
STABILITY OF GRADIENT SEMIGROUPS UNDER PERTURBATIONS
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Abstract. In this paper we prove that gradient-like semigroups (in the sense of [4]) are

gradient semigroups (possess a Lyapunov function). This is primarily done to provide con-

ditions under which gradient semigroups, in a general metric space, are stable under per-

turbation exploiting the known fact (see [4]) that gradient-like semigroups are stable under

perturbation. The results presented here were motivated by the work carried out in [6] for

groups in compact metric spaces (see also [14] for the Morse Decomposition of an invariant

set for a semigroup on a compact metric space).

1. Introduction

The analysis of qualitative properties of semigroups in general phase spaces (infinite-

dimensional Banach spaces or general metric spaces) has received much attention throughout

the last four decades (see, for instance, [7], [10], [15] or [3]). In particular, the study of

compact attracting invariant sets has developed into a large and deep research area, providing

vital information for an increasing number of models for phenomena from different areas of

Science such as Physics, Biology, Economics, Engineering and others.

When a system is shown to possess a global attractor, all its asymptotic behavior can be

described by a detailed analysis of the internal dynamics on this compact invariant set. To

this aim, a careful study of the geometrical structure -and its stability under perturbations-

of the global attractor arises as a crucial fact. Probably the most general result in this line

is what is now known as the Fundamental Theorem of Dynamical Systems, suggested in [11]

from the results of [6], which describes any flow on a compact metric space as a decompo-

sition of an ordered family of chain recurrent isolated invariant sets and order compatible

connections between them. In the terminology of [6], this is called a Morse decomposition
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2 E. R. ARAGÃO-COSTA, T. CARABALLO, A. N. CARVALHO, AND J. A. LANGA

of a compact invariant set (see Definition 2.10), and has been considered in different frame-

works, as in the case of flows ([6]) and semiflows on compact spaces ([14]), or even compact

and non-compact topological spaces ( [9, 12, 13]).

In [12, 13] the authors obtain (as a corollary of their general theory and using Conley’s

proof) the existence of a Lyapunov function from a Morse Decomposition for an open semi-

flow on a compact Hausdorff space or for a completely regular space. We do not assume

that the semiflow is open or any additional property of the metric space nor we use Conley’s

proof.

On the other hand, very recently, it has been introduced in [4] the so-called gradient-like

semigroups (see Definition 2.8) in Banach spaces (which does not requires the existence of

a Lyapunov function) as an intermediate concept between gradient semigroups (i.e., those

possessing a Lyapunov function) and semigroup possessing a gradient-like attractor; that is,

an attractor that is characterized as the union of unstable sets of associated isolated invariant

sets.

In this paper, given a gradient-like nonlinear semigroup in a general metric space, we

construct a differentiable Lyapunov function for it proving that gradient-like nonlinear semi-

groups are in fact gradient semigroups. This is done without any compactness assumption

on the associated group or semigroup and any additional assumption on the phase space in

which it is defined. Our proofs, in comparison with the classical works as [6, 14], are quite

different and considerably extends the results there. We adopt an approach that enables us

to use the results on stability of gradient-like (see [4]) semigroups to obtain the stability of

gradient semigroups under perturbations.

For the construction of the Lyapunov function we will firstly prove that a disjoint family of

isolated invariant sets of a gradient-like semigroup on a general metric space can be reordered

in such a way that it becomes a Morse decomposition for the global attractor. Again, the

proofs are intuitive, focused on the dynamics of the semigroup and, for instance, not based

on chain recurrence and related more classical notions in this theory. A refinement of the

results from [6] would lead us to define a Lyapunov function, not only on the attractor but

on the whole phase space. Indeed, we will say that a semigroup {T (t) : t ≥ 0} with a global

attractor A and a disjoint family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn} is a gradient

semigroup with respect to Ξ if there exists a continuous function V : X → R such that

[0,∞) ∋ t 7→ V (T (t)x) ∈ R is decreasing for each x ∈ X, V is constant in Ξi for each

1 ≤ i ≤ n and V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
n
⋃

i=1

Ξi.

Our main result can now be stated as follows

Theorem 1.1. {T (t) : t ≥ 0} is a gradient semigroup with respect to Ξ if and only if it is a

gradient-like semigroup with respect to Ξ. In addition the Lyapunov function V : X → R of a

gradient-like semigroup may be chosen in such a way that V (Ξk) = k for each k = 1, 2, · · · , n.
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One of the straighforward consequences of the previous result is that, if the disjoint family

of isolated invariant sets E = {z1, · · · , zn} is made of stationary points, then a nonlinear semi-

group is gradient in the sense of [7] (see Definition 3.8.1) if and only if it is gradient-like (see

Definition 1.3 in [4]). Then, as gradient-like nonlinear semigroups are stable under perturba-

tion (see [4]), we conclude that gradient semigroups are stable under perturbation;

that is, the existence of a continuous Lyapunov function is robust under perturbation.

Observe that any Morse decomposition Ξ = (Ξ1, · · · , Ξn) of a compact invariant set A

leads to a partial order among the isolated invariant sets Ξi; that is, we can define an

order between two isolated invariant sets Ξi and Ξj if there is a chain of global solutions

{ξℓ, 1 ≤ ℓ ≤ r}, with limt→−∞ ξℓ(t) = Ξℓ and limt→∞ ξℓ(t) = Ξℓ+1, 1 ≤ ℓ ≤ ℓ−1. This defines

a partial order and some of the isolated invariant sets in Ξ may not be comparable. In Section

5 we introduce a new Morse decomposition of the attractor of a gradient-like semigroup which

improves the construction and dynamical properties of its associated Lyapunov function.

Indeed, we prove that, given any gradient-like semigroup with respect to the disjoint family

of isolated invariant sets Ξ = (Ξ1, · · · , Ξn), there exists another Morse decomposition given

by the so-called energy levels N = (N1, N2, · · · , Np) which guarantees a total order in A .

Each of the levels Ni, 1 ≤ i ≤ p is made of a finite union of the isolated invariant sets in Ξ

and N is totally ordered. The associated Lyapunov function has different values in any two

different sets of N and any two elements of Ξ which are contained in the same element of

N (same energy level) are not connected.

Before we proceed, let us exhibit several classes of examples that, so far, were not known

to be gradient semigroups and that the results in this paper show that they indeed are.

Example 1.2. Let A = (ai,j)
n

i,j=1 ∈ Mn×n(R) be a n × n matrix which satisfies ai,j = 0 if

j > i and f ∈ C1(R, R) be such that there is a ξ > 0 with ai,is
2 + f(s)s < 0 whenever |s| ≥ ξ

and 1 ≤ i ≤ n. It is easy to see that the semigroup {T (t) : t ≥ 0} associated to the problem

u̇ = Au + F (u)

u(0) = u0 ∈ Rn
(1.1)

where u = (u1, · · · , un) and F (u) = (f(u1), · · · , f(un))
⊤, has a global attractor A in Rn.

Assume that all equilibria of (1.1) are hyperbolic. Following [4] it is not difficult to see that

all global bounded solutions of (1.1) are forwards and backwards asymptotic to equilibria

and that homoclinic structures are not allowed. Hence the semigroup associated to (1.1) is

gradient-like.

We remark that it is not known whether there is a Lyapunov function for (1.1) and that

the results proved next ensure that there is a continuous function V : Rn → R which is

continuous, decreasing along solutions and with the property that V (T (t)u) = V (u) for all

t ≥ 0 if and only if u is an equilibrium point of (1.1), that is the semigroup {T (t) : t ≥ 0}

(1.1) is gradient (in Rn).
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The problem (1.1) can be changed to a general cascade system of the form

u̇ = G(u)

u(0) = u0 ∈ Rn
(1.2)

with G ∈ C1(Rn, Rn), G(u) = (G1(u), · · · , Gn(u)) such that (1.2) has a global attractor, the

equilibria of (1.2) are all hyperbolic and Gi(u) = G1(u1, · · · , ui), 1 ≤ i ≤ n. Under these

assumptions, the semigroup associated to (1.2) is gradient in Rn.

Similar cascade systems for partial differential equations can easily be constructed and

we remark that a C1 small perturbation of (1.2) will also be gradient-like (according to

the results in [4]). Consequently, a C1 small perturbation of (1.2) will also give us a gra-

dient semigroup. We present next another example of coupled parabolic partial differential

equations with a different nature to show the variety of applicability of our results.

