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Abstract

Some results concerning the stability and stabilisation of stochastic linear partial dif-
ferential equations in the sense of Stratonovich are proved. The main result ensures
that a deterministic linear PDE can be stabilised by adding a suitable Stratonovich
noise if and only if the linear partial differential operator has negative trace.
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1 Introduction and statement of the problem

The use of stochastic partial differential equations in Physics, Chemistry, Bi-
ology, Economics, Engineering, etc, is widespread. The addition of random
elements (noise) is based on the assumption that such equations are a better
model of reality than their deterministic counterparts. Depending on the situ-
ation being modelled one can find arguments justifying either of the canonical
choices of noise (Itô or Stratonovich). We will not discuss this is detail here,
but will emphasise that these different types of noise can produce very different
long-time behaviour of solutions (see Caraballo & Langa [6]).

A fundamental question is the following: assuming that the real world is actu-
ally non-deterministic, are deterministic models good approximations? If the
answer is affirmative, then the use of such models would be justified, but if
the answer is negative, then in some situations the addition of noise could
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produce dramatic changes in the behaviour. Here we consider the long-time
behaviour of solutions, and investigate the stabilising (or destabilising) effect
of the addition of noise.

In the finite-dimensional context, there is a wide literature about such prob-
lems (see Arnold [3], Arnold et al. [4], Mao [13], Scheutzow [15], ...). Many
results on the stabilisation and destabilisation produced by both Itô and
Stratonovich noise have been obtained, and these have also been applied to
construct feedback stabilisers (an important task in control problems). Al-
though in each particular situation one or other choice of the noise may be
more appropriate, it is stabilisation by Stratonovich noise that is more signif-
icant. This is the main motivating reason for this paper, and we now explain
this in more detail.

Consider the linear n-dimensional ordinary differential equation

ẋ = Ax, (1)

where A could have unstable directions, and the following stochastic versions of
this equation corresponding to the two different interpretations of the stochas-
tic integral

dx = Ax dt + σx ◦ dW (t) (Stratonovich) (2)

dy = Ay dt + σy dW (t), (Ito) (3)

where W (t) is a standard Wiener process on the complete probability space
(Ω,F , P) . The initial value problems for (2) and (3), i.e., to find the solutions
of these equations satisfying x(0) = x0, y(0) = y0, can be solved explicitly,
since their solutions are given by

x(t) = eσW (t) exp(tA)x0 and y(t) = e−
σ
2

2
t+σW (t) exp(tA)y0.

Taking into account the properties of the Wiener process (see e.g. Arnold [1]),
it is easy to see that for σ large enough the zero solution is exponentially
stable for the Itô equation (with probability one), while the same is not true
for the Stratonovich equation. This seems to imply that Itô noise has a more
profound stabilising effect than Stratonovich noise.

However, this argument is somewhat misleading. Indeed, Eq. (1) can be obvi-
ously stabilised by using a simple deterministic feedback control, i.e., the new
equation

ẋ = Ax + λx (4)

becomes exponentially stable provided λ < 0 and |λ| is large enough. Similarly,
it could be stabilised with the periodic control λ(t)x,

ẋ = Ax + λ(t)x,

where λ(t) = λ0 + sin t, with λ0 < 0 and |λ0| large enough. The function sin t
is, in some sense, a mean-zero function. The same is true with faster mean-
zero periodic fluctuations: stabilisation takes place because of the systematic
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dissipative term λ0x in the equation, while the mean-zero property means that
the other term has no influence on the asymptotic behaviour. We can write
such an equation in the form

ẋ = Ax + λ0x + xẆε(t)

where Ẇε(t) denotes the zero mean periodic term and may be considered as a
physically realistic approximation of the ideal white noise Ẇ (t). It is therefore
not surprising that the same result is true in the limit when the regular mean-
zero fluctuations tend to a mean-zero white noise, and the systematic term
λ0x is still present. Now, it is well known that in such a limit (more precisely
in all cases where there are rigorous results concerning the Wong-Zakai [17]
approximation of a stochastic equation by a random equation with regularised
noise) the correct stochastic interpretation for the equation is the Stratonovich
one (see, e.g., Sussmann [16] for a more detailed analysis)

dx = Ax dt + λ0x dt + σx ◦ dW (t)

where σ > 0 describes the intensity of the noise. While it should be intuitively
clear that this equation is exponentially stable when λ0 < 0 is sufficiently
small, a rigorous proof follows from the Itô formula, since as we previously
mentioned an explicit form for the solution is

x(t) = eλ0t+σW (t) exp(At)x(0).

