ).

Proof. Indeed, applying Itô’s formula to |xn|2 with n ≥ 2 immediately yields

E|xn(T )|2 = 2E
∫ T

0

〈A(xn), xn〉 ds− λE
∫ T

0

|xn|2 ds

+ E|ψ(0)|2 + 2E
∫ T

0

(f(xn−1), xn) ds

+ λE

∫ T

0

(xn, xn−1) ds+ E

∫ T

0

‖g(xn−1)‖22 ds .

(25)

Therefore,

−2E
∫ T

0

〈 A(xn), xn〉 ds+ λE

∫ T

0

|xn|2 ds

≤ E|ψ(0)|2 + 2E
∫ T

0

|f(xn−1)||xn| ds

+ |λ|E
∫ T

0

|xn||xn−1| ds+ E

∫ T

0

‖g(xn−1)‖22 ds .

(26)

Since {xn} is convergent in L2(Ω; C(−h, T ; H)), it will be bounded in this space. Now, it
is not difficult to check that there exists a positive constant k′ > 0 such that the right-hand
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side of (26) is bounded by this constant. For instance, we will estimate one of those terms.
Firstly, we observe that∫ T

0

‖xn−1
s ‖2C ds =

∫ T

0

sup
−h≤r≤0

|xn−1(s+ r)|2 ds

≤
∫ T

0

sup
−h≤θ≤s

|xn−1(θ)|2 ds.

Next,

2E
∫ T

0

|f(xn−1)||xn|ds ≤ 2k1E

∫ T

0

‖xn−1
s ‖C |xn(s)| ds

≤ k1E

∫ T

0

[
‖xn−1

s ‖2C + |xn(s)|2
]
ds

≤ Tk1E

(
sup

−h≤θ≤T
|xn−1(θ)|2

)
+ k1TE

(
sup

0≤θ≤T
|xn(θ)|2

)
= Tk1‖xn−1‖2L2(Ω;C(−h,T ;H)) + k1T‖xn‖2L2(Ω;C(0,T ;H)) ,

which, in addition to (26) and (a.1), leads to the following inequalities:

α

∫ T

0

E‖xn(s)‖p ds ≤ −2E
∫ T

0

〈A(xn), xn〉 ds+ λE

∫ T

0

|xn|2 ds+ νT ≤ k′,

and Lemma 2 is proved.

Lemma 3. The limit of the sequence {xn} is a solution to (∗).

Proof. Firstly, we observe that Lemma 1 implies that there exists x ∈ L2(Ω; C(−h, T ; H))
such that xn → x in L2(Ω; C(−h, T ; H)). Now, since (f.2) and (g.2) hold, we have
f(xn)→ f(x) (in L2(Ω; L∞(0, T ; H))), and g(xn)→ g(x) (in L2(Ω;L∞(0, T ; L(K,H)))).

On the other hand, by virtue of Lemma 2 {xn} has a subsequence which is weakly
convergent in Ip(−h, T ; V ). But, since xn → x in L2(Ω; C(−h, T ; H)), we can assure
that xn → x weakly in Ip(−h, T ; V ) (in the sequel, we will denote this by xn ⇀ x in
Ip(−h, T ; V )). Nevertheless, it follows from (a.3) that {A(xn)} is bounded in Lp

′
(Ω ×

(0, T ); V ′) (with p′ such that (1/p) + (1/p′) = 1), since∫ T

0

E‖A(t, xn(t))‖p/(p−1)
∗ dt ≤ γ

∫ T

0

E‖xn(t)‖pdt ≤ γk′/α.

Therefore, from each subsequence of {A(xn)}, we can get another subsequence weakly
convergent in Lp

′
(Ω × (0, T ); V ′). Now, we will see that all the limits of different sub-

sequences coincide. Indeed, let v1, v2 be the limits of two different subsequences. Since
xn → x in L2(Ω; C(−h, T ; H)), f(xn) → f(x) in L2(Ω; L∞(0, T ; H)) and g(xn) → g(x)
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in L2(Ω; L∞(0, T ; L(K,H))), then (11) implies that the whole sequence
∫ t2
t1
A(s, xn(s)) ds

converges in L1(Ω; V ′) for all t1, t2 ∈ [0, T ], and hence∫ t2

t1

v1(s) ds =
∫ t2

t1

v2(s) ds ∀t1, t2 ∈ [0, T ] (equality in Lp
′
(Ω;V ′)).