Example 1.3. If f ∈ C2(R), lim sup|u|→∞
f(u)

u
< 0, Ω ⊂ Rn is a bounded smooth domain,

P0 ∈ Ω̄ and p > n, then










ut = ∆u + f(u), x ∈ Ω, t > 0,

∂nu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(·, 0) = u0 ∈W 1,p(Ω)










vt = vxx + f(v), x ∈ (0, 1), t > 0

v(0, t) = u(P0, t), vx(1, t) = 0,

v(·, 0) = v0 ∈W 1,p(0, 1)

and for a ∈ C(Ω̄, Rn)










utt + βut = ∆u + ǫa(x) · ∇u + f(u), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(·, 0) = u0 ∈ H1
0 (Ω), ut(·, 0) = v0 ∈ L2(Ω)

correspond to gradient-like semigroups in W 1,p(Ω)×W 1,p(0, 1) and H1
0 (Ω)×L2(Ω) respectively

if all the associated equilibria are hyperbolic and ǫ > 0 is suitable small (see [1, 2] and [4]).

Hence the associated semigroups are gradient.

With this, it becomes evident that the class of semigroups known to be gradient increases

considerably after our result is proved.

In a general metric space X, consider a gradient-like semigroup {T (t) : t ≥ 0} with respect

to the isolated invariant sets Ξ = {Ξ1, · · · , Ξn} and with a global attractor A . In Section

2 we prove that Ξ can be reordered in such a way that it becomes a Morse decomposition

for A . In Section 3 we construct a Lyapunov function in X for {T (t) : t ≥ 0}, showing that

a gradient like semigroup is a gradient semigroup. Section 4 is dedicated to a recollection
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of the results in [4] to conclude that the gradient semigroups are stable under perturbation.

In Section 5 we introduce the level grouping isolated invariant sets with same dynamical

characteristics. Finally, in Section 6 we make some final comments and present some of our

future research on the subject.

Acknowledgement. We are very grateful to the anonymous referees for their careful read-

ing and comments that led to a considerable improvement of the presentation of the paper

and, at some points, have made the statements and proofs clearer.

2. Morse decomposition of global attractors for gradient-like semigroups

In this section we present the notions of gradient-like semigroups and of Morse decompo-

sition for a global attractor as well as the relationship between them. In order to do that we

will need to introduce some basic notions and results (see [7] for example).

Let X be a metric space with metric d : X ×X → R+, where R+ = [0,∞), and denote by

C (X) the set of continuous maps from X into X. Given a subset A ⊂ X, the ǫ-neighborhood

of A is the set Oǫ(A) := {x ∈ X : d(x, a) < ǫ for some a ∈ A}

Next we introduce the notion of semigroups in the metric space X.

Definition 2.1. A family {T (t) : t ≥ 0} ⊂ C (X) is a semigroup in X if

• T (0) = IX, with IX being the identity map in X,

• T (t + s) = T (t)T (s), for all t, s ∈ R+ and

• R+ ×X ∋ (t, x) 7→ T (t)x ∈ X is continuous.

The notion of invariance plays a fundamental role in the study of the asymptotic behavior

of semigroups.

Definition 2.2. A subset A of X is said invariant under the action semigroup {T (t) : t ≥ 0}

if T (t)A = A for all t ≥ 0.

Now we will introduce the notions of attraction and absorption. For that we recall the

definition of Hausdorff semi-distance. Given A, B ⊂ X, the Hausdorff semidistance from A

to B is given by

dH(A, B) := sup
a∈A

inf
b∈B

d(a, b).

Definition 2.3. Given two subsets A, B of X we say that A attracts B under the action of

the semigroup {T (t) : t ≥ 0} if dH(T (t)B, A)
t→∞
−→ 0 and we say that A absorbs B under the

action of {T (t) : t ≥ 0} if there is a tB > 0 such that T (t)B ⊂ A for all t ≥ tB.

With this we are in the position to define global attractors.

Definition 2.4. A subset A of X is a global attractor for a semigroup {T (t) : t ≥ 0} if it

is compact, invariant under the action of {T (t) : t ≥ 0} and for every bounded subset B of

X we have that A attracts B under the action of {T (t) : t ≥ 0}.
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Next we seek to introduce the notion of gradient-like semigroups (see [4]). To that end we

first need the definition of isolated invariant set.

Definition 2.5. Let {T (t) : t ≥ 0} be a semigroup. We say that an invariant set Ξ ⊂ X

for the semigroup {T (t) : t ≥ 0} is an isolated invariant set if there is an ǫ > 0 such that Ξ

is the maximal invariant subset of Oǫ(Ξ).

A disjoint family of isolated invariant sets is a family {Ξ1, · · · , Ξn} of isolated invariant

sets with the property that, for some ǫ > 0,

Oǫ(Ξi) ∩ Oǫ(Ξj) = ∅, 1 ≤ i < j ≤ n.

Definition 2.6. A global solution for a semigroup {T (t) : t ≥ 0} is a continuous function

ξ : R → X with the property that T (t)ξ(s) = ξ(t + s) for all s ∈ R and for all t ∈ R+.

We say that ξ : R → X is a global solution through x ∈ X if it is a global solution with

ξ(0) = x.

Definition 2.7. Let {T (t) : t ≥ 0} be a semigroup which has a disjoint family of iso-

lated invariant sets Ξ = {Ξ1, · · · , Ξn}. A homoclinic structure associated to Ξ is a subset

{Ξk1
, · · · , Ξkp

} of Ξ (p ≤ n) together with a set of global solutions {ξ1, · · · , ξp} such that

Ξkj

t→−∞
←− ξj(t)

t→∞
−→ Ξkj+1

, 1 ≤ j ≤ p

where Ξkp+1
:= Ξk1

and, if p = 1, ξ1(R) ( Ξk1
.

We are now ready to define gradient-like semigroups.

Definition 2.8. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and a disjoint

family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn}. We say that {T (t) : t ≥ 0} is a gradient-

like semigroup relative to Ξ if:

• For any global solution ξ : R→ A there are 1 ≤ i, j ≤ n such that

Ξi
t→−∞
←− ξ(t)

t→∞
−→ Ξj.

• There is no homoclinic structure associated to Ξ.

It is important to notice that Definition 2.8 only uses dynamical properties of the semi-

group (that is, only the inner structure of the attractor) and does not assume a priori the

existence of any kind of Lyapunov function (see Definition 3.1 below). Differently from the

concept, with the same name, in [6] and [14] (see Section I.6 in [6] and Definition 5.2 in [14])

that assumes the existence of a Lyapunov function.

Now we will introduce the notion of a Morse decomposition for an attractor A of a

semigroup {T (t) : t ≥ 0} (see [6] and [14]). We start with the notion of attractor-repeller

pairs.
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Definition 2.9. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A . We say that a

non-empty subset A of A is a local attractor if there is an ǫ > 0 such that ω(Oǫ(A)) = A.

The repeller A∗ associated to a local attractor A is the set defined by

A∗ := {x ∈ A : ω(x) ∩ A = ∅}.

The pair (A, A∗) is called attractor-repeller pair for {T (t) : t ≥ 0}.

Note that if A is a local attractor, then A∗ is closed and invariant.

Definition 2.10. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A , of n +

1 local attractors, for j = 1, · · · , n, define Ξj := Aj ∩ A∗
j−1. The ordered n-upla Ξ :=

(Ξ1, Ξ2, · · · , Ξn) is called a Morse decomposition for A .

Observe that A is a local attractor if and only if it is compact invariant and attracts Oǫ(A)

for some ǫ > 0.

We observe that the above definition differs slightly from the usual definition since the

local attractor is required to attract a neighborhood of A in X and not only in A as in

[6, 14]. That is needed because, in this way, we can to show the continuity of the Lyapunov

function on whole space X (see Proposition 3.3 below) and not only on the attractor, as is

done in [6].

We will prove next that local attraction inside A is equivalent to local attraction in whole

space X. To that end, the next result plays a crucial role, actually it is the key result to

almost everything that we do in this work. In some sense, it helps us to deal with the absence

of reversibility of the semigroup in the proof of Proposition 3.3 and, furthermore, it improves

part a) of Proposition 1.3 in [14].