Notice that this result is independent of σ. However, the previous Stratonovich
equation can be rewritten in its equivalent Itô form:

dx = Ax dt + λ0x dt + σx dW (t) +
σ2

2
x dt.

If we choose a white noise with intensity such that σ2

2
= −λ0, we arrive at the

Itô equation
dx = Ax dt + σx dW (t). (5)

As a consequence of this easy analysis, it is clear that this equation is expo-
nentially stable with probability one for σ large enough.

In general, the “moral” of this example is that Itô equations with multiplicative
noise correspond to the limit of deterministic equations with a mean-zero
fluctuating control plus a stabilising systematic control. So, the fact that an
Itô equation such as (5) is exponentially stable, even if the equation (1) is not,
should not be much more surprising than the fact that Eq. (4) with sufficiently
large λ < 0 is exponentially stable; it is only that the mathematics required
for a proof is more elaborate.

There is a non-trivial literature on stabilisation by Stratonovich noise, with
both mathematical and engineering contributions (see [3],[4] and the references
therein). Since such a noise is like a periodic zero-mean feedback control, its
stabilising effect is unexpected and very intriguing. In the finite-dimensional
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case, Arnold and his collaborators have proved that the linear differential
system (1) can be stabilised by the addition of a collection of multiplicative
noisy terms,

dx = Ax dt +
d
∑

i=1

Bix ◦ dWi(t), (6)

where Wi are mutually independent Wiener process and Bi are suitable skew-
symmetric matrices, if and only if

tr A < 0. (7)

[Note that the form of the noise is more complex than just a single multiplica-
tive term of the form σx ◦ dWt.]

The corresponding problem for linear partial differential equations has been
open for a long time, perhaps because one avenue would be to follow a similar
approach but in the infinite-dimensional case, e.g. by proving a version of the
celebrated Oseledec Multiplicative Ergodic Theorem for infinite-dimensional
spaces. In this paper we use a very simple argument to show that one can
obtain a similar stabilisation result for a linear PDE du/dt = Au with a finite
sum of Stratonovich terms as in (6). Essentially we will reduce the problem
to a finite-dimensional one and then apply the result of Arnold et al.

Although our main aim in this paper is to find out conditions under which
we can stabilise an unstable linear PDE by using suitable linear Stratonovich
noise 1 , our analysis will be more complete. Indeed, we consider a linear evo-
lution equation on a separable Hilbert space H given by

du

dt
= Au, (8)

where A is a linear (unbounded) operator, i.e., A : D(A) ⊂ H → H, and
consider the stochastically perturbed evolution equation

du = Au dt +
N
∑

i=1

Biu ◦ dWi, (9)

where Bi : D(Bi) ⊂ H → H are linear operators and Wi are mutually inde-
pendent Wiener process on the same probability space (Ω,F , P) .

In Section 2 we first prove that the stability of (8) and (9) are equivalent if
the operators Bi and A are mutually commuting and satisfy other additional
assumptions. It is remarkable that if the noise is considered in the Itô sense
it may produce stabilisation or even destabilisation under the same assump-
tions (see Caraballo & Langa [6] for a detailed analysis). Section 3 gives some
sufficient conditions that ensure the stability of the deterministic equation (8)

1 The reader is referred to Caraballo et al. [7], [5], Caraballo & Langa [6], Kwiecin-
ska [11], Leha et al. [12] for similar results but using noisy terms in the sense of
Itô.
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is transferred to the stochastic equation (9) when the operator A does not
commute with some Bi. Finally, in Section 4, we will prove that (9) becomes
exponentially stable with probability 1 for suitable operators Bi if and only
if the trace of A is negative, an infinite-dimensional analogue of the results of
Arnold et al.

