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Abstract. The investigation of stability for hereditary systems is often related to the con-

struction of Lyapunov functionals. The general method of Lyapunov functionals construc-
tion, which was proposed by V.Kolmanovskii and L.Shaikhet, is used here to investigate the

stability of stochastic delay evolution equations, in particular, for stochastic partial differ-

ential equations. This method had already been successfully used for functional-differential
equations, for difference equations with discrete time, and for difference equations with con-

tinuous time. It is shown that the stability conditions obtained for stochastic 2D Navier-

Stokes model with delays are essentially better than the known ones.

1. Introduction.
1.1. Notations and definitions. First of all, we introduce the framework in which
our analysis is going to be carried out. Let U, H, K be real, separable Hilbert spaces
such that

U ⊂ H ≡ H∗ ⊂ U∗ ,

where U∗ is the dual of U and the injections are continuous and dense. We denote
by β the constant satisfying

|u| ≤ β‖u‖, u ∈ U. (1.1)

In particular, we also assume both U and U∗ are uniformly convex.
We denote by ‖ · ‖ , | · | and ‖ · ‖∗ the norms in U , H and U∗, respectively; by

〈·, ·〉 the duality product between U∗, U , and by (·, ·) the scalar product in H .
Let W (t) be a Q-valued Wiener process on a certain complete probability space

(Ω,F, P ) which takes values in the separable Hilbert space K, where Q ∈ L(K,K)
is a symmetric nonnegative operator and EW (t) = 0, Cov(W (t)) = tQ.
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2 TOMÁS CARABALLO & LEONID SHAIKHET

Let (Ft)t≥0 be the σ-algebras generated by {W (s), 0 ≤ s ≤ t}, then W (t) is a
martingale relative to (Ft)t≥0 and we have the following representation of W (t):

W (t) =
∞∑
i=1

βi(t)ei,

where {ei}i≥1 is an orthonormal set of eigenvectors of Q, βi(t) are mutually inde-
pendent real Wiener processes with incremental covariance λi > 0, Qei = λiei and
TrQ =

∑∞
i=1 λi <∞ (Tr denotes the trace of an operator, see, for instance, [9]).

For an operator G ∈ L(K,H), the space of all bounded linear operators from K
into H, we denote by ‖G‖2 its Hilbert-Schmidt norm, i.e.,

‖G‖22 = Tr(GWG∗).

Given h ≥ 0, and T > 0, we denote by Ip(−h, T ; U), p > 0, the space of all
U–valued processes (x(t))t∈[−h,T ] (we will write x(t) for short) measurable (from
[−h, T ]× Ω into U), and satisfying:

1. x(t) is Ft-measurable almost surely in t, where we set Ft = F0 for t ≤ 0;

2.
∫ T
−h E‖x(t)‖p dt < +∞.

It is not difficult to check that the space Ip(−h, T ; U) is a closed subspace of Lp(Ω×
[−h, T ],F⊗B([−h, T ]), dP ⊗ dt; U), where B([−h, T ]) denotes the Borel σ–algebra
on [−h, T ]. We also write L2(Ω; C(−h, T ;H)) instead of L2(Ω,F, dP ; C(−h, T ;H)),
where C(−h, T ; H) denotes the space of all continuous functions from [−h, T ] into
H.

Let CH = C([−h, 0], H) be the space of all continuous functions from [−h, 0]
into H with sup-norm ‖ψ‖C = sup−h≤s≤0 |ψ(s)|, ψ ∈ CH (the definition is similar
for CU ), L2

U = L2([−h, 0]; U) and L2
H = L2([−h, 0]; H).

Given a stochastic process u(t) ∈ I2(−h, T ;U) ∩ L2(Ω; C(−h, T ; H)), we asso-
ciate with an L2

U ∩ CH -valued stochastic process ut : Ω → L2
U ∩ CH , t ≥ 0, by

setting ut(s)(ω) = u(t+ s)(ω), s ∈ [−h, 0].
The aim of this paper is to analyze the stability properties (by means of con-

structing suitable Lyapunov functionals) of the following class of nonlinear stochas-
tic partial functional differential equations

du(t) = (A(t, u(t)) + f(t, ut))dt+B(t, ut)dW (t), t ∈ [0, T ]

u(t) = ψ(t), t ∈ [−h, 0],
(1.2)

where, in general, the operators are assumed to be nonlinear. In fact, we are
interested in the case in which A(t, ·) : U → U∗ is a family of nonlinear monotone
and coercitive operators, f(t, ·) : CU → U∗ and B(t, ·) : CU → L(K,H) satisfy
sublinear properties.

The analysis of the existence and uniqueness of solutions for this model has
already been carried out, for instance, in [1,3], and we will not insist in this point
here. However, we will explain now which is the concept of solution to be used in
our stability analysis.

For a fixed T > 0, given an initial value

ψ ∈ I2(−h, 0;U) ∩ L2(Ω;CH) ,
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a (variational) solution of (1.2) is a process u(t) ∈ I2(−h, T ;U)∩L2(Ω;C(−h, T ;H))
such that

u(t) =ψ(0) +
∫ t

0

[A(s, u(s)) + f(s, us)] ds

+
∫ t

0

B(s, us) dW (s) , P − a.s., ∀t ∈ [0, T ],

u(t) = ψ(t), P − a.s., ∀t ∈ [−h, 0],

(1.3)

where the first equality is defined in U∗.
From now on, as we will be interested in the long-time behavior of the solutions

of (1.2), we will assume that (1.3) possesses solutions for all T > 0.
Let us denote by u(·;ψ) the solution of Eq. (1.2) corresponding to the initial

condition ψ.