Lemma 2.11. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A . If A ⊂ A

is a compact invariant set for {T (t) : t ≥ 0} and there is an ǫ > 0 such that A attracts

Oǫ(A) ∩A then, given δ ∈ (0, ε) there is a δ′ ∈ (0, δ) such that γ+(Oδ′(A)) ⊂ Oδ(A), where

γ+(Oδ′(A)) =
⋃

x∈Oδ′(A)

⋃

t≥0

{T (t)x}.

Proof. If that conclusion is false, there is an 0 < δ < ǫ such γ+(Oδ′(A)) 6⊂ Oδ(A) for

each δ′ ∈ (0, δ). So there are x ∈ A, X ∋ xn
n→∞
−→ x and R ∋ tn

n→∞
−→ ∞ such that

d(T (tn)xn, A) = δ and T (t)xn ∈ Oδ(A), t ∈ [0, tn). Since the {T (t) : t ≥ 0} has a global

attractor it is not difficult to see that there is a global solution ξ : R → X such that

ξn : [−tn,∞) → X, given by ξn(t) := T (tn + t)xn, satisfies ξn(t)
n→∞
−→ ξ(t) for each t ∈ R.

Clearly ξ(t) ∈ Oδ(A) ∩A ⊂ Oǫ(A) ∩A for all t ≤ 0, and d(ξ(0), A) = δ, and consequently

A cannot attract Oǫ(A) ∩A . �

We remark that if A is a local attractor for a semigroup {T (t) : t ≥ 0} with a global

attractor A , then A is in the conditions of the above lemma.
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The next result generalizes to semigroups a known result for groups given in [6], and shows

that our definition of local attractor is equivalent to that found in [6, 14].

Lemma 2.12. If {T (t) : t ≥ 0} is a semigroup in X with a global attractor A and S(t) :=

T (t)|A , clearly {S(t) : t ≥ 0} is a semigroup in the metric space A . If A is a local attractor

for {S(t) : t ≥ 0} in the metric space A (that is, there is a ε > 0 with ω(Oǫ(A) ∩A ) = A)

and K is a compact subset of A such that K ∩A∗ = ∅, then A attracts K. Furthermore A

is a local attractor for {T (t) : t ≥ 0} in X.

Proof. Let K be a compact subset of A such that K ∩ A∗ = ∅. From Lemma 2.11, given

0 < δ < ǫ, there is a 0 < δ′ < δ such that γ+(Oδ′(A)) ⊂ Oδ(A). If A = ω(Oǫ(A) ∩A ) does

not attracts K, there are tn
n→∞
−→ ∞, x ∈ K and K ∋ xn

n→∞
−→ x such that d(T (t)xn, A) > δ′,

0 6 t 6 tn. Hence d(T (t)x, A) > δ′ for all t > 0 proving that ω(x) ∩ A = ∅. It follows that

x ∈ A∗ and that is a contradiction.

For the rest of the proof note that ω(Oδ′(A)) ⊂ Oǫ(A)∩A and, consequently, ω(Oδ′(A))∩

A∗ = ∅. From the invariance of ω(Oδ′(A)) and from the property that A attracts Oǫ(A)∩A ,

we must have that ω(Oδ′(A)) ⊂ A. Since ω(Oδ′(A)) attracts Oδ′(A), the result follows. �

Lemma 2.13. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A and (A, A∗)

an attractor-repeller for {T (t) : t ≥ 0}. Then:

(i) If ξ : R → X is a global bounded solution for {T (t) : t ≥ 0} through x /∈ A ∪ A∗, then

ξ(t)
t→∞
−→ A and ξ(t)

t→−∞
−→ A∗.

(ii) A global solution ξ : R→ X of {T (t) : t ≥ 0} with the property that ξ(t) ∈ Oδ(A
∗) for

all t ≤ 0 for some δ > 0 such that Oδ(A
∗) ∩ A = ∅ must satisfy d(ξ(t), A∗)

t→−∞
−→ 0.

(iii) If x ∈ X\A then, T (t)x
t→∞
−→ A ∪A∗.

Proof. Part (i) follows from the Theorem 1.4 in [14].

Part (ii) is divided into two cases (ξ(R)∩A∗ = ∅ and ξ(R)∩A∗ 6= ∅). If ξ(R)∩A∗ = ∅,

from Lemma 2.12 we have that ξ(R) ⊂ A which gives a contradiction. On the other hand, if

ξ(R) ∩A∗ 6= ∅, it follows from (i) that d(ξ(t), A∗)
t→−∞
−→ 0. This completes the proof of (ii).

Part (iii) is proved as follows. Let δ > 0 be such that ω(Oδ(A)) = A and we chose

δ′ ∈ (0, δ) with γ+(Oδ′(A)) ⊂ Oδ(A). Then, if there is a t0 > 0 such that T (t0)x ∈ Oδ′(A),

we have that lim
t→∞

d(T (t)x, A) = 0. On the other hand, if

d(T (t)x, A) ≥ δ′ for all t ≥ 0

then ω(x) ∩ A = ∅ and we must have that ω(x) ⊂ A∗. Since ω(x) atracts x we must have

that T (t)x
t→∞
−→ A∗, completing the proof of (iii). �

Part (i) of the previous lemma is done in Theorem 1.4 in [14], the conclusion (iii) (not

found in [14, 6]) is needed, in our case, to obtain the continuity of the Lyapunov function in

points that do not belong to A .
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Corollary 2.14. If {T (t) : t ≥ 0} is a semigroup in X with a global attractor A and

(A, A∗) is an attractor-repeller pair for {T (t) : t ≥ 0}, then {T (t) : t ≥ 0} is a gradient-like

semigroup with respect to to the disjoint family of isolated invariant sets {A, A∗}.

Next we describe the construction of a Morse decomposition for the attractor of a gradient-

like semigroup (relative to the disjoint family of isolated invariant sets {Ξ1, · · · , Ξn}). This

is done by explaining how we can obtain the increasing collection of local attractors starting

from the collection of isolated invariant sets {Ξ1, · · · , Ξn}. The following lemmas play a

fundamental role on that.

Lemma 2.15. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and let Ξ be a

compact isolated invariant set such that W u(Ξ) = Ξ. Then Ξ is a local attractor; that is,

there is a δ > 0 such that ω(Oδ(Ξ)) = Ξ.

Proof. Let δ0 > 0 be such that Ξ is the maximal invariant set in Oδ0(Ξ). Let us prove that,

given δ ∈ (0, δ0), there exists δ′ ∈ (0, δ) such that γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ). In fact, if the result

was not true, there would exist a δ ∈ (0, δ0), a sequence {xℓ} in X with d(xℓ, Ξ)
ℓ→∞
−→ 0 and

a sequence {tℓ} in (0,∞) with tℓ
ℓ→∞
−→ ∞ (this follows from the invariance of Ξ and from

the continuity of the semigroup) such that d(T (tℓ)xℓ, Ξ) = δ and d(T (t)xℓ, Ξ) ≤ δ for all

0 ≤ t ≤ tℓ. Since {T (t) : t ≥ 0} has a global attractor, there is a global solution ξ : R→ A

such that ξℓ : [−tℓ,∞)→ X, ξℓ(t) := T (t+tℓ)xℓ for t ≥ −tℓ, satisfies ξℓ(t)→ ξ(t) for all t ∈ R

(see Lemma 3.1 in [5] for more details). Clearly ξ(t) ∈ Oδ(Ξ) for all t ≤ 0 and d(ξ(0), Ξ) = δ.

Now, if z = ξ(0), αξ(z) := {x ∈ X : limn→∞ ξ(−tn) = x, for some sequence tn
n→∞
−→ ∞} is

invariant, attracts z and, since Ξ is maximal invariant in Oδ0(Ξ), is contained in Ξ . Hence

we must have that ξ(t)
t→−∞
−→ αξ(z) ⊂ Ξ and that is a contradiction with the fact that

W u(Ξ) = Ξ .

It follows from the above that, for any δ ∈ (0, δ0), there is a δ′ ∈ (0, δ) such that

ω(Oδ′(Ξ)) ⊂ γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ) ⊂ Oδ0(Ξ). Now, since Ξ is an isolated invariant set,

we must have that ω(Oδ′(Ξ)) ⊂ Ξ . The other inclusion is trivial and the result follows. �

Lemma 2.16. Let {T (t) : t ≥ 0} be a gradient-like semigroup with respect to the disjoint

family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn} and let A be its global attractor. Then,

there is a k ∈ {1, · · · , n} such that Ξk is a local attractor for {T (t) : t ≥ 0}.