¿From this, it follows that v1 = v2 in Lp
′
(Ω × (0, T ); V ′) and finally A(xn) ⇀ v in

Lp
′
(Ω× (0, T ); V ′). In conclusion, we have proved:

xn → x in L2(Ω; C(0, T ; H)), (27)

f(xn)→ f(x) in L2(Ω; L∞(0, T ; H)), (28)

g(xn)→ g(x) in L2(Ω; L∞(0, T ; L(K,H))), (29)

xn ⇀ x in Ip(−h, T ; V ), (30)

A(xn) ⇀ v in Lp
′
(Ω× (0, T ); V ′). (31)

Finally, since (27)–(31) hold, we can take limits in (11) and obtain

x(t) = ψ(0) +
∫ t

0

v(s) ds+
∫ t

0

f(s, xs) ds+
∫ t

0

g(s, xs) dws. (32)

Thus, in order to finish the proof of the theorem, it is sufficient to prove that A(s, x(s)) =
v(s) in Lp

′
(Ω× (0, T ); V ′). However, from (25) it is easy to deduce

2E
∫ T

0

〈A(xn), xn〉 ds = λE

∫ T

0

|xn|2 ds+ E|xn(T )|2 − E|ψ(0)|2

− 2E
∫ T

0

(f(xn−1), xn) ds− λE
∫ T

0

(xn, xn−1) ds

− E
∫ T

0

‖g(xn−1)‖22 ds ,

(33)

which, together with (27)–(29), immediately implies

lim
n→∞

2E
∫ T

0

〈A(xn), xn〉 ds = E|x(T )|2 − E|ψ(0)|2

− 2E
∫ T

0

(f(x), x) ds− E
∫ T

0

‖g(x)‖22 ds .
(34)

However, (32) and Itô’s formula yield

lim
n→∞

E

∫ T

0

〈A(xn), xn〉 ds = E

∫ T

0

〈v, x〉 ds. (35)

15



By virtue of (a.2), we get

−2E
∫ T

0

〈A(xn)−A(z), xn − z〉 ds+ λE

∫ T

0

|xn − z|2 ds ≥ 0 (36)

for all z ∈ Lp(Ω× (0, T ); V ) ∩ L2(Ω× (0, T ); H) . Nevertheless, (27), (30) and (31) allow
us to take limits in (36) and, it follows

−2E
∫ T

0

〈v −A(z), x− z〉 ds+ λE

∫ T

0

|x− z|2 ds ≥ 0 . (37)

Now, if we set z = x− θz2 (for θ > 0 , z2 ∈ Lp(Ω× (0, T ); V )∩L2(Ω× (0, T ); H) ), we get

−2E
∫ T

0

〈v −A(x− θz2), θz2〉 ds+ λθ2E

∫ T

0

|z2|2 ds ≥ 0 . (38)

In (38), we divide by θ, take limit as θ → 0 and then use the hemicontinuity (a.4) to
obtain:

−E
∫ T

0

〈v −A(x), z2〉 ds ≥ 0 , ∀z2 ∈ Lp(Ω× (0, T ); V ) ∩ L2(Ω× (0, T );H) , (39)

and therefore v = A(x). Since (32) is true with v = A(x), the proof of Theorem 3 is now
complete.

4. EXISTENCE AND UNIQUENESS BY A GALERKIN APPROXIMATION

First of all, we would like to point out that in many situations, it is convenient to consider
another norm ‖ · ‖L2

H
instead of ‖ · ‖C for initial datum spaces in (∗). The arguments in

the last section still carry through when the norm ‖ · ‖C is replaced by ‖ · ‖L2
H

in (f.2) and
(g.2). In this section we shall investigate an existence and uniqueness result for (∗) in a
more general situation. Precisely, let us assume hypotheses (a.1)–(a.5) for the family of
operators A(t, ·). Suppose f(t, ·) : L2

H → H is a family of nonlinear operators defined a.e.t.
and satisfying:

(F.1) f(t, 0) = 0 ;

(F.2) Lipschitz condition: ∃ k1 = k1(h) > 0 such that

|f(t, η)− f(t, ξ)| ≤ k1‖η − ξ‖L2
V
, ∀η, ξ ∈ L2

V , a.e.t.;

(F.3) Measurability: t ∈ (0, T )→ f(t, η) ∈ H is Lebesgue–measurable, ∀η ∈ L2
V .

And let g(t, ·) : L2
H → L(K,H) be another nonlinear operator family defined a.e.t. and

satisfying:
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(G.1) g(t, 0) = 0 ;

(G.2) Lipschitz condition: ∃ k2 = k2(h) > 0 such that

‖g(t, η)− g(t, ξ)‖2 ≤ k2‖η − ξ‖L2
V
, ∀η, ξ ∈ L2

V , a.e.t.;

(G.3) Measurability: t ∈ (0, T ) → g(t, η) ∈ L(K,H) is Lebesgue–measurable ∀η ∈
L2
V .

Theorem 4. In addition to (a.1)–(a.5), (F.1)–(F.3) and (G.1)–(G.3), suppose the two
following hypotheses hold:

(C) There exist α > 0, λ, ν, τ ∈ R1 such that for all ξ ∈ Lp(−h, T ; V )

−2〈A(t, ξ(t))+ f(t, ξt), ξ(t)〉+ λ|ξ(t)|2 + τ‖ξ0‖2Lp
V

+ ν

≥ α‖ξ(t)‖p + ‖g(t, ξt)‖22 a.e.t ∈ [0, T ];

(M) For all ξ, η ∈ Lp(−h, T ; V ) with ξ0 = η0,

−2〈A(t, ξ(t)) + f(t, ξt)− A(t, η(t))− f(t, ηt), ξ(t)− η(t)〉+ λ|ξ(t)− η(t)|2

≥ ‖g(t, ξt)− g(t, ηt)‖22 a.e.t ∈ [0, T ].