Definition 1.1. The trivial solution of Eq. (1.2) is said to be mean square stable
if for any ε > 0 there exists δ > 0 such that E|u(t;ψ)|2 < ε for all t ≥ 0 if
‖ψ‖2CH

= sups∈[−h,0] E|ψ(s)|2 < δ.

Definition 1.2. The trivial solution of Eq. (1.2) is said to be exponentially mean
square stable if it is stable and there exists a positive constant λ such that for any
ψ ∈ C(−h, 0, U) there exists C (which may depend on ψ) such that E|u(t;ψ)|2 ≤
Ce−λt for t > 0.

Now, as we will use the Itô formula for the solutions of (1.3), we need to define
an associate operator L which is usually called the “generator ”of equation (1.3).

To calculate the stochastic differential of the process η(t) = v(t, u(t)), where u(t)
is a solution of the equation (1.3) and the function v(t, u) : [0,∞) × U → R+ has
continuous partial derivatives

v′t(t, u) =
∂v(t, u)
∂t

, v′u(t, u) =
∂v(t, u)
∂u

, v′′uu(t, u) =
∂2v(t, u)
∂u2

,

the Itô formula (see, e.g. [10] for more details) is used

dη(t) = Lv(t, u(t))dt+ < v′u(t, u(t)), B(t, ut)dW (t) >,

where the generator L is defined in the following way

Lv(t, u(t)) =v′t(t, u(t))+ < v′u(t, u(t)), A(t, ut) >

+
1
2
Tr[v′′uu(t, u(t))B(t, ut)QB∗(t, ut)].

The generator L can be applied also for some functionals V (t, ϕ) : [0,∞)×H →
R+. Suppose that a functional V (t, ϕ) can be represent in the form V (t, ϕ) =
V (t, ϕ(0), ϕ(θ)), θ < 0 and for ϕ = ut (or ϕ(θ) = u(t+ θ)) put

Vϕ(t, u) = V (t, ϕ) = V (t, u, ϕ(θ)),

u = ϕ(0) = u(t), θ < 0.
(1.4)

Denote by D the set of the functionals, for which the function Vϕ(t, u) defined by
(1.4) has a continuous derivative with respect to t and two continuous derivatives



4 TOMÁS CARABALLO & LEONID SHAIKHET

with respect to u. For functionals from D the generator L of the equation (1.3) has
the form

LV (t, ut) =V ′ϕt(t, u(t))+ < V ′ϕu(t, u(t)), A(t, ut) >

+
1
2
Tr[V ′′ϕuu(t, u(t))B(t, ut)QB∗(t, ut)].

(1.5)

From Itô’s formula it follows, that for functionals from D,

E[V (t, ut)− V (s, us)] =
∫ t

s

ELV (τ, uτ )dτ, t ≥ s. (1.6)

1.2. Lyapunov type stability theorem. Let us now prove a theorem which will
be crucial in our stability investigation.

Theorem 1.1. Assume that there exists a functional V (t, ut) such that the follow-
ing conditions hold for some positive numbers c1, c2 and λ:

EV (t, ut) ≥ c1eλtE|u(t)|2, t ≥ 0, (1.7)

EV (0, u0) ≤ c2‖ψ‖2CH
, (1.8)

ELV (t, ut) ≤ 0, t ≥ 0. (1.9)

Then the trivial solution of Eq. (1.2) is exponentially mean square stable.

Proof. Integrating (1.9) via (1.6) we obtain EV (t, ut) ≤ EV (0, u0). From this and
(1.7), (1.8) it follows that

c1E|u(t)|2 ≤ e−λtEV (0, u0) ≤ c2‖ψ‖2CH
.

The inequality c1E|u(t)|2 ≤ c2‖ψ‖2CH
means that the trivial solution of Eq. (1.2) is

stable. Besides, from the inequality c1E|u(t)|2 ≤ e−λtEV (0, u0), it follows that the
trivial solution of Eq. (1.2) is exponentially mean square stable. �

Note that Theorem 1.1 implies that the stability investigation of Eq. (1.2) can
be reduced to the construction of appropriate Lyapunov functionals. The general
method of Lyapunov functionals construction is described in [6,7,11,12]. A formal
procedure to construct Lyapunov functionals is described below.

1.3. Procedure of Lyapunov functionals construction. The procedure con-
sists of four steps.

Step 1. To transform Eq. (1.2) into the form

dz(t, ut) = (A1(t, u(t)) +A2(t, ut))dt+ (B1(t, u(t)) +B2(t, ut))dW (t), (1.10)

where z(t, ·), A2(t, ·) and B2(t, ·) are families of nonlinear operators, z(t, 0) = 0,
A2(t, 0) = 0, B2(t, 0) = 0, operators A1(t, ·) and B1(t, ·), such that A1(t, 0) = 0,
B1(t, 0) = 0, and depend only on t and u(t), but do not depend on the previous
values u(t+ s), s < 0.

Step 2. Assume that the trivial solution of the auxiliary equation without mem-
ory

dy(t) = A1(t, y(t))dt+B1(t, y(t))dW (t), (1.11)
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is exponentially mean square stable and there exists a Lyapunov function v(t, y(t)),
which satisfies the conditions of Theorem 1.1.