Proof. Assume, by contradiction, that W u(Ξj) 6= Ξj for all 1 ≤ j ≤ n. Then, for each

1 ≤ j ≤ n, there is a global solution ξj : R → A such that ξj(t)
t→−∞
−→ Ξj. From the

fact that {T (t) : t ≥ 0} is gradient-like, ξj(t) converges (as t → ∞) to some element of

Ξ. This produces a homoclinic structure and gives a contradiction. Hence, there exists

k ∈ {1, · · · , n} such that W u(Ξk) = Ξk and, from Lemma 2.15, Ξk is a local attractor. �

Let {T (t) : t ≥ 0} be a gradient-like semigroup with respect to the disjoint family of

isolated invariant sets Ξ = {Ξ1, · · · , Ξn}. If (after possible reordering) Ξ1 is a local attractor
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for {T (t) : t ≥ 0} let Ξ∗
1 = {x ∈ A : ω(x) ∩ Ξ1 = ∅} be its repeller, so each Ξi, with i ≥ 2,

is contained in Ξ∗
1 and more generally the orbit ξ(R) of any global solution ξ : R→ A that

converges to Ξi, i ≥ 2 , when t → ∞, is contained in Ξ∗
1 , and considering the restriction

{T1(t) : t ≥ 0} of {T (t) : t ≥ 0} to Ξ∗
1 we have that {T1(t) : t ≥ 0} is a gradient-like

semigroup in the space Ξ∗
1 with respect to the disjoint family of isolated invariant sets

{Ξ2, · · · , Ξn} and we may assume, by the last lemma, that Ξ2 is a local attractor for the

semigroup {T1(t) : t ≥ 0} in Ξ∗
1 . If Ξ∗

2,1 is the repeller associated to the local attractor Ξ2

for {T1(t) : t ≥ 0} in Ξ∗
1 we may proceed and consider the restriction {T2(t) : t ≥ 0} of the

semigroup {T1(t) : t ≥ 0} to Ξ∗
2,1 and then {T2(t) : t ≥ 0} is a gradient-like semigroup in

Ξ∗
2,1 with respect to the disjoint family of isolated invariant sets {Ξ3, · · · , Ξn}.

Proceeding with this until all isolated invariant sets are exhausted we obtain a reordering

of {Ξ1, · · · , Ξn} in such a way that Ξ1 is a local attractor for {T (t) : t ≥ 0}. Setting

A =: Ξ∗
0,−1 and Ξ∗

1,0 := Ξ∗
1 , for j = 2, · · · , n, we have that Ξj is a local attractor for the

restriction of {T (t) : t ≥ 0} to Ξ∗
j−1,,j−2 whose repeller will be indicated by Ξ∗

j,j−1.

With the construction above, if a global solution ξ : R→ A satisfies

Ξi
t→−∞
←− ξ(t)

t→∞
−→ Ξj (2.1)

then i ≥ j.

At this point, we can use Theorem 1.8 from [14] to conclude that the n-upla (Ξ1, · · · , Ξn),

ordered in the way that we have explained above, is a Morse decomposition for the attractor

A of the semigroup {T (t) : t ≥ 0}. We will give another proof of this fact here (more closely

related to the gradient-like semigroups and shorter) just for completeness.

Definition 2.17. Let {T (t) : t ≥ 0} be a semigroup. The unstable set of an invariant set

Ξ is defined by

W u(Ξ) := {z ∈ X : there is a global solution ξ : R→ X

such that ξ(0) = z and lim
t→−∞

d(ξ(t), Ξ) = 0}.

Define A0 := ∅, A1 := Ξ1 and for j = 2, 3, · · · , n

Aj := Aj−1 ∪W u(Ξj). (2.2)

It is clear that An = A .

Theorem 2.18. Let {T (t) : t ≥ 0} be a gradient-like semigroup with respect to the disjoint

family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn} reordered in such a way that Ξj is a local

attractor for the restriction of {T (t) : t ≥ 0} to Ξ∗
j−1,j−2, as we have explained above. Then

Aj defined in (2.2) is a local attractor for {T (t) : t ≥ 0} in X, and

Ξj = Aj ∩ A∗
j−1.

As a consequence, Ξ defines a Morse decomposition on A.
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Proof. Choose d > 0 such that

Od(Aj) ∩ (∪n
i=j+1Ξi) = ∅. (2.3)

Let us prove that there are δ < d and δ′ < δ such that γ+(Oδ′(Aj)) ⊂ Oδ(Aj). If that was not

the case, there would exist a sequence {xk} in X with d(xk, Aj)
k→∞
−→ 0, a sequence {tk} in R

with tk
k→∞
−→ ∞ and, for each xk, a solution ξk : [−tk,∞)→ X, ξk(t) = T (t + tk)xk, t ≥ −tk,

d(ξk(t), Aj) ≤ δ for all −tk ≤ t ≤ 0 and d(ξk(0), Aj) = δ. Hence, there is a global solution

ξ : R → A such that d(ξ(t), Aj) ≤ δ for all t ≤ 0 and d(ξ(0), Aj) = δ. From (2.3) and the

properties of gradient-like semigroups (see Definition 2.8) we must have that ξ(t)
t→−∞
−→ Ξℓ,

for some 1 ≤ ℓ ≤ j and, consequently, ξ(0) ∈ W u(Ξℓ) ⊂ Aj . This is a contradiction with

d(ξ(0), Aj) = δ.

Recall that ω(Oδ′(Aj)) is compact and invariant. Let us prove that ω(Oδ′(Aj)) = Aj .

In fact, if ξ : R → ω(Oδ′(Aj)) ⊂ γ+(Oδ′(Aj)) ⊂ Oδ(Aj) is a global solution, it converges

backwards to a Ξℓ with 1 ≤ ℓ ≤ j (from (2.3)) and, consequently, ξ(R) ⊂ Aj . This proves

that ω(Oδ′(Aj)) ⊂ Aj. The other inclusion is obvious and this completes the proof that Aj

is a local attractor.

To prove that Ξj = Aj ∩ A∗
j−1 note that

Aj =

j
⋃

i=1

W u(Ξi)

and A∗
j−1 = {z ∈ A : ω(z)∩Aj−1 = ∅}. Hence, given z ∈ Aj ∩A∗

j−1 we have that the global

solution ξ : R→ A through z must satisfy that

∪j
i=1Ξi

t→−∞
←− ξ(t)

t→∞
−→ ∪n

i=jΞi.

As a consequence of that and of the fact that {T (t) : t ≥ 0} is a gradient-like semigroup

with isolated invariant sets {Ξ1, · · · , Ξn} for which any global solution ξ : R → A satisfies

Ξℓ
t→−∞
←− ξ(t)

t→−∞
−→ Ξk with ℓ ≥ k, we obtain that z ∈ Ξj . This shows that Aj ∩A∗

j−1 ⊂ Ξj .

The other inclusion is immediate from the definition of Aj and A∗
j−1. �

The following result plays an important role in the proof of the property that the Lyapunov

function is constant along a solution if and only if this solution lies in one of the isolated

invariant sets.

Proposition 2.19. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and Ξ =

(Ξ1, · · · , Ξn) a Morse decomposition for A with family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A of

local attractors such that Ξj = Aj ∩ A∗
j−1 for j = 1, · · · , n. Then,

n
⋂

j=0

(Aj ∪A∗
j ) =

n
⋃

j=1

Ξj.



12 E. R. ARAGÃO-COSTA, T. CARABALLO, A. N. CARVALHO, AND J. A. LANGA

Proof. Indeed, if z ∈
n
⋃

j=1

Ξj, let k ∈ {1, 2, · · · , n} be such that z ∈ Ξk = Ak ∩ A∗
k−1 . Hence

z ∈ Ak ⊂ Ak+1 ⊂ · · · ⊂ An and z ∈ A∗
k−1 ⊂ A∗

k−2 ⊂ · · · ⊂ A∗
0. Thus

z ∈ (

n
⋂

j=k

Aj) ∩ (

k−1
⋂

j=1

A∗
j ) ⊂

[

n
⋂

j=k

(Aj ∪ A∗
j)

]

∩

[

k−1
⋂

j=0

(Aj ∪A∗
j )

]

=

n
⋂

j=0

(Aj ∪ A∗
j),

proving the inclusion
n
⋃

j=1

Ξj ⊂
n
⋂

j=0

(Aj ∪ A∗
j).