Then, for each ψ ∈ Ip(−h, 0; V ) ∩ L2(Ω; C(−h, 0; H)) there exists a unique solution of
the problem (∗) in Ip(−h, T ; V ) ∩ L2(Ω; C(−h, T ; H)).

Proof. Uniqueness follows immediately from Itô’s formula, Assumption (M) and Gronwall’s
lemma. Indeed, let x, y ∈ Ip(−h, T ; V ) ∩ L2(Ω; C(−h, T ; H)) be two solutions to (∗).
Then, it is easy to obtain

E|x(t)− y(t)|2 = 2
∫ t

0

E〈A(s, x(s))−A(s, y(s)), x(s)− y(s)〉 ds

+ 2
∫ t

0

E(f(s, xs)− f(s, ys), x(s)− y(s)) ds

+
∫ t

0

E‖g(s, xs)− g(s, ys)‖22 ds.

≤ λ

∫ t

0

E|x(s)− y(s)|2 ds,

from which uniqueness follows by means of Gronwall’s lemma.

As for the existence, we shall split the proof into the following four steps.

STEP 1. Finite-dimensional approximation

Let {v1, v2, ..., vn, ...} be an orthonormal basis of H where vi ∈ V for all i ≥ 1. Let
Vn = Hn = V ′n denote the vector space generated by {v1, ...vn}. Let Pn ∈ L(H, Hn) be
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the orthogonal projection from H onto Hn. Then, Pn can be extended to an operator P̃n
from V ′ onto V ′n in the following way

P̃nu =
n∑
i=1

〈u, vi〉vi, u ∈ V ′.

Let {l1, l2, ..., ln, ...} denote an orthonormal basis in K, and let πn ∈ L(K,Kn) be the
projection from K onto Kn = span{l1, ..., ln}.

Now we consider the problem

(∗1)


d(xn(t), vi) = 〈A(t, xn(t)) + f(t, xnt ), vi〉dt

+ (vi, g(t, xnt )d(πnw(t))), 1 ≤ i ≤ n,
xn(t) = Pnψ(t), t ∈ [−h, 0].

This equation can be rewritten in an equivalent way as follows. Let An(t, ·) denote the
family of operators from Vn into V ′n defined as An(t, x) = P̃nA(t, x), x ∈ Vn. Assume
fn(t, ·) : L2

Hn
→ Hn given by fn(t, ξ) = Pnf(t, ξ) for ξ ∈ L2

Hn
, gn(t, ·) : L2

Hn
→ L(Kn, Hn)

defined by gn(t, ξ) = Png(t, ξ) for ξ ∈ L2
Hn

, and, finally let Wn(t) denote the Kn–valued
Wiener process defined by Wn(t) = πnw(t). Then, Eq. (∗1) can be rewritten as

(∗2)

{
dxn(t) = (An(t, xn(t)) + fn(t, xnt )dt+ gn(t, xnt )dWn(t)
xn(t) = ψn(t) = Pnψ(t), t ∈ [−h, 0].

Although Eq. (∗2) can be considered as an Itô stochastic differential equation in Rn, we
can not apply the classic results on existence and uniqueness of solutions since An does not
satisfy a Lipschitz type of condition. However, we can apply to this situation the results
proved in the preceding section, i.e., Theorem 3 with ‖ · ‖C replaced by ‖ · ‖L2

H
in (f.2) and

(g.2). Indeed, it is easy to check that An, fn, gn,Wn and ψn satisfy the assumptions in
Theorem 3 by replacing V , H, V ′ by Vn, Hn, V ′n. Therefore, for each natural number n ≥ 1,
there exists a unique xn ∈ Ip(−h, T ;Vn) ∩ L2(Ω; C(−h, T ; Hn)) which is the solution to
(∗2). Owing to the natural injections, we have that, in fact,

xn ∈ Ip(−h, T ; V ) ∩ L2(Ω; C(−h, T ; H)).

STEP 2. A priori computations

As in the proof of Theorem 3, we set xn := xn(s), An(xn) := An(s, xn(s)), fn(xn) :=
fn(s, xns ) and gn(xn) := gn(s, xns ).

The energy equality implies

|xn(t)|2 = |ψn(0)|2 + 2
∫ t

0

〈An(xn) + fn(xn), xn〉 ds

+ 2
∫ t

0

(xn, gn(xn)dWn(s)) + tr〈〈
∫ .

0

gn(xn)dWn(s)〉〉t,
(40)

18



and consequently,

|xn(t)|2 = |ψn(0)|2 + 2
∫ t

0

〈A(xn) + f(xn), xn〉 ds

+ 2
∫ t

0

(xn, g(xn)dWn(s)) + tr〈〈
∫ .

0

g(xn)dWn(s)〉〉t.
(41)

On the one hand, since

tr〈〈
∫ .