Step 3. A Lyapunov functional V (t, ut) for Eq.(1.10) is constructed in the form
V = V1 + V2, where V1(t, ut) = v(t, z(t, ut)). Here the argument y of the function
v(t, y) is replaced on the functional z(t, xt) from the left-hand part of Eq. (1.10).

Step 4. Usually, the functional V1(t, ut) almost satisfies the conditions of Theorem
1.1. In order to fully satisfy these conditions, it is necessary to calculate ELV1(t, ut)
and estimate it. Then, the additional functional V2(t, ut) can be chosen in a standard
way.

Note that the representation (1.10) is not unique. This fact allows, using different
representations of the type of (1.10) or different ways of estimating ELV1(t, ut), to
construct different Lyapunov functionals and, as a result, to get different sufficient
conditions of exponential mean square stability.

2. Construction of Lyapunov functionals for equations with time-varying
delay. Consider the following stochastic evolution equation

du(t) = (A(t, u(t)) + F (u(t− h(t))))dt+B(t, u(t− τ(t)))dW (t),

h(t) ∈ [0, h0], τ(t) ∈ [0, τ0], h = max[h0, τ0],

u(s) = ψ(s), s ∈ [−h, 0].
(2.1)

which is a particular case of Eq. (1.2). Here A(t, ·), F : U → U∗ are appropriate
partial differential operators (see conditions below), B(t, ·) : U → H, W (t) is a
Q-Wiener process.

We will apply the method described above to construct Lyapunov functionals
for Eq. (2.1), and, as a consequence, to obtain sufficient conditions ensuring the
stability of the trivial solution.

We will use two different constructions which will provide different stability re-
gions for the parameters involved in the problem.

2.1. The first way of Lyapunov functionals construction. First we consider
a quite general situation for the operators involved in Eq. (2.1).

Theorem 2.1. Assume that operators in Eq. (2.1) satisfy the conditions

〈A(t, u), u〉 ≤ −γ‖u‖2, γ > 0,

F : U → U∗, ‖F (u)‖∗ ≤ α‖u‖, u ∈ U,
‖B(t, u)‖2 ≤ σ‖u‖, u ∈ U,

(2.2)

and
h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 < 1.
(2.3)

If

γ >
α√

1− h1

+
δ

1− τ1
, δ =

1
2
σ2, (2.4)

then the trivial solution of Eq. (2.1) is exponentially mean square stable.

Proof. Owing to the procedure of Lyapunov functionals construction, let us consider
the auxiliary equation without memory of the type of (1.11) as

ẏ(t) = A(t, y(t)). (2.5)
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The function v(t, y) = eλt|y|2, λ > 0, is a Lyapunov function for Eq. (2.5), i.e., it
satisfies the conditions of Theorem 1.1. Actually, it is easy to see that conditions
(1.7), (1.8) hold for the function v(t, y(t)). Besides, since γ > 0, there exists λ > 0
such that 2γ > λβ2. Using (2.5), (1.1) and (2.2), we obtain

d

dt
v(t, y(t)) = λeλt|y(t)|2 + 2eλt〈A(t, y(t)), y(t)〉 ≤ −eλt(2γ − λβ2)‖y(t)‖2 ≤ 0.

According to the procedure, we now construct a Lyapunov functional V for Eq.
(2.1) in the form V = V1 + V2, where V1(t, ut) = eλt|u(t)|2. For Eq. (2.1) via (1.5)
and some ε > 0 we obtain

LV1(t, ut) =λV1(t, ut) + 2eλt 〈A(t, u(t)) + F (u(t− h(t))), u(t)〉+ eλt‖B(t, u(t− τ(t)))‖22
≤eλt

[
λ|u(t)|2 + 2

(
−γ‖u(t)‖2 + α‖u(t− h(t))‖‖u(t)‖

)
+ σ2‖u(t− τ(t))‖2

]
≤eλt

[
λβ2‖u(t)‖2 − 2γ‖u(t)‖2 + α

(
ε‖u(t− h(t))‖2 + ε−1‖u(t)‖2

)
+σ2‖u(t− τ(t))‖2

]
=eλt

[(
λβ2 − 2γ +

α

ε

)
‖u(t)‖2 + εα‖u(t− h(t))‖2 + σ2‖u(t− τ(t))‖2

]
.

Set now

V2(t, ut) =
εα

1− h1

∫ t

t−h(t)

eλ(s+h0)‖u(s)‖2ds+
σ2

1− τ1

∫ t

t−τ(t)

eλ(s+τ0)‖u(s)‖2ds.

Then

LV2(t, ut) =
εα

1− h1

(
eλ(t+h0)‖u(t)‖2 − (1− ḣ(t))eλ(t−h(t)+h0)‖u(t− h(t))‖2

)
+

σ2

1− τ1

(
eλ(t+τ0)‖u(t)‖2 − (1− τ̇(t))eλ(t−τ(t)+τ0)‖u(t− τ(t))‖2

)
≤ εαeλt

1− h1

(
eλh0‖u(t)‖2 − (1− h1)eλ(h0−h(t))‖u(t− h(t))‖2

)
+
σ2eλt

1− τ1

(
eλτ0‖u(t)‖2 − (1− τ1)eλ(τ0−τ(t))‖u(t− τ(t))‖2

)
≤eλt

[
εα

(
eλh0

1− h1
‖u(t)‖2 − ‖u(t− h(t))‖2

)
+σ2

(
eλτ0

1− τ1
‖u(t)‖2 − ‖u(t− τ(t))‖2

)]
.