Now, let z ∈
n
⋂

j=0

(Aj ∪ A∗
j ) and I := {i1, i2, · · · , ik} and J := {j1, j2, · · · , jl} such that

I ∪ J = {0, 1, · · · , n} with I ∩ J = ∅ and z ∈ Ai for all i ∈ I and z ∈ A∗
j for all j ∈ J .

Clearly, if i := min I, necessarily I = {i, i + 1, i + 2, · · · , n} and J = {0, 1, · · · , i − 1},

consequently z ∈ Ai and z ∈ A∗
i−1. So, z ∈ Ai ∩ A∗

i−1 = Ξi, from which we conclude that
n
⋂

j=0

(Aj ∪A∗
j ) ⊂

n
⋃

j=1

Ξj and the proof is completed. �

3. A Lyapunov function for a gradient-like semigroup

Inspired in the work of [6] we will prove in this section the equivalence between gradient

semigroups and gradient-like semigroups relative to a disjoint family of isolated invariant

sets. The gradient-like semigroups relative to a disjoint family of isolated invariant sets

has been defined in Definition 2.8 and a gradient semigroup relative to a disjoint family of

isolated invariant sets is defined as follows.

Before we proceed let us fix that, if I, J are subsets of R, a function w : I → J is said

decreasing (increasing) if w(s) ≤ w(t) (w(s) ≥ w(t)) whenever s ≥ t. If in addition, w(s) <

w(t) (w(s) > w(t)) whenever s > t we will say that w is strictly decreasing (increasing).

Definition 3.1. We say that a semigroup {T (t) : t ≥ 0} with a global attractor A and a

disjoint family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn} is a gradient semigroup with

respect to Ξ if there is a continuous function V : X → R such that:

(i) The real function [0,∞) ∋ t 7→ V (T (t)x) ∈ R is decreasing for each x ∈ X,

(ii) V is constant in Ξi for each i = 1, · · · , n and

(iii) V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
n
⋃

i=1

Ξi.

A function V with the properties above is called a Lyapunov function for the gradient

semigroup {T (t) : t ≥ 0} with respect to Ξ.

We use some of the ideas found in [6]. Before we start the proof of our main result, let

us point out some facts. Note that we work exclusively with semigroups, differently from

[6] where the group structure is assumed. Also, the Lyapunov function is constructed and

proved to be continuous on the whole space X (which is not, necessarily compact) and

not only in the compact invariant set A , as is done in [6] (for the special case of groups).
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In [14], all the properties of the Morse decomposition are done for the case of semigroups

in compact metric spaces whereas the construction of the Lyapunov function is not done.

The construction of the Lyapunov function for a general metric space is what we do in this

section.

The following results are the key for the construction of the Lyapunov function.

Lemma 3.2. If {T (t) : t ≥ 0} is a semigroup with global attractor A , the map h : X → R

defined by

h(z) := sup
t≥0

d(T (t)z, A ), z ∈ X,

is well defined, continuous, decreasing along solutions of {T (t) : t ≥ 0} and h−1(0) = A .

Proof. Indeed, by Lemma 2.11, given ε > 0 let 0 < ε′ < ε such that γ+(Oε′(A )) ⊂ Oε(A ),

showing the continuity of h onA. Let z0 ∈ X\A be given, so that h(z0) > 0. Consider Oµ(A )

for some 0 < µ < h(z0). From the continuity of the function X ∋ x 7→ d(x, A ) ∈ [0,∞)

let U be a bounded neighborhood of z0 such that d(z, A ) > µ if z ∈ U . Finally, let τ > 0

such that γ+(T (τ)U) ⊂ Oµ(A ) so that it follows the continuity of h en z0, as for z ∈ U

it holds that h(z) = sup
0≤s≤τ

d(T (s)z, A ) and, from the continuity properties of the semigroup

{T (t) : t ≥ 0}, it follows that h |U : U → R is continuous.

To see that h is decreasing along solutions note that, if z ∈ X and t1 > 0, then

h(T (t1)z) = sup
t≥0

d(T (t)T (t1)z, A ) = sup
t≥0

d(T (t + t1)z, A ) =

sup
t≥t1

d(T (t)z, A ) ≤ sup
t≥0

d(T (t)z, A ) = h(z).

�

Proposition 3.3. Let {T (t) : t ≥ 0} be a nonlinear semigroup in a metric space (X, d) with

global attractor A , and let (A, A∗) an attractor-repeller pair in A . Then, there exists a

function f : X → R satisfying the following:

(i) f : X → R is continuous in X.

(ii) f : X → R is decreasing along solutions.

(iii) f−1(0) = A and f−1(1) ∩A = A∗.

(iv) Given z ∈ X, if f(T (t)z) = f(z) for all t ≥ 0, then z ∈ A ∪ A∗.

Proof. Firstly, observe that A and A∗ are disjoint closed subsets of A and, since A is a

compact subset of X, A and A∗ are disjoint closed subsets of X. With the convention that

d(z, ∅) = 1 for each z ∈ X, define the function (the canonical Urysohn function if A and A∗

are non-empty) l : X → [0, 1] associated to (A, A∗) by

l(z) :=
d(z, A)

d(z, A) + d(z, A∗)
, z ∈ X.
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Clearly l is well defined, uniformly continuous in X (since, for d0 := d(A, A∗) > 0, it holds

that |l(z)− l(w)| ≤ 2
d0

d(z, w), for any z y w in X). Moreover, l−1(0) = A and l−1(1) = A∗.

If we define k : X → R by

k(z) := sup
t≥0

l(T (t)z),

we now show that k : X → R is continuous and decreasing along solutions of {T (t) : t ≥ 0},

k(X) ⊂ [0, 1] (with equality when X is connected and A and A∗ are non-empty), k−1(0) = A

and k−1(1) ∩A = A∗.

The fact that k(X) ⊂ [0, 1] follows because l(T (t)z) ∈ [0, 1] for all z ∈ X and t ≥ 0.

To prove that [0,∞) ∋ t 7→ k(T (t)z) ∈ [0, 1] is decreasing for each z ∈ X note that, if

0 ≤ t1 ≤ t2 we have

k(T (t1)z) = sup
t≥0

l(T (t)T (t1)z) = sup
t≥0

l(T (t + t1)z) = sup
t≥t1

l(T (t)z)

≥ sup
t≥t2

l(T (t)z) = sup
t≥0

l(T (t + t2)z) = k(T (t2)z).

It is clear from the definition of k and from the invariance of A and A∗ that k(A) = {0}

and k(A∗) = {1}. Now, if z ∈ X is such that k(z) = 0, then l(T (t)z) = 0 for all t ≥ 0.

In particular, 0 = l(T (0)z) = l(z), and so, z ∈ A, that is, k−1(0) ⊂ A which shows that

k−1(0) = A. On the other hand, if z ∈ A is such that k(z) = 1 and z /∈ A∗, then ω(z) ⊂ A.

From the continuity of l and the fact that ω(z) attracts z, we obtain that lim
t→∞

l(T (t)z) = 0.

So, there exists a t0 > 0 such that 1 = k(z) = sup
0≤t≤t0

l(T (t)z). This implies the existence of a

t′ ∈ [0, t0] such that l(T (t′)z) = 1; that is, T (t′)z ∈ A∗. Consequently ω(z) = ω(T (t′)z) ⊂ A∗,

which contradicts the fact that ω(z) ⊂ A and so, if k(z) = 1 for some z ∈ A we must have

that z ∈ A∗. From this we conclude that k−1(1) ∩A ⊂ A∗ and so k−1(1) ∩A = A∗.

We now prove that, if z ∈ A and k(T (t)z) = k(z) for all t ≥ 0 then z ∈ A ∪ A∗. If

z /∈ A∪A∗, ω(z) ⊂ A (note that z ∈ A ) and from the definition of k and the fact that ω(z)

attracts z we have that k(z) = lim
t→∞

k(T (t)z) = 0. Since k−1(0) = A, z must belong to A

which is a contradiction.

Next we prove the continuity of k : X → R. We split the proof into three cases:

Case 1) Continuity of k : X → R in A∗.

Since l(z) ≤ k(z) ≤ 1, for all z ∈ X, given z0 ∈ A∗ and z ∈ X we have that

|k(z)− k(z0)| = 1− k(z) ≤ 1− l(z).

This and the continuity of l : X → R in z0 imply the continuity of k : X → R in z0.