0

g(xn)dWn(s)〉〉t =
∫ t

0

‖g(xn)πn‖22ds ≤
∫ t

0

‖g(xn)‖22ds,

we immediately get from Condition (C) that

|xn(t)|2 ≤ |ψn(0)|2 + 2
∫ t

0

〈A(xn) + f(xn), xn〉 ds

+ 2
∫ t

0

(xn, g(xn)dWn(s)) +
∫ t

0

‖g(xn)‖22ds

≤ |ψn(0)|2 + νt+ tτ‖ψn‖2L2
Hn

+ λ

∫ t

0

|xn|2ds

− α
∫ t

0

‖xn‖pds+ 2
∫ t

0

(xn, g(xn)dWn(s)),

(42)

which, after taking expectations, yields that

E|xn(t)|2 + α

∫ t

0

E‖xn‖pds ≤ E|ψ(0)|2 + νt+ tτE‖ψ‖2L2
H

+ λ

∫ t

0

E|xn|2ds. (43)

Consequently, there exist positive constants c1, c2 such that

sup
−h≤t≤T

E|xn(t)|2 ≤ c1 (44)

E

∫ T

0

‖xn(t)‖pdt ≤ c2, (45)

and, as p ≥ 2, there exists c3 > 0 such that

E

∫ T

0

‖xn(t)‖2dt ≤ c3. (46)

On the other hand, (42) immediately yields that

E

[
sup

0≤t≤T
|xn(t)|2

]
≤ E|ψ(0)|2 + νT + TτE‖ψ‖2L2

H
+ |λ|

∫ T

0

E|xn(t)|2dt

+ 2E
[

sup
0≤t≤T

∣∣∣∣∫ t

0

(xn, g(xn)dWn(s))
∣∣∣∣] .

(47)
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Evaluating the last term in (47) by applying Burkholder-Davis-Gundy’s inequality (cf. see
[12]), (G.2) and taking into account (46), we have

2E
[

sup
0≤t≤T

∣∣∣∣∫ t

0

(xn, g(xn)πndw(s))
∣∣∣∣] ≤ 6E

(∫ T

0

|xn|2‖g(xn)‖22ds

)1/2


≤ 1
3
E

[
sup

0≤t≤T
|xn(t)|2

]
+ c4

∫ T

0

E‖g(xn)‖22ds

≤ 1
3
E

[
sup

0≤t≤T
|xn(t)|2

]
+ c4k

2
2

∫ T

0

E‖xns ‖2L2
V
ds

≤ 1
3
E

[
sup

0≤t≤T
|xn(t)|2

]
+ c5 + c6E‖ψ‖2L2

V
.

(48)

Hence, there exists a positive constant c7 such that

E

[
sup

0≤t≤T
|xn(t)|2

]
≤ c7. (49)

So, we have finally proved that

{xn}n≥1 is bounded in Ip(−h, T ; V ) ∩ L2(Ω; C(−h, T ; H)),

{A(xn)}n≥1 is bounded in Lp
′
(Ω× (0, T ); V ′),

{f(xn)}n≥1 is bounded in L2(Ω× (0, T ); H),

{g(xn)}n≥1 is bounded in L2(Ω× (0, T ); L(K,H)),

where A(xn), f(xn), g(xn) are defined in the obvious way and p′ denotes the conjugate of
p.

STEP 3. Taking weak limits

Owing to the last assertions in Step 2, we can ensure that there exists a subsequence
{xnk} of {xn} such that

xnk ⇀ x in Ip(−h, T ; V ) and weakly star in L2(Ω; L∞(−h, T ; H)),

xnk(T ) ⇀ ξ in L2(Ω; H),

A(xnk) ⇀ χ in Lp
′
(Ω× (0, T ); V ′),

f(xnk) ⇀ σ in L2(Ω× (0, T ); H),

g(xnk) ⇀ ζ in L2(Ω× (0, T ); L(K,H)).

Let θ : R1 → R1 be defined as θ(t) =
{

0 if t < 0
1 if t ≥ 0

. If ϕ is a function from [0, T ] into R1,

we can define another function ϕ : (−ρ, T + ρ)→ R1 (where ρ is a positive fixed number)
in the following way:

ϕ(t) =
{
ϕ(t) if t ∈ [0, T ]
0 otherwise.
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This permits us to rewrite Eq. (∗1) (with n = nk) as follows

(xnk(t), vi) = (ψ(0), vi)θ(t)− (xnk(T ), vi)θ(t− T )

+
∫ t

0

〈A(xnk) + f(xnk), vi〉 ds

+
∫ t

0

(vi, g(xnk)πnk
dw(s)),∀t ∈ (−ρ, T + ρ), i = 1, ..., nk.

(50)

Observe that, as the map φ ∈ L2(Ω×(0, T );L2(K,H)) 7→
∫ .

0
φ(s)dw(s) ∈ L2(Ω×(0, T );H)

is linear and continuous, then it is weakly continuous (where L2(K,H) denotes the space
of all Hilbert-Schmidt operators from K into H). Now, we shall prove that g(xnk

)πnk
⇀ ζ,

as k →∞, in L2(Ω× (0, T );L2(K,H)). Indeed, this convergence is equivalent to

E

∫ T

0

tr(Q∗g(xnk)πnk
)dt→ E

∫ T

0

tr(Q∗ζ)dt,

for all Q ∈ L2(Ω× (0, T );L2(K,H)), and also to

E

∫ T

0

tr(g(xnk)πnk
Q)dt→ E

∫ T

0

tr(ζQ)dt.