Thus, for V = V1 + V2 we have

LV (t, ut) ≤ eλt
[
λβ2 − 2γ + α

(
1
ε

+
εeλh0

1− h1

)
+ σ2 eλτ0

1− τ1

]
‖u(t)‖2.

Rewrite the expression in square brackets as

−2γ + α

(
1
ε

+
ε

1− h1

)
+

σ2

1− τ1
+ λβ2 + εα

eλh0 − 1
1− h1

+ σ2 e
λτ0 − 1
1− τ1

.
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To minimize this expression in the brackets, choose ε =
√

1− h1. As a consequence
we obtain

LV (t, ut) ≤ −eλt
[
2
(
γ − α√

1− h1

− δ

1− τ1

)
− ρ(λ)

]
‖u(t)‖2 (2.6)

with

ρ(λ) = λβ2 + α
eλh0 − 1√

1− h1

+ σ2 e
λτ0 − 1
1− τ1

.

Since ρ(0) = 0, then by condition (2.4) there exists λ > 0 small enough such that

2
(
γ − α√

1− h1

− δ

1− τ1

)
≥ ρ(λ).

From here and (2.6) it follows that ELV (t, ut) ≤ 0. So, the functional V (t, ut)
constructed above satisfies the conditions in Theorem 1.1. This means that the
trivial solution of Eq. (2.1) is exponentially mean square stable. �

Note, in particular, if h(t) ≡ h0, τ(t) ≡ τ0 then h1 = 0, τ1 = 0 and condition
(2.4) takes the form γ > α+ δ.

2.2. The second way of Lyapunov functionals construction. We now es-
tablish a second result which implies that the operator F must be less general than
in Theorem 2.1. However, as we will show later in the applications section, the
stability regions provided by this theorem will be better than the ones given by
Theorem 2.1.

Theorem 2.2. Suppose that operators in Eq. (2.1) satisfy the following conditions

〈A(t, u) + F (u), u〉 ≤ −γ‖u‖2, γ > 0,

‖A(t, u) + F (u)‖∗ ≤ α1‖u‖,
F : U → U, ‖F (u)‖∗ ≤ α2‖u‖, u ∈ U,

‖B(t, u)‖2 ≤ σ‖u‖, u ∈ U,

(2.7)

and
h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1, |ḣ(t)| ≤ h2,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 < 1.
(2.8)

If

γ > α1α2h0 + (1 + α2h0)
α2h2√
1− h1

+
δ

1− τ1
, (2.9)

then the trivial solution of Eq. (2.1) is exponentially mean square stable.

Proof. To use the procedure of Lyapunov functionals construction, let us first
transform Eq. (2.1) as

dz(t, ut) =(A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))))dt

+B(t, u(t− τ(t)))dW (t),
(2.10)
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where

z(t, ut) = u(t) +
∫ t

t−h(t)

F (u(s))ds. (2.11)

Consider the following auxiliary equation without memory, which is of the type of
(1.11), and is given in the form

ẏ(t) = A(t, y(t)) + F (y(t)). (2.12)

The function v(t, y) = eλt|y|2 is a Lyapunov function for Eq. (2.12). Actually, since
γ > 0 then there exists λ > 0 such that 2γ > λβ2. Using (2.12), (1.1), (2.7), we
obtain

d

dt
v(t, y(t)) =λeλt|y(t)|2 + 2eλt〈A(t, y(t)) + F (y(t)), y(t)〉

≤ − eλt(2γ − λβ2)‖y(t)‖2.

Next, we construct a Lyapunov functional V for Eq. (2.10), (2.11) in the form
V = V1 + V2, where

V1(t, ut) = eλt|z(t, ut)|2, (2.13)

and z(t, ut) is defined by (2.11). Using (2.7) for Eq. (2.10), (2.11) and some positive
εi, i = 1, 2, 3, we have

LV1(t, ut) =λV1(t, ut) + 2eλt
〈
A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))), z(t, ut)

〉
+ eλt‖B(t, u(t− τ(t)))‖22

=λV1(t, ut) + 2eλt
〈
A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))), u(t)

+
∫ t

t−h(t)

F (u(s))ds

〉
+ eλt‖B(t, u(t− τ(t)))‖22

=λV1(t, ut) + 2eλt
〈
A(t, u(t)) + F (u(t)), u(t) +

∫ t

t−h(t)

F (u(s))ds

〉

+ 2eλtḣ(t)

(
F (u(t− h(t))), u(t) +

∫ t

t−h(t)

F (u(s))ds

)
+ eλt‖B(u(t− τ(t)))‖22
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≤λV1(t, ut) + 2eλt
[
−γ‖u(t)‖2 + α1α2

∫ t

t−h(t)

‖u(t)‖‖u(s)‖ds

]

+ 2eλt|ḣ(t)|

(
α2‖u(t− h(t))‖‖u(t)‖+ α2

2

∫ t

t−h(t)

‖u(t− h(t))‖‖u(s)‖ds

)
+ eλtσ2‖u(t− τ(t))‖2

≤λV1(t, ut) + eλt

[
−2γ‖u(t)‖2 + α1α2

∫ t

t−h(t)