Case 2) Continuity of k : X → R in A.

From the continuity of l : X → R in A, given ε > 0, there is a δ > 0 such that l(Oδ(A)) ⊂

[0, ε). Since A is a local attractor (A = ω(Oǫ(A)) for some ǫ > 0) it is invariant and Lemma

2.11 implies that there exists δ′ ∈ (0, δ) such that γ+(Oδ′(A)) ⊂ Oδ(A), from which we

conclude that k(Oδ′(A)) ⊂ [0, ε].
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Case 3) Continuity of k : X → R in X\(A ∪A∗).

Given z0 ∈ X\(A ∪ A∗), from Lemma 2.13 we have that, either lim
t→∞

d(T (t)z0, A) = 0, or

lim
t→∞

d(T (t)z0, A
∗) = 0.

If lim
t→∞

d(T (t)z0, A
∗) = 0 let us prove the continuity of k in z0. First note that k(z0) = 1.

Now, given ε > 0, from the continuity of l : X → R in A∗ there is an open neighborhood V

of A∗ in X such that l(V ) ⊂ (1−ε, 1]. If t0 > 0 is such that T (t0)z0 ∈ V , from the continuity

of T (t0) : X → X, let U be a neighborhood of z0 such that T (t0)U ⊂ V , from which it

follows that k(z) > 1− ε for all z ∈ U (for T (t0)z ∈ V and then 1− ε < l(T (t0)z) ≤ k(z)).

This proves the continuity of k in points z0 of X\(A ∪ A∗) for which lim
t→∞

d(T (t)z0, A
∗) = 0.

If z0 ∈ X\(A ∪ A∗) and lim
t→∞

d(T (t)z0, A) = 0, it holds that l(z0) > 0. Choose δ > 0

such that l(Oδ(A)) ⊂ [0, l(z0)
2

) and, from Lemma 2.11, there is a δ′ ∈ (0, δ) such that

γ+(Oδ′(A)) ⊂ Oδ(A). From this, there is a t0 > 0 with the property that T (t)z0 ∈ Oδ(A)

for all t ≥ t0. From the continuity of T (t0) : X → X, there is a neighborhood U1 of z0 in

X such that T (t0)U1 ⊂ Oδ′(A). Then, for all z ∈ U1 we have that T (t0)z ∈ Oδ′(A) so that

T (t)z ∈ Oδ(A) for all t ≥ t0. Finally, from the continuity of l, let U2 be a neighborhood

of z0 in X such that l(z) > l(z0)
2

for all z ∈ U2 and write U := U1 ∩ U2, so that for all

z ∈ U it holds that k(z) = sup
0≤t≤t0

l(T (t)z) and it is really easy to see that the function

U ∋ z 7→ sup
0≤t≤t0

l(T (t)z) ∈ R is continuous, so we obtain the continuity of k in points z0 of

X\(A ∪ A∗) for which lim
t→∞

d(T (t)z0, A) = 0.

Let h : X → R be the function defined in Lemma 3.2, that is, h(z) = sup
t≥0

d(T (t)z, A ),

z ∈ X, and define f : X → R by

f(z) := k(z) + h(z), z ∈ X.

The continuity of f : X → R follows from the continuity of k (proved above) and h (proved

in Lemma 3.2). Since k and h are decreasing along solutions of {T (t) : t ≥ 0} (see above

and Lemma 3.2), f also possesses this property.

Clearly f(A) = {0}. If f(z) = 0 for some z ∈ X, then h(z) = k(z) = 0 and we must have

that z ∈ A. This shows that f−1(0) = A.

Also, since f |A = k |A we have that f−1(1) ∩A = k−1(1) ∩A = A∗.

Finally, (iv) is proved in the following manner. Let z ∈ X such that f(T (t)z) = f(z) for

all t ≥ 0. If z ∈ A , we have that k(T (t)z) = k(z) and, consequently, z ∈ A∪A∗ completing

the proof. If z ∈ X\A , let us show that lim
t→∞

d(T (t)z, A∗) = 0. If that is not the case then,

by (iii) in the Lemma 2.13, lim
t→∞

d(T (t)z, A) = 0 and

f(z) = lim
t→∞

f(T (t)z) = lim
t→∞

k(T (t)z) + lim
t→∞

h(T (t)z) = 0 + 0 = 0. (3.1)
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This implies that z is in A ⊂ A and that contradicts the fact that z ∈ X\A . This proves

that lim
t→∞

d(T (t)z, A∗) = 0.

Using the same reasoning as in (3.1) we conclude that

f(z) = lim
t→∞

f(T (t)z) = lim
t→∞

k(T (t)z) + lim
t→∞

h(T (t)z) = 1 + 0 = 1.

This is a contradiction, since k(z) ≥ k(T (t)z) for all t ≥ 0, and 1 = lim
t→∞

k(T (t)z) ≤ k(z) ≤

1, that is, k(z) = 1, but f(z) = k(z) + h(z) and we must have that h(z) = 0 which is a

contradiction with the fact that z /∈ A . Thus, f(T (t)z) = f(z) for all t ≥ 0 if and only if

z ∈ A ∪ A∗ and this completes the proof. �

We observe that the proof of continuity of the Lyapunov function for an attractor-repeller

pair found in [6] strongly uses that {T (t) : t ∈ R} is a group and that U is a neighborhood

for A then, for all t ∈ R, T (t)U is also a neighborhood for A. Since we do not assume

that the maps T (t)’s are homeomorphisms, we use Lemma 2.11 to overcome this difficulty,

essentially in the proof of the Case 2 above.

Also, the role of the function h : X → R, given in Lemma 3.2, is to ensure that, given

z ∈ X the only way to have f(T (t)z) = f(z) for all t ≥ 0 is that z ∈ A ∪ A∗. We must

observe that this can not be true, in the general case, for the function k alone.

Finally, the proof of the Case 3) above does not appear in [6], since there the author does

not consider points that do not belong to A . That made necessary to prove (iii) in the

Lemma 2.13.

Theorem 3.4. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and a disjoint

family of isolated invariant sets Ξ = {Ξ1, · · · , Ξn}. Then, {T (t) : t ≥ 0} is a gradient

semigroup with respect to Ξ, in the sense of the Definition 3.1, if and only if it is a gradient-

like semigroup with respect to Ξ, in the sense of Definition 2.8. In addition, the corresponding

Lyapunov function V : X → R may be chosen in such a way that V (Ξk) = k−1, k = 1, · · · , n.

Proof. It is clear that a gradient semigroup with respect to Ξ is a gradient-like semigroup

with respect to Ξ (See, for example, [7]).

Suppose that {T (t) : t ≥ 0} is a gradient-like semigroup relatively to Ξ reordered in such

a way that it is a Morse decomposition for A . Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A be the

sequence of local attractors defined in (2.2) and ∅ = A∗
n ⊂ A∗

n−1 ⊂ · · · ⊂ A∗
0 = A their

corresponding repellers such that for each j = 1, 2, · · · , n, we have Ξj = Aj ∩A∗
j−1.

Let fj : X → R be the function constructed in Proposition 3.3 for the attractor-repeller

pair (Aj , A
∗
j), j = 1, · · · , n and f0 = h with h given by Lemma 3.2.

Define the continuous function V : X → R by

V (z) :=

n
∑

j=0

fj(z), z ∈ X.
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Then V : X → R is a Lyapunov function for the gradient semigroup {T (t) : t ≥ 0} with

respect to Ξ.

Indeed, since each fj : X → R, 0 ≤ j ≤ n, are decreasing along solutions of {T (t) : t ≥ 0},

V is also decreasing along solutions of {T (t) : t ≥ 0}.

Now, if z ∈ X is such that V (T (t)z) = V (z) for all t ≥ 0, then, using that each fj, 0 ≤

j ≤ n, are decreasing along solutions of {T (t) : t ≥ 0}, we conclude that fj(T (t)z) = fj(z)

for all t ≥ 0 , and for each j = 0, · · · , n. It follows that f0(z) = 0 and consequently z ∈ A .

From part (iv) of Proposition 3.3, we have that z ∈ (Aj ∪A∗
j ), for each j = 0, 1, · · · , n; that

is, z ∈
n
⋂

j=0

(Aj ∪A∗
j ). From Lemma 2.19 we have that

n
⋂

j=0

(Aj ∪A∗
j ) =

n
⋃

j=1

Ξj,

and so z ∈
n
⋃

j=1

Ξj.