Therefore, it is sufficient to prove that Qπnk
→ Q in L2(Ω × (0, T ); L2(K,H)). But this

is an immediate consequence of Theorem I. 2.3 in Pardoux [16].

Now, we can take weak limits in (50) and obtain:

(x(t), vi) = (ψ(0), vi)θ(t)− (ξ, vi)θ(t− T ) +
∫ t

0

〈χ+ σ, vi〉 ds

+
∫ t

0

(vi, ζ)dw(s), ∀t ∈ (−ρ, T + ρ), ∀i ≥ 1,

(51)

so it follows that
ξ = x(T )

dx(t) = (χ(t) + σ(t))dt+ ζ(t)dw(t), t ∈ [0, T ], (52)

x(t) = ψ(t), t ∈ [−h, 0]. (53)

Therefore, it remains to prove that χ+ σ = A(x) + f(x) and ζ = g(x). This will be done
in the next step.

STEP 4. Final step: the monotonicity method

Consider v ∈ Lp(Ω× (−h, T ); V ) ∩ L2(Ω× (−h, T ); H) and set

unk = − 2E
∫ T

0

e−λt〈A(xnk) + f(xnk)−A(v)− f(v), xnk − v〉dt

+ λE

∫ T

0

e−λt|xnk − v|2dt− E
∫ T

0

e−λt‖g(xnk)− g(v)‖22dt.
(54)
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Note that unk ≥ 0 due to Assumption (M). On the other hand, we can take limits in the
terms of (54) except for the following term

ynk = − 2E
∫ T

0

e−λt〈A(xnk) + f(xnk), xnk〉dt

+ λE

∫ T

0

e−λt|xnk |2dt− E
∫ T

0

e−λt‖g(xnk)‖22dt.
(55)

But, (41) immediately yields that

E|xnk(t)|2 = E|Pnk
ψ(0)|2 + 2E

∫ t

0

〈A(xnk) + f(xnk), xnk〉ds

+ E

[
tr〈〈Pnk

∫ .

0

g(xnk)dWnk〉〉t
]
.

(56)

In particular, (56) proves that the function t 7→ E|xnk(t)|2 is absolutely continuous and
hence

d
[
e−λtE|xnk(t)|2

]
+ λe−λtE|xnk(t)|2 = e−λtd

[
E|xnk(t)|2

]
. (57)

Now, it can be obtained that

e−λTE|xnk(T )|2 ≤ E|Pnk
ψ(0)|2 − λ

∫ T

0

e−λtE|xnk(t)|2dt

+ 2
∫ T

0

e−λtE〈A(xnk) + f(xnk), xnk〉dt

+
∫ T

0

e−λtE‖g(xnk)‖22dt,

(58)

and therefore,
ynk ≤ E|ψ(0)|2 − e−λTE|xnk(T )|2. (59)

As an immediate consequence, it follows that

lim sup
k→∞

ynk ≤ E|ψ(0)|2 − e−λTE|x(T )|2. (60)

Applying Itô’s formula to Eq. (52), we can get

e−λTE|x(T )|2 = E|ψ(0)|2 − λ
∫ T

0

e−λtE|x|2dt

+ 2
∫ T

0

e−λtE〈χ+ σ, x〉dt+
∫ T

0

e−λtE‖ζ‖22dt.
(61)

So

lim sup
k→∞

ynk ≤
∫ T

0

e−λtE
[
2〈χ+ σ, x〉+ λ|x|2 − ‖ζ‖22

]
dt, (62)
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and finally

0 ≤ lim sup
k→∞

unk ≤ − 2E
∫ T

0

e−λt〈χ+ σ −A(v)− f(v), x− v〉dt

+ λE

∫ T

0

e−λt|x− v|2dt− E
∫ T

0

e−λt‖ζ − g(v)‖22dt.
(63)

If we take v = x in (63), it follows that ζ = g(x) and, also

−2E
∫ T

0

e−λt〈χ+ σ −A(v)− f(v), x− v〉dt+ λE

∫ T

0

e−λt|x− v|2dt ≥ 0. (64)

In order to finish the proof, we only need to use hemicontinuity (a.4). Indeed, we notice
that the function f also satisfies a similar property and it is easy to deduce from (F.2)
that the map θ ∈ R1 7→ (f(t, η + θξ), x) ∈ R1 is continuous for all η, ξ ∈ L2

V , x ∈
H and a.e.t ∈ [0, T ]. Now, in (64) setting v = x − θu for θ > 0 and u ∈ Lp(Ω ×
(−h, T ); V ) ∩ L2(Ω × (−h, T ) : H), dividing by θ and letting θ tend to 0, we then get
∀u ∈ Lp(Ω× (−h, T ); V ) ∩ L2(Ω× (−h, T ); H)

−2E
∫ T

0

e−λt〈χ+ σ −A(x)− f(x), u〉dt ≥ 0. (65)

Consequently, χ+ σ = A(x) + f(x) and the proof of the theorem is complete.