(
1
ε1
‖u(t)‖2 + ε1‖u(s)‖2

)
ds

]

+ eλt|ḣ(t)|
[
α2

(
ε2‖u(t− h(t))‖2 +

1
ε2
‖u(t)‖2

)
+ α2

2

∫ t

t−h(t)

(
ε3‖u(t− h(t))‖2 +

1
ε3
‖u(s)‖2

)
ds

]
+ eλtσ2‖u(t− τ(t))‖2

=λV1(t, ut) + eλtσ2‖u(t− τ(t))‖2

+ eλt
[(
−2γ +

1
ε1
α1α2h(t) +

1
ε2
α2|ḣ(t)|

)
‖u(t)‖2

+ α2(ε2 + ε3α2h(t))|ḣ(t)|‖u(t− h(t))‖2

+α2

(
ε1α1 +

1
ε3
α2|ḣ(t)|

)∫ t

t−h(t)

‖u(s)‖2ds

]
.

From (2.13) and (2.11) for some ε4 > 0 it follows that

e−λtV1(t, ut) =|u(t)|2 + 2
∫ t

t−h(t)

(u(t), F (u(s)))ds+

∣∣∣∣∣
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣
2

≤|u(t)|2 + 2
∫ t

t−h(t)

|u(t)||F (u(s))|ds+ h(t)
∫ t

t−h(t)

|F (u(s))|2ds

≤|u(t)|2 + α2β
2

∫ t

t−h(t)

(
ε4‖u(t)‖2 +

1
ε4
‖u(s)‖2

)
ds

+ α2
2h(t)β2

∫ t

t−h(t)

‖u(s)‖2ds

≤(1 + ε4α2h(t))β2‖u(t)‖2 + α2β
2

(
1
ε4

+ α2h(t)
)∫ t

t−h(t)

‖u(s)‖2ds.

Therefore,

LV1(t, ut) ≤eλt
[
λβ2(1 + ε4α2h(t))− 2γ +

1
ε1
α1α2h(t) +

1
ε2
α2|ḣ(t)|

]
‖u(t)‖2

+ eλtα2(ε2 + ε3α2h(t))|ḣ(t)|‖u(t− h(t))‖2 + eλtσ2‖u(t− τ(t))‖2

+ eλtα2

[
ε1α1 +

α2

ε3
|ḣ(t)|+ λβ2

(
1
ε4

+ α2h(t)
)]∫ t

t−h(t)

‖u(s)‖2ds



10 TOMÁS CARABALLO & LEONID SHAIKHET

≤eλt
[[
λβ2(1 + ε4α2h0)− 2γ +

1
ε1
α1α2h0 +

1
ε2
α2h2

]
‖u(t)‖2

+ α2h2(ε2 + ε3α2h0)‖u(t− h(t))‖2 + eλtσ2‖u(t− τ(t))‖2

+α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)]∫ t

t−h0

‖u(s)‖2ds
]
.

Put now

V2(t, ut) =
(ε2 + ε3α2h0)α2h2

1− h1

∫ t

t−h(t)

eλ(s+h0)‖u(s)‖2ds

+
σ2

1− τ1

∫ t

t−τ(t)

eλ(s+τ0)‖u(s)‖2ds+ α2

[
ε1α1 +

α2

ε3
h2

+λβ2

(
1
ε4

+ α2h0

)]∫ t

t−h0

eλ(s+h0)(s− t+ h0)‖u(s)‖2ds.

Then

LV2(t, ut) =
(ε2 + ε3α2h0)α2h2

1− h1

(
eλ(t+h0)‖u(t)‖2 − (1− ḣ(t))eλ(t−h(t)+h0)‖u(t− h(t))‖2

)
+

σ2

1− τ1

(
eλ(t+τ0)‖u(t)‖2 − (1− τ̇(t))eλ(t−τ(t)+τ0)‖u(t− τ(t))‖2

)
+ α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)]
×
(
eλ(t+h0)h0‖u(t)‖2 −

∫ t

t−h0

eλ(s+h0)‖u(s)‖2ds
)

≤eλtα2h2(ε2 + ε3α2h0)
(

eλh0

1− h1
‖u(t)‖2 − ‖u(t− h(t))‖2

)
+ eλtσ2

(
eλτ0

1− τ1
‖u(t)‖2 − ‖u(t− τ(t))‖2

)
+ α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)]
×
(
eλ(t+h0)h0‖u(t)‖2 −

∫ t

t−h0

eλ(s+h0)‖u(s)‖2ds
)
.

Since eλt ≤ eλ(s+h0) for s ≥ t− h0 then

LV2(t, ut) ≤eλt
[
α2h2(ε2 + ε3α2h0)

(
eλh0

1− h1
‖u(t)‖2 − ‖u(t− h(t))‖2

)
+ σ2

(
eλτ0

1− τ1
‖u(t)‖2 − ‖u(t− τ(t))‖2

)
+ α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)]
×
(
eλh0h0‖u(t)‖2 −

∫ t

t−h0

‖u(s)‖2ds
)]

.
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As a result for V = V1 + V2 we obtain