If k ∈ {1, · · · , n} and z ∈ Ξk = Ak ∩A∗
k−1, it follows that z ∈ Ak ⊂ Ak+1 ⊂ · · · ⊂ An = A

and z ∈ A∗
k−1 ⊂ A∗

k−2 ⊂ · · · ⊂ A∗
0 = A . Hence fj(z) = 0 if k 6 j 6 n, f0(z) = 0 and

fj(z) = 1 if 1 6 j 6 k − 1. Hence,

V (z) =
n

∑

j=0

fj(z) =
k−1
∑

j=0

fj(z) +
n

∑

j=k

fj(z) =
k−1
∑

j=0

1 +
n

∑

j=k

0 = k − 1.

�

Now, we show that it is possible to improve the last result building a Lyapunov function

which is strictly decreasing outside the isolated invariant sets and that is differentiable along

solutions. Next we present such a construction.

Proposition 3.5. Let {T (t) : t ≥ 0} be a semigroup which possesses a global attractor A .

Assume that {T (t) : t ≥ 0} is a gradient-like semigroup with respect to the disjoint family of

isolated invariant sets Ξ = {Ξ1, · · · , Ξn}. Then, there is a function W : X → R which is a

Lyapunov function for the gradient-like semigroup {T (t) : t ≥ 0} with respect to Ξ and such

that

(i) [0,∞) ∋ t 7→W (T (t)z) is differentiable for all z ∈ X and

(ii) [0,∞) ∋ t 7→W (T (t)z) is strictly decreasing whenever z /∈
n
⋃

j=1

Ξj.

Proof. Let V : X → R be the function defined in Theorem 3.4 and W : X → R be the

function defined by

W (z) :=

∫ ∞

0

e−tV (T (t)z)dt, z ∈ X.
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It is easy to see that the function is well defined. Next we prove that this function has the

desired properties.

We start with the continuity of W . First note that W (z) ≤ V (z) for all z ∈ X. Now, from

the fact that the semigroup {T (t) : t ≥ 0} is eventually bounded and the definition of V it is

easy to see that for each z ∈ X there is an ǫz > 0 and tz > 0 such that V (γ+(T (tz)Oǫz
(z)))

is bounded. Hence, given ε > 0 and z ∈ X we choose t̄ ≥ tz and a neighborhood B of z such

that,
∫ ∞

t̄

e−tdt <
ε

4(MB + 1)
, (3.2)

where MB := sup{V (T (t)w) : w ∈ B, t ≥ tz} ≥ 0.

Now, from the continuity of V and of the mapping [0,∞)×X ∋ (t, x) 7→ T (t)x ∈ X, it is

easy to see that there exists δ > 0 such that, if z ∈ X satisfies d(z, z′) < δ then,

∫ t̄

0

e−s |V (T (t)z)− V (T (t)z)| dt ≤
ε

2
.

This and (3.2) show that, for z ∈ X with d(z, z) < δ ,

|W (z)−W (z)| ≤

∫ t̄

0

e−s|V (T (t)z)− V (T (t)z)| dt + 2MB

∫ ∞

t̄

e−tdt ≤
ε

2
+

ε

2
= ε.

Clearly, W : X → R is decreasing along solutions of {T (t) : t ≥ 0}. Now, if z ∈
n
⋃

j=1

Ξj, we

have that T (t)z ∈
n
⋃

j=1

Ξj for all t ≥ 0, and V (T (t)z) is constant for all t ≥ 0, yielding that

W (T (t)z) is constant. Conversely, if z ∈ X is such that W (T (t)z) =
∫ ∞

0
e−sV (T (t + s)z)dt

is constant, then V (T (t)z) is constant for all t ≥ 0 and, consequently, z ∈
n
⋃

j=1

Ξj from the

properties of V .

Next, given z ∈ X\
n
⋃

j=1

Ξj let us prove that [0,∞) ∋ t 7→ W (T (t)z) is strictly decreasing.

Indeed, given t > 0, we have that

W (T (t)z)−W (z) =

∫ ∞

0

e−s[V (T (s + t)z)− V (T (s)z)]ds.

From this we see that, if for some t > 0 we have that W (T (t)z)−W (z) = 0, then V (T (s +

t)z)− V (T (s)z) = 0 for all s ≥ 0. In particular, V (T (t)z) = V (z) and, as a consequence of

that, V (T (t)z) = V (T (s)z) = V (z) for all s ∈ [0, t]. Repeating this reasoning we conclude

that V (T (s)z) = V (z) for all s ≥ 0, which is in contradiction with the choice of z.

Now, given z ∈ X, t ≥ 0 and h ∈ R we have that

W (T (t + h)z)−W (T (t)z)

h
=

et

h

[

(eh − 1)

∫ ∞

t+h

e−sV (T (s)z)ds−

∫ t+h

t

e−sV (T (s)z)ds

]

,
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which converges to

et

∫ ∞

t

e−sV (T (s)z)ds− V (T (t)z) ≤ 0,

proving the differentiability of [0,∞) ∋ t 7→W (T (t)z) ∈ R. �

The idea of the proof for the last result comes from [6]. Note however that our Lyapunov

function V : X → R is not necessarily bounded as in [6] (the fact that the semigroup is

eventually bounded helps to overcome the difficulty that arises). Besides our Lyapunov

function is defined on whole (not necessarily compact) space X .

4. Stability under perturbations of gradient semigroups

The equivalence between gradient semigroups and gradient-like semigroups, proved in the

previous section, together with the results in [4] prove that gradient semigroups are stable

under perturbations. In this section we briefly describe this fact. To that end, we first need

to introduce a parameter dependent family of semigroups, as well as the notions of continuity

and asymptotic compactness for a parameter dependent family. We start with the notion of

continuity for a family of semigroups.

Definition 4.1. We say that a family of semigroups {Tη(t) : t ≥ 0}η∈[0,1], is continuous at

η = 0 if Tη(t)x
η→0
−→ T0(t)x uniformly for (t, x) in compact subsets of R+ ×X as η → 0.

The notion of collectively asymptotic compactness which is given next plays a fundamental

role in the proof of the main result in [4].

Definition 4.2. We say that a family of semigroups {Tη(t) : t ≥ 0}η∈[0,1] is collectively

asymptotically compact at η = 0 if, given a sequence {ηk}k∈N with ηk
k→∞
−→ 0, a bounded

sequence {xk}k∈N in X and a sequence {tk}k∈N in R+ with tk
k→∞
−→ ∞, then {Tηk

(tk)xk} is

relatively compact.

We are now ready to state the following result from [4].

Theorem 4.3 (Carvalho-Langa). Let {Tη(t) : t ≥ 0}η∈[0,1], be a collectively compact family

of semigroups which is continuous at η = 0. Assume that

a) {Tη(t) : t ≥ 0} possesses a global attractor Aη for each η ∈ [0, 1] and ∪η∈[0,1]Aη is

bounded.

b) There exists n ∈ N such that Aη has n isolated invariant sets Ξη = {Ξ1,η, · · · , Ξn,η}

for all η ∈ [0, 1], and sup16i6n[distH(Ξ∗
i,η, Ξ

∗
i,0) + distH(Ξ∗

i,0, Ξ
∗
i,η)]

η→0
−→ 0.

c) {T0(t) : t ≥ 0} is a gradient-like semigroup with respect to Ξ0.

Then, there exists η0 > 0 such that, for all η 6 η0, {Tη(t) : t ≥ 0} is a gradient-like

semigroup and consequently

Aη = ∪n
i=1W

u(Ξ∗
i,η), ∀η ∈ [0, η0].



20 E. R. ARAGÃO-COSTA, T. CARABALLO, A. N. CARVALHO, AND J. A. LANGA

As an immediate consequence of this result and the ones in Section 3 we have the following

result.

Corollary 4.4. Under the assumption of Theorem 4.3, there exists η0 > 0 such that, for all

η 6 η0, {Tη(t) : t ≥ 0} is a gradient semigroup with respect to Ξη.

Corollary 4.5. Under the assumption of Theorem 4.3, suppose there exists n ∈ N such that

Aη has n stationary solutions Ξη = {ξ1,η, · · · , ξn,η} for all η ∈ [0, 1] and sup16i6n dist(ξ∗i,η, ξ
∗
i,0)

η→0
−→ 0. Then, there exists η0 > 0 such that, for all η 6 η0, {Tη(t) : t ≥ 0} is a gradient

semigroup in the sense of [7].