5. STABILITY OF STRONG SOLUTIONS

In this section we shall show that under suitable conditions exponential stability can be
transferred from equations without time lags to those with time lag ones. Since we are
mainly interested in exponential stability problems for the second moment of solutions, we
will assume there exists a process

x ∈ I2(−h, T ;V ) ∩ L2(Ω;C(−h, T ;H)) , ∀T > 0 ,

which is the strong solution of the following problem:{
dx(t) = [A(t, x(t)) + f(t, xt)] dt+ g(t, xt) dw(t), t ≥ 0,
x(t) = ψ(t), t ∈ [−h, 0].

(66)

In other words, x(t) satisfies the following integral equation (in V ′):

x(t) = ψ(0) +
∫ t

0

[A(s, x(s)) + f(s, xs)]ds

+
∫ t

0

g(s, xs) dw(s), P − a.s., t ≥ 0,
(67)
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and x(t) = ψ(t) , t ∈ [−h, 0]. In particular, in this section we suppose all the conditions
in Section 3 hold so that there exists a unique strong solution for the stochastic functional
differential equation (66). For simplicity, we also suppose in the section that the coefficients
A, f and g are continuous with respect to time t.

First of all, we investigate the case without hereditary characteristics. In other words,
consider Eq. (67) with h = 0 and thus k1(h) = k1 > 0, k2(h) = k2 > 0 in (f.2), (g.2), then
the equation (66) reduces to{

dx(t) = [A(t, x(t)) + f(t, x(t))] dt+ g(t, x(t)) dw(t), t ≥ 0,
x(0) = x0.

(68)

If it is possible to know the existence of some Lyapunov function, we could obtain
mean square stability of solutions. Indeed, assume there exist v ∈ C2(H; R+) and positive
constants ci, 1 ≤ i ≤ 4 , such that v′(x) ∈ V for all x ∈ V and

c1|x|2 ≤ v(x) ≤ c2|x|2, Lv(x) ≤ −c3v(x), |v′(x)| ≤ c4|x|,

for all x ∈ V , where L is the associated diffusion operator defined as

Lv(x) = 〈A(t, x) + f(t, x), v′(x)〉+
1
2

tr[v′′(x)g(t, x)Wg∗(t, x)], ∀x ∈ V,

we can get (applying Itô’s formula to function ec3tv(x), x ∈ H and Equation (68))

ec3tv(x(t)) = v(x(0)) + c3

∫ t

0

ec3sv(x(s)) ds

+
∫ t

0

ec3s〈A(s, x(s)) + f(s, x(s)), v′(x(s))〉 ds

+
∫ t

0

ec3s(v′(x(s)), g(s, x(s)) dw(s))

1
2

∫ t

0

ec3str[v′′(x(s))g(s, x(s))Wg∗(s, x(s))] ds.

Taking expectations and observing that Lv(x) ≤ −c3v(x) , we have

ec3tEv(x(t)) ≤ Ev(x(0)) + c3

∫ t

0

ec3sEv(x(s)) ds+
∫ t

0

ec3sELv(x(s)) ds

≤ Ev(x(0)),

and consequently
Ev(x(t)) ≤ e−c3tEv(x(0)) , ∀t ≥ 0.

¿From the assumptions on v, we easily deduce that

E|x(t)|2 ≤ c2
c1
e−c3tE|x(0)|2 , ∀t ≥ 0
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which means mean square exponential stability of the trivial solution of (68).

Although, as we have mentioned before, the construction of Lyapunov functions is
not, in general, a trivial problem, there exists a condition that makes v(x) = |x|2 become
a natural Lyapunov function. This is the following hypothesis:

(H): there exists a positive constant γ > 0 such that

2〈A(t, x) + f(t, x), x〉+ ‖g(t, x)‖22 ≤ −γ|x|2 , ∀x ∈ V.

Indeed, on this occasion

Lv(x) = 2〈A(t, x) + f(t, x), x〉+ ‖g(t, x)‖22
≤ − γ|x|2,

therefore, setting c3 = γ , we obtain exponential stability in mean square sense.

Remark. Observe that in a variety of practical situations, the following assumption (H)′

(which seems easier to check) implies (H):

(H)′: there exists a positive constant α > 0 such that

−2〈A(t, x), x〉 ≥ α‖x‖2 ,∀x ∈ V and − α+ 2k1β
2 + k2

2β
2 < 0,

where k1, k2 both are nonnegative constants in (f.2), (g.2) and β > 0 denotes
the constant satisfying

|x| ≤ β‖x‖ , ∀x ∈ V .

Indeed, note that

2〈A(t, x) + f(t, x), x〉+ ‖g(t, x)‖22
≤ − α‖x‖2 + 2(f(t, x), x) + tr[g(t, x)Wg∗(t, x)]

≤ − α‖x‖2 + 2|f(t, x)||x|+ tr[g(t, x)Wg∗(t, x)]

≤ − α‖x‖2 + 2k1β
2‖x‖2 + k2

2β
2‖x‖2

≤ [−α+ 2k1β
2 + k2

2β
2]β−2|x|2,

and denote γ = [α− 2k1β
2 − k2

2β
2]β−2, the assumption (H) holds.