LV (t, ut) ≤eλt
(
λβ2(1 + ε4α2h0)− 2γ +

1
ε1
α1α2h0

+
1
ε2
α2h2 + α2h2(ε2 + ε3α2h0)

eλh0

1− h1
+
σ2eλτ0

1− τ1

)
‖u(t)‖2

+ eλ(t+h0)α2h0

[
ε1α1 +

1
ε3
α2h2 + λβ2

(
1
ε4

+ α2h0

)]
‖u(t)‖2

=eλt
[
λβ2(1 + ε4α2h0)− 2γ +

1
ε1
α1α2h0 +

1
ε2
α2h2

+ α2h2(ε2 + ε3α2h0)
eλh0

1− h1
+
σ2eλτ0

1− τ1

+eλh0α2h0

[
ε1α1 +

1
ε3
α2h2 + λβ2

(
1
ε4

+ α2h0

)]]
‖u(t)‖2

=eλt
[
−2γ + α1α2h0

(
1
ε1

+ ε1

)
+ α2h2

(
1
ε2

+
ε2

1− h1

)
+α2

2h0h2

(
1
ε3

+
ε3

1− h1

)
+

σ2

1− τ1
+ ρε(λ)

]
‖u(t)‖2,

(2.14)

where

ρε(λ) =λ
[
β2
(
1 + eλh0α2

2h
2
0

)
+ β2α2h0

(
ε4 +

1
ε4
eλh0

)]
+
σ2(eλτ0 − 1)

1− τ1

+ (eλh0 − 1)α2

[
h0

(
ε1α1 +

α2h2

ε3

)
+ h2

(ε2 + ε3α2h0)
1− h1

]
.

To minimize the right-hand side of inequality (2.14) we put ε1 = 1, ε2 = ε3 =√
1− h1 and ε4 = e

1
2λh0 . Then, inequality (2.14) takes the form

LV (t, ut) ≤− eλt
[
2
(
γ − α1α2h0 − (1 + α2h0)

α2h2√
1− h1

− δ

1− τ1

)
− ρ(λ)

]
‖u(t)‖2,

(2.15)

where

ρ(λ) =λ
[
β2
(
1 + eλh0α2

2h
2
0

)
+ 2β2α2h0e

1
2λh0

]
+
σ2(eλτ0 − 1)

1− τ1

+ (eλh0 − 1)α2

(
α1h0 +

h2(1 + 2α2h0)√
1− h1

)
.

(2.16)

From (2.16) it follows that ρ(0) = 0. Thus, there exists λ > 0 small enough such
that from the condition (2.9) we deduce that

2
(
γ − α1α2h0 − (1 + α2h0)

α2h2√
1− h1

− δ

1− τ1

)
≥ ρ(λ). (2.17)
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This and (2.15) imply that ELV (t, ut) ≤ 0 and, as a consequence, the functional
V (t, ut) constructed above satisfies the conditions (1.8), (1.9). However, we cannot
ensure that Theorem 1.1 holds true since the functional V (t, ut) does not satisfy
the condition (1.7). Then, we will proceed in a different way.

From (2.15), (2.17) and (1.6) it follows that there exists c > 0 such that

EV (t, ut)−EV (0, u0) ≤ −c
∫ t

0

eλsE‖u(s)‖2ds.

Therefore,∫ ∞
0

eλsE‖u(s)‖2ds ≤ 1
c
EV (0, u0), EV (t, ut) ≤ EV (0, u0). (2.18)

Note also that via (2.11)

|z(t, ut)|2 =

∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣
2

≥|u(t)|2 − 2
∫ t

t−h(t)

|u(t)||F (u(s))|ds

≥|u(t)|2 − 2α2β

∫ t

t−h(t)

|u(t)|‖u(s)‖ds

≥|u(t)|2 − α2

(
|u(t)|2h(t) + β2

∫ t

t−h(t)

‖u(s)‖2ds

)

≥(1− α2h0)|u(t)|2 − α2β
2

∫ t

t−h0

‖u(s)‖2ds.

(2.19)

From (2.7) it follows that

γ‖u‖2 ≤ −〈A(t, u) + F (u), u〉 ≤ ‖A(t, u) + F (u)‖∗‖u‖ ≤ α1‖u‖2,

i.e., γ ≤ α1. Using (2.9) we have α2h0 < γα−1
1 ≤ 1. So, from (2.19) we obtain

E|u(t)|2 ≤
E
∣∣∣u(t) +

∫ t
t−h(t)

F (u(s))ds
∣∣∣2 + α2β

2
∫ t
t−h0

E‖u(s)‖2ds

1− α2h0
. (2.20)

Since

EV (0, u0) ≥ EV (t, ut) ≥ EV1(t, ut) = eλtE

∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣
2

,

then

E

∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣
2

≤ e−λtEV (0, u0). (2.21)
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It is easy to see that there exists C > 0 such that EV (0, u0) ≤ CE‖u0‖2. Now,
from (2.19)-(2.21) it follows that

E|u(t)|2 ≤ C0‖u0‖2, C0 =
C + α2

(
h0 + C

c

)
1− α2h0

.

Therefore, the trivial solution of Eq. (2.1) is mean square stable.
Thanks to (2.18) we have that there exists C1 > 0 such that

eλ(t−h0)

∫ t

t−h0

E‖u(s)‖2ds ≤
∫ t

t−h0

eλsE‖u(s)‖2ds ≤
∫ ∞
−h0

eλsE‖u(s)‖2ds ≤ C1.