5. Energy level decomposition of a gradient-like system

Let {T (t) : t ≥ 0} be a semigroup in X with global attractor A . Next we will give a dy-

namical description of a gradient-like system by reordering and regrouping the corresponding

disjoint isolated invariant subsets to obtain a totally ordered family of isolated invariant sets

that we will refer to as energy levels. This new family of isolated invariant sets is a Morse

decomposition of A with fewer invariant sets but in such a way that it still gives us a Lya-

punov function that is constant only in the original isolated invariant sets. In a certain sense

this decomposition is the coarsest decomposition which still gives us a Lyapunov function

which is constant only in the original isolated invariant sets.

Assume that {T (t) : t ≥ 0} is a gradient-like semigroup with respect to the disjoint family

of isolated invariant sets Ξ = {Ξ1, Ξ2, · · · , Ξn}.

(a) Given Ξl1 and Ξl2 ∈ Ξ, we say that Ξl1 precedes Ξl2 (we write Ξl1 ≺ Ξl2), if there

exists a global solution ξ : R→ X of {T (t) : t ≥ 0} such that ξ(R) ( Ξl1 ∪Ξl2 and

lim
t→−∞

d(ξ(t), Ξl2) = 0 and lim
t→∞

d(ξ(t), Ξl1) = 0.

(b) Let us consider

M1 : = {Ξℓ ∈ Ξ : there is no element Ξ ∈ Ξ that precedes Ξℓ}

and, for any integer k ≥ 2

Mk := {Ξℓ ∈ Ξ : if Ξ ∈ Ξ and Ξ ≺ Ξℓ then Ξ ∈Mk−1}.

Note that, by definition, Mk ⊂Mk+1.

(c) We now define the sets

N1 :=
⋃

Ξ∈M1

Ξ, and Nk :=
⋃

Ξ∈Mk\Mk−1

Ξ , for all k ≥ 2.

Since Ξ is finite, there exists a positive integer q such that Mk = Mq for each

k > q, so that, Nk = ∅ for all k > q. Thus, we consider N1, N2, · · · , Np, with

p := min{q ∈ N :Mk =Mq for each k > q}.
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We have the following first result related to this family of sets:

Lemma 5.1. Let {T (t) : t ≥ 0} be a semigroup with global attractor A . Assume that

{T (t) : t ≥ 0} is a gradient-like semigroup with respect to the disjoint family of isolated

invariant sets Ξ = {Ξ1, Ξ2, · · · , Ξn}. Then each element of Ξ belongs to Nk, for some

k ≤ p.

Proof. Suppose that N1 is empty and fix Ξ ∈ Ξ. Then, since Ξ /∈ N1 = ∅, by the definition

of N1, there exists Ξ1 ∈ Ξ with Ξ1 ≺ Ξ and Ξ1 6= Ξ . Analogously, Ξ1 /∈ N1, from which

we find Ξ2 ∈ Ξ with Ξ2 ≺ Ξ2 and Ξ2 6= Ξ1. Also Ξ2 6= Ξ since, otherwise, there would be

a homoclinic structure Ξ ≺ Ξ1 ≺ Ξ2 = Ξ . Following in this way, as Ξ is finite we arrive at

a contradiction in a finite number of steps.

If Ξ = N1, we are done. If not, we must have that N2 is non-empty. Otherwise, given

Ξ ∈ Ξ\N1 with Ξ /∈ N2. Then, there exists Ξ1 ∈ Ξ\N1 with Ξ ≺ Ξ1. As before, the

fact that {T (t) : t ≥ 0} is a gradient-like semigroup with respect to Ξ implies that Ξ1 6= Ξ .

Since Ξ1 /∈ N2, there is a Ξ2 ∈ Ξ\N1 with Ξ1 ≺ Ξ2 and, again, Ξ2 6= Ξ1 and Ξ2 6= Ξ . As

before, we arrive at a contradiction in a finite number of steps, so that N2 6= ∅.

If Ξ = N1 ∪N2 =M2, we finish. If not, again N3 6= ∅. As this argument has to finish in

a finite number of steps completing the proof. �

The following result will show that N = (N1, N2, · · · , Np) is a Morse decomposition for

A.

Theorem 5.2. Let {T (t) : t ≥ 0} be a nonlinear semigroup with global attractor A . If

{T (t) : t ≥ 0} is a gradient-like semigroup with respect to Ξ = {Ξ1, Ξ2, · · · , Ξn}, then

(N1, N2, · · · , Np) is a Morse decomposition for A .

Proof. Clearly {T (t) : t ≥ 0} is a gradient-like semigroup with respect to N . The proof of

the result now follows as the proof of Theorem 2.18. �

Remark 5.3. Given a compact invariant set A , we define the finest Morse decomposition

on A (cf. [13]) as (Ξ1, . . . , Ξn) in which, for each isolated compact invariant set Ξi the

unique Morse decomposition on it is the trivial one. Then, the energy level decomposition

of the finest Morse decomposition can be considered as the optimal decomposition of A , as

it gives a total description of A by a Lyapunov (energy) function which is constant on each

level and strictly decreasing on connecting global solutions among all the different levels.

5.0.1. Energy level decomposition for a gradient-like system. All the concepts and results in

the previous section can be written in the particular case in which we have a finite set of

equilibria:

Definition 5.4. Let {T (t) : t ≥ 0} be a gradient-like semigroup in X with global attractor

A with equilibrium points E = {ζ1, · · · , ζn}.
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(a) Given ζr and ζs ∈ E , we say that ζr precedes ζs (we write ζr ≺ ζs), if there exists a

non-constant global solution ξ : R→ X of {T (t) : t ≥ 0} such that

lim
t→−∞

d(ξ(t), ζs) = 0 and lim
t→∞

d(ξ(t), ζr) = 0.

(b) Let us consider

M1 : = {ζℓ ∈ E : there is no element ζ ∈ E that preceeds ζℓ}

and, for any integer k ≥ 2

Mk := {ζℓ ∈ E : if ζ ∈ E e ζ ≺ ζℓ then ζ ∈Mk−1}.

Note that, by definition, Mk ⊂Mk+1.

(c) We now define the sets

N1 :=M1 and Nk :=Mk\Mk−1, for all k ≥ 2.

Since E is finite, there exists a positive integer q such that Mk = Mq for each

k > q, so that, Nk = ∅ for all k > q. Thus, we consider N1, N2, · · · , Np, with

p := min{q ∈ N :Mk =Mq for each k > q}.

Lemma 5.5. If {T (t) : t ≥ 0} is a gradient-like semigroup, then every ζ ∈ E is in Ni

for some i = 1, · · ·, p, where p ≥ 1 is the maximum number of non-void energy levels in

{T (t) : t ≥ 0}.

Lemma 5.6. Let {T (t) : t ≥ 0} be a gradient-like semigroup with global attractor A and a

finite set of equilibria E ={ζ1, · · · , ζn}, and (N1, · · · , Np) the ordered n-upla of energy levels

{T (t) : t ≥ 0}. Then, (N1, · · · , Np) is a Morse decomposition in A .

6. Final comments and further research

We have proved that a gradient-like semigroup with respect to a disjoint family of isolated

invariant sets Ξ is gradient (has a Lyapunov function) with respect to Ξ. In particular, a

gradient-like semigroup with respect to a finite set of equilibria is gradient (in the sense of

[7]), concluding that gradient semigroups (in the sense of [7]) are stable under perturbation.

Note that any global attractor for a semigroup admits at least a Morse decomposition -the

trivial one-, being common to have a better description of the internal dynamics of it in

several non-trivial examples. Our results apply to any Morse decomposition of a global

attractor (which behave continuously with respect to the parameter).

The applications considered in the introduction show that the class of semigroups known

to be gradient (in the sense of [7]) increases considerably after the results in this paper have

been proved.

On the other hand, it is shown in [4] that a non-autonomous perturbation of a gradient-

like system is still gradient-like. Thus, there exists a very natural extension of the results on

this paper to a non-autonomous framework.
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Finally, we think that the concept of energy levels deserves being exploited, because it is

giving a very good description of connections between isolated sets from any given decompo-

sition. In particular, its stability under perturbation seems a proper non-trivial problem to

be considered, connected, for instance, to Morse-Smale systems. We plan to present results

in these last two lines of research in the near future.
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