In what follows, we shall show that the same hypotheses as above (mainly (f.2),(g.2)
and (H)′) imply mean square exponential stability of the trivial solution of the stochastic
functional differential equation (66). However, it is particularly worth pointing out that on
this occasion the constants k1, k2 are generally dependent on the time lag constant h > 0.
This fact simply means that in order to obtain exponential stability, the time lag must be
sufficiently small. However, as will be shown by Examples 1, 2 below, on some occasions
such as the time delay case, the constant k1 or k2 could be independent on h > 0 so that
the stability is true for any h > 0, a result which improves that of Mao and Shah [13] in
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finite dimensional spaces. For our ends, let us firstly study some stability criteria for the
stochastic functional differential equation (66).

Theorem 4. Suppose there exists a positive constant λ > 0 such that for all t ≥ 0,

E
(

2 < A(t, φ(0)) + f(t, φ), φ(0) > +tr[g(t, φ)Wg(t, φ)∗]
)
< −λE|φ(0)|2 (69)

provided φ = {φ(s) : −h ≤ s ≤ 0} ∈ CbF0
([−h, 0];V ) satisfying

E‖φ‖2C ≤ eλhE|φ(0)|2, (70)

where CbF0
([−h, 0];V ) denotes the space of all F0-measurable, bounded continuous processes

from [−h, 0] into V . Then for all ψ ∈ CbF0
([−h, 0];V ), there exists a positive constant

K ≥ 1 such that

E|x(t, ψ)|2 ≤ K · sup
−h≤s≤0

E|ψ(s)|2 · e−λt for all t ≥ 0. (71)

Proof. Suppose (71) is not true, then there exists a ρ ≥ 0 such that

eλtE|x(t;ψ)|2 ≤ eλρE|x(ρ;ψ)|2 = K · sup
−h≤s≤0

E|ψ(s)|2, (72)

for all 0 ≤ t ≤ ρ, and there is a sequence {tk}k≥1 in R+ such that tk ↓ ρ, as k →∞, and

eλtkE|x(tk;ψ)|2 > eλρE|x(ρ;ψ)|2. (73)

On the other hand, by virtue of (72) we deduce

E|x(ρ+ θ;ψ)|2 ≤ eλ(ρ−t)E|x(ρ;ψ)|2 ≤ eλhE|x(ρ;ψ)|2,

for all −h ≤ θ ≤ 0, which, in view of the assumptions (69)(70), immediately implies that

E
(

2 < A(ρ, x(ρ)) + f(ρ, xρ), x(ρ;ψ) > +tr[g(ρ, xρ)Wg(ρ, xρ)∗]
)
< −λE|x(ρ)|2.

By the continuity of the solution and the functions f and g, we see that for some sufficiently
small h > 0,

E
(

2 < A(t, x(t)) + f(t, xt), x(t;ψ) > +tr[g(t, xt)Wg(t, xt)∗]
)
< −λE|x(t)|2,

for all t ∈ [ρ, ρ+ h]. Now by Itô’s formula, for all sufficiently small h > 0,

eλ(ρ+h)E|x(ρ+ h;ψ)|2 − eλρE|x(ρ;ψ)|2

=
∫ ρ+h

ρ

eλt
[
λE|x(t;ψ)|2 + E(2 < A(t, x(t)) + f(t, xt), x(t) >

+ tr[g(t, xt)Wg(t, xt)∗])
]
dt

≤ 0.
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However, this contradicts (73), so the result (71) must be true.

Theorem 5. Suppose the assumptions in Section 3 for uniqueness and existence of the
strong solution of (∗) hold. Assume further (f.2), (g.2) and (H)′ hold, then the strong solu-
tion of (∗) is mean square exponentially stable. Moreover, there exists a positive constant
K ≥ 1 such that for all t ≥ 0

E|x(t, ψ)|2 ≤ K · sup
−h≤s≤0

E|ψ(s)|2 · e−λt for all t ≥ 0.

Proof. If t ≥ 0 and φ = {φ(s) : −h ≤ s ≤ 0} ∈ CbF0
([−h, 0];V ) satisfies

E‖φ‖2C ≤ eλhE|φ(0)|2,

then by Assumptions (f.2), (g.2) and (H)′, it is easy to deduce for all t ≥ 0,

E
(

2 < A(t, φ(0)) + f(t, φ), φ(0) > +tr[g(t, φ)Wg(t, φ)∗]
)

≤ − αE‖φ(0)‖2 + 2k1E‖φ‖C |φ(0)|+ k2
2E‖φ‖2C

≤ − αE‖φ(0)‖2 + 2k1e
λhE|φ(0)|2 + k2

2e
λhE|φ(0)|2

≤ [−α+ 2k1β
2eλh + k2

2β
2eλh]E‖φ(0)‖2.

(74)

On the other hand, by virtue of the assumption (H)′, we have

α > 2k1β
2 + k2

2β
2.

Thus, we can choose a suitable λ > 0 small enough such that

0 < α− 2k1β
2eλh − k2

2β
2eλh,

which immediately implies that

E
(

2 < A(t, φ(0)) + f(t, φ), φ(0) > +tr[g(t, φ)Wg(t, φ)∗]
)

≤ − [α− 2k1β
2eλh − k2

2β
2eλh]β−2E|φ(0)|2.