Hence, ∫ t

t−h0

E‖u(s)‖2ds ≤ C1e
λh0e−λt (2.22)

and from (2.20)-(2.22) it follows that, by conditions (2.7)-(2.9), the trivial solution
of Eq. (2.1) is exponentially mean square stable. �

Note that if, in particular, h(t) = h0, then h2 = 0 and condition (2.9) takes the
form γ > α1α2h0 + δ

1−τ1 .

3. Some applications In this section we will show some interesting applications
to illustrate how our results work.

3.1. Application to a stochastic 2D Navier-Stokes model. We first consider
a stochastic 2D Navier-Stokes model with delay. The deterministic version of this
problem has already been analyzed in details in [4]. The stochastic situation has
also been considered in [5,14] when the delay function is the same in the diffusion
and driving terms. We will analyze the case of different delays in both terms.

Let Ω ⊂ R2 be an open and bounded set with regular boundary Γ, T > 0 given,
and consider the following functional Navier-Stokes problem:

du+

(
−ν∆u+

2∑
i=1

ui
∂u

∂xi

)
dt

= (−∇p+ g(t, ut)) dt+ Φ(t, ut)dW (t) in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ψ(t, x), t ∈ (−h, 0), x ∈ Ω,

(3.1)

where we assume that ν > 0 is the kinematic viscosity, u is the velocity field of the
fluid, p the pressure, u0 the initial velocity field, g(t, ut) is an external force con-
taining some hereditary characteristic, Φ(t, ut)dW (t) represent a stochastic term,
where W (t) is the standard Wiener process as we considered in the previous sec-
tions, and ψ the initial datum in the interval of time (−h, 0), where h is a positive
fixed number.
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To begin with we consider the following usual abstract spaces

U =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
,

H = the closure of U in (L2(Ω))2 with the norm |·| , and inner product (·, ·), where
for u, v ∈ (L2(Ω))2,

(u, v) =
2∑
j=1

∫
Ω

uj(x)vj(x)dx,

U = the closure of U in (H1
0 (Ω))2 with the norm ‖·‖ , and associated scalar product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

It follows that U ⊂ H ≡ H∗ ⊂ U∗, where the injections are dense and compact.
Now we denote a(u, v) = ((u, v)), and define the trilinear form b on U × U × U by

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx ∀u, v, w ∈ U.

Assume that the delay terms are given by

g(t, ut) = Gu(t− h(t)), Φ(t, ut) = Φ̂u(t− τ(t)),

where G ∈ L(U,U∗) is self-adjoint and Φ̂ ∈ L(U,H), the delay functions h(t) and
τ(t) satisfy the assumptions in Theorem 2.1. Then problem (3.1) can be set in the
abstract formulation:

To find u ∈I2(−h, T ;U) ∩ L2(Ω;L∞(0, T ;H))
such that for all v ∈ U

d(u(t), v) + (νa(u(t), v) + b(u(t), u(t), v))dt

= (Gu(t− h(t)), v) dt+ (Φ(t, ut)dW (t), v),

u(0) = u0, u(t) = ψ(t), t ∈ (−h, 0),

(3.2)

where the equation in (3.2) must be understood in the distributional sense of
D′(0, T ).

Observe that Eq. (3.2) can be rewritten as Eq. (2.1) by denoting A(t, ·), F :
U → U∗ the operators defined as

A(t, u) = −νa(u, ·)− b(u, u, ·), F (u) = Gu, B(t, u) = Φ̂u, u ∈ U.

In the present situation, i.e., for the operators G ∈ L(U,U∗), Φ̂ ∈ L(U,H) and
the functions g(t, ut) = Gu(t−h(t)), Φ(t, ut) = Φ̂u(t− τ(t)) defined above, we have
that γ = ν, α = ‖G‖L(U,U∗), σ = ‖Φ̂‖L(U,H), β = λ

−1/2
1 (λ1 is the first eigenvalue

of the Stokes operator) and assumptions in Theorem 2.1 hold assuming that

ν >
‖G‖L(U,U∗)√

1− h1

+
‖Φ̂‖2L(U,H)

2(1− τ1)
. (3.3)
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Remark 3.1. Observe that if G ∈ L(H,H) and Φ̂ ∈ L(H,H) then G ∈ L(U,U∗)
and Φ̂ ∈ L(U,H), in addition, we have that

‖G‖L(U,U∗) ≤λ−1
1 ‖G‖L(H,H),

‖Φ̂‖L(U,H) ≤λ
−1/2
1 ‖G‖L(H,H).

So, if we assume that

νλ1 >
‖G‖L(H,H)√

1− h1

+
‖Φ̂‖2L(H,H)

2(1− τ1)
. (3.4)

it also follows (3.3) and, consequently, we have the exponential stability of the trivial
solution.

3.2. Application to some stochastic reaction-diffusion equations. In this
subsection we will consider three different reaction-diffusion equations to show how
we can obtain different stability regions for the parameters involved in the equation.

Let us then consider the following three problems:

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ
∂2u(t− h(t), x)

∂x2

)
dt+ σu(t− τ(t), x)dW (t), (3.5)

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ
∂u(t− h(t), x)

∂x

)
dt+ σu(t− τ(t), x)dW (t), (3.6)

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ u(t− h(t), x)
)
dt+ σu(t− τ(t), x)dW (t) (3.7)

with the conditions

t ≥ 0, x ∈ [a, b], u(t, a) = u(t, b) = 0,

h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1, |ḣ(t)| ≤ h2,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 < 1.