Therefore, in view of Theorem 5 the strong solution is mean square exponentially stable.

Next, as we have mentioned in Section 1, one can prove pathwise exponential stability.

Theorem 6. Under the assumptions in Theorem 5, there exist positive constants α1, α2

and a subset Ω0 ⊂ Ω with P (Ω0) = 0 such that, for each ω ∈ Ω \ Ω0 , there exists a
positive random variable T (ω) such that the following holds

|x(t, ω)|2 ≤ α1E sup
−h≤s≤0

|ψ|2e−α2t , ∀t ≥ T (ω).
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Proof. The proof follows from Itô’s formula, Burkholder–Davis–Gundy’s inequality (cf.
see [12]) and Borel–Cantelli’s lemma, using the suitable change of variables in the terms
containing the time aftereffect (see, for example, Caraballo and Liu [3] and the references
therein for similar results).

Remark. In the finite dimensional case, that is, when V = H = Rn, β = 1, K =
Rn×m, w(t) is an m–dimensional Brownian motion and, as a consequence, W = I (the
identity matrix), Theorems 5 and 6 guarantee exponential stability (both mean square and
pathwise) for the solutions to (66) if (H)′ are fulfilled, where (H)′ can be rewritten now as
follows:

(H)′′ There exists a positive constant α such that

−2xTA(t, x) ≥ α|x|2 , ∀x ∈ Rn and − α+ 2k1 + k2
2 < 0,

where xT denotes the transpose of x. However, under this condition the results in [13]
only give exponential stability if the delay function there is τ(t) = t−h with h sufficiently
small.

6. EXAMPLES

Now, we are going to apply the results proved in the previous sections to obtain stability
of stochastic differential (ordinary and partial) functional equations.

Example 1. Firstly, consider the linear stochastic differential delay equation appearing
in Example 4.1 from Mao and Shah [13]:

dx(t) = [A0x(t) +B0x(t− h)] dt+
m∑
i=1

Bix(t− h) dwi(t),

where A0, B0, Bi are all n×n matrices and wi(t) are mutually independent, n-dimensional
standard Brownian motions, 1 ≤ i ≤ m.

If A0 is negative definite, that is, there exists α > 0 such that 2xTA0x ≤ −α|x|2 ,
and B0, Bi, 1 ≤ i ≤ m satisfy

−α+ 2‖B0‖+
m∑
i=1

‖Bi‖2 < 0 ,

then, it is easy to prove that

A0 +B0 + (A0 +B0)T +
m∑
i=1

BTi Bi = −Q,

with Q being a symmetric positive definite matrix. Consequently, we can apply the
sufficient conditions in Mao and Shah [13] and, therefore, we obtain exponential stability
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when h is small enough. However, since (H)′′ also holds (by setting k1 = ‖B0‖, k2
2 =∑m

i=1 ‖Bi‖2 ), our results (see the last remark in Section 5) imply exponential stability for
all h ≥ 0, even in the more general case in which t − h is replaced by a general bounded
delay function ρ(t). In fact, let Bi = 0, 1 ≤ i ≤ m, it is well-known from Hale [6] that
if −α + 2‖B0‖ < 0, then for any h > 0, the solution is exponentially stable. Our results
actually present a stochastic version of some of those from Hale [6].

Example 2. Consider the semilinear stochastic heat equation with finite time lags r1, r2

(r > r1, r2 ≥ 0)

dZ(t, x) =
[
µ
∂2

∂x2
Z(t, x)dt+ α1

∫ 0

−r1
Z(t+ u, x)h(u)du

]
dt+ α(Z(t))Z(t− r2, x)dβ(t),

t ≥ 0, µ > 0, α1 ≥ 0,

Z(t, 0) = Z(t, π) = 0, t ≥ 0, Z(s, x) = φ(s, x), φ(·, x) ∈ C([−r, 0],R1),

φ(s, ·) ∈ L2(0, π), s ∈ [−r, 0], x ∈ [0, π], E‖φ‖C <∞,

where β(t) is a standard Wiener process and E‖φ‖2C = E{sup−r≤s≤0 ‖φ(s)‖2H}. α : R1 →
R1, h : [−r1, 0] → R1 are two bounded, Lipschitz continuous function with |α(x)| ≤ K,
|h(u)| ≤ M , x ∈ R1, u ∈ [−r1, 0], M, K > 0. Define V = H1

0 [0, π], H = L2[0, π] with the
corresponding boundary conditions above.

Let A = ∂2

∂x2 with the domain

D(A) =
{
u ∈ L2(0, π),

∂u

∂x
,
∂2u

∂x2
∈ L2(0, π), u(0) = u(π) = 0

}
,

so it is easy to deduce
2 < Au, u >≤ −2µ‖u‖2V , u ∈ V.

On the other hand, it is clear that

E
∥∥∥α1

∫ 0

−r1
Z(t+ u, ·)h(u)du

∥∥∥2

H
≤ (α1r1M)2‖Zt‖2C ,

we have, by a straightforward computation and applying Theorems 5, 6 to the above
equation, if 2µ > 2(α1r1M)2 + K2 and for arbitrary r2 > 0 the strong solution is mean
square and almost sure exponentially stable.
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