(3.8)

where ν > 0 and µ is an arbitrary constant. Note that in all of these situations we
can consider U = H1

0 ([a, b]) and H = L2([a, b]). The constant β for the injection
U ⊂ H equals β = λ

−1/2
1 , where λ1 = π2(b− a)−2 is the first eigenvalue of the op-

erator − ∂2

∂x2 with Dirichlet boundary conditions. We can therefore apply Theorem
2.1 to all these examples yielding the following sufficient stability conditions.

For equation (3.5)

ν >
|µ|√

1− h1

+
σ2

2λ1(1− τ1)
,

for equation (3.6)

ν >
|µ|√

λ1(1− h1)
+

σ2

2λ1(1− τ1)
,
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for equation (3.7)

ν >
|µ|

λ1

√
1− h1

+
σ2

2λ1(1− τ1)
. (3.9)

Note that in the particular case [a, b] = [0, π] it holds λ1 = 1 and these three
conditions given by Theorem 2.1 are the same.

Observe that Theorem 2.2 can be applied only to Eq. (3.7). For this equation
the parameters of Theorem 2.2 are γ = α1 = ν − µλ−1

1 , α2 = |µ|λ−1/2
1 . It gives the

following sufficient stability condition:

ν >
µ

λ1
+

|µ|h2√
λ1(1− h1)

(√
λ1 + |µ|h0√
λ1 − |µ|h0

)
+

σ2

2
√
λ1(
√
λ1 − |µ|h0)(1− τ1)

, |µ| <
√
λ1

h0
.

(3.10)

Note that the stability condition (3.9) that we have obtained for equation (3.7)
improves the one in the paper [2]. Indeed, in the case [a, b] = [0, π] and constant
delay, i.e., h(t) = τ(t) = h, the stability condition obtained in [2] for ν = 1 is

1 > 3eh(µ2 + σ2). (3.11)

Also, our stability condition (3.9) improves the one in [8] since in this paper the
stability condition is obtained in the form

1 > 3(µ2 + σ2), (3.12)

although the delay functions h(·) and τ(·) are only assumed to be measurable.

Fig. 3.1 shows the stability regions for the equation (3.7) which have been ob-
tained for the values of parameters ν = 1, h1 = τ1 = 0, λ1 = 1. The line (1)
represents the condition (3.9), the line (2) represents (3.10), (3) corresponds to
(3.11), and (4) to (3.12). One can see that both conditions (3.9) and (3.10) are
essentially better than the condition (3.12) which is also better than (3.11). On the
other hand, the condition (3.10) is worse than (3.9) for µ > 0, but better than (3.9)
for µ < 0.

In Fig. 3.2 and 3.3 one can see that the conditions (3.9) and (3.10) complement
each other for ν > 1 and ν < 1 (in Fig. 3.2 we have ν = 1.2, while ν = 0.7 in Fig.
3.3) with the same values of other parameters.
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Fig. 3.2.
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Fig. 3.3.

Let us then consider the following three problems:

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ
∂2u(t− h(t), x)

∂x2

)
dt+ σ

∂u(t− τ(t), x)
∂x

dW (t), (3.13)

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ
∂u(t− h(t), x)

∂x

)
dt+ σ

∂u(t− τ(t), x)
∂x

dW (t), (3.14)

du(t, x) =
(
ν
∂2u(t, x)
∂x2

+ µ u(t− h(t), x)
)
dt+ σ

∂u(t− τ(t), x)
∂x

dW (t) (3.15)

with the same conditions (3.8), where ν > 0 and µ is an arbitrary constant. We
can again apply Theorem 2.1 to all these examples yielding the following sufficient
stability conditions.

For equation (3.13)

ν >
|µ|√

1− h1

+
σ2

2(1− τ1)
,

for equation (3.14)

ν >
|µ|√

λ1(1− h1)
+

σ2

2(1− τ1)
,

for equation (3.15)

ν >
|µ|

λ1

√
1− h1

+
σ2

2(1− τ1)
.
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Note that in the particular case [a, b] = [0, π] as λ1 = 1, and these three conditions
given by Theorem 2.1 are the same.

Observe that Theorem 2.2 can be applied only to Eq. (3.15). For this equation
the parameters of Theorem 2.2 are γ = α1 = ν − µλ−1

1 , α2 = |µ|λ−1/2
1 . It gives the

following sufficient stability condition:

ν >
µ

λ1
+

|µ|h2√
λ1(1− h1)

(√
λ1 + |µ|h0√
λ1 − |µ|h0

)
+

σ2
√
λ1

2(
√
λ1 − |µ|h0)(1− τ1)

, |µ| <
√
λ1

h0
.

Remark 3.2. Analogous examples have been analyzed in [13], and similar con-
ditions to ours have been obtained without assuming that the delay function are
continuously differentiable. However, the concept of solution used in [13] is stronger
than the one we use in this paper, since their proof relies in an equality stated in
Theorem 2.2 (see [13] page 492), which implies that the solution must belong to
C1(0, T ;L2(Ω;H)), while in the usual situation, the solution are proved to belong
only to L2(Ω;C(0, T ;H)) (see Definition 2.1 in [13] and our definition of solution in
this paper) and, consequently, the technique used in [13] cannot be applied. More-
over, the operator in the diffusion part of the equation in [13] does not allow for
first order derivatives while it does in our case (see the preceding examples).

Acknowledgements. We would like to thank the referees for their helpful sugges-
tions which allowed us to improve the presentation of this paper.
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