2 Stability of stochastic PDEs: the commutative case

In this section we will establish a result concerning the exponential stability
of the null solution to a linear stochastic PDE. Roughly, we will show that the
presence of linear (unbounded) operators in the diffusion part do not modify
the exponential stability of the null solution provided that they commute with
the linear operator in the drift.

To start with, we will consider the problem in the Itô formulation, so that we
can apply a result due to Da Prato & Zabczyk [8] which ensures the equiva-
lence of the stochastic PDE to a nonautonomous deterministic one depending
on a random parameter, i.e. a random PDE. Then, we will transform our
Stratonovich model into its equivalent 2 Itô one and will apply this result.

Let us consider






du = Au dt +
∑d

k=1 Bku dWk,

u(0) = u0 ∈ H.
(10)

where A : D(A) ⊂ H → H, Bk : D(Bk) ⊂ H → H, k = 1, 2, · · · , d are
generators of C0−semigroups SA(t) and Sk respectively, and W1, · · · , Wd are
independent real Wiener processes.

We will need the following additional assumptions.

The operators B1, · · · , Bd generate mutually commuting C0 − groups Sk

(11)

D(B2
k) ⊃ D(A) for k = 1, · · · , d and

d
⋂

k=1

D((B∗
k)

2) is dense in H, (12)

where B∗
k denotes the adjoint operator of Bk;

C = A −
1

2

d
∑

k=1

B2
k generates a C0 − semigroup SC (13)

[Note that D(C) = D(A).]

2 This equivalence has been proved by Kunita [10] for suitable partial differential
operators. We implicitly assume that we are considering this case. It is undoubtedly
an important task to develop a general theory of stochastic PDEs in the Stratonovich
sense.

5



Now, given a fixed realisation of our Wiener processes Wk(t, ω), ω ∈ Ω, in
order to solve (10) we define

Uω(t) =
d
∏

k=1

Sk(Wk(t, ω)) and v(t) = U−1
ω (t)u(t), t ≥ 0, (14)

and consider the equation






v̇(t) = U−1
ω (t)CUω(t)v(t)

v(0) = u0,
(15)

which is a deterministic equation depending on the parameter ω. The following
result, along with the definition of a strong solution, can be found in Da Prato
and Zabczyk [8]

Proposition 2.1 Assume conditions (11)-(13). If u is a strong solution to
(10), then the process v(t, ω) defined by (14) satisfies (15). Conversely, if v
is a predictable process whose trajectories are continuously differentiable and
satisfy (15) P-a.s., then the process u(t, ω) = Uω(t)v(t, ω) takes values in D(C)
P-a.s and for almost all t, and is a strong solution to (10).

Remark 2.2 One can also find in Da Prato & Zabczyk [8] a sufficient condi-
tion ensuring solvability of (15) which could be useful in applications (see [8,
pp. 177-179] for more details).

Now, we consider our original Stratonovich version of the problem,






du = Au dt +
∑d

k=1 Bku ◦ dWk,

u(0) = u0 ∈ H.
(16)

To ensure existence of solutions to this problem, we can consider its equivalent
Itô version







du = (A + 1
2

∑d
k=1 B2

k)u dt +
∑d

k=1 Bku dWk,

u(0) = u0 ∈ H.
(17)

If we now assume conditions (11), (12), and the following (18) instead of (13),

C = A +
1

2

d
∑

k=1

B2
k, generates a C0 − semigroup SC , (18)

[we still have D(C) = D(A)] we can ensure (thanks to Proposition 2.1) that
our problem (16) can be written in an equivalent way as







v̇(t) = U−1
ω (t)AUω(t)v(t)

v(0) = u0,
(19)

We now prove the following result which, in particular, generalises a similar
one in Caraballo and Langa [6].
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Theorem 2.3 In addition to assumptions (11), (12), and (18), suppose that
A commutes with each Sk(t). Then the strongly continuous semigroup SA(t)
generated by A is exponentially stable, i.e. there exist M0, γ > 0 such that
|SA(t)| ≤ M0e

−γt for all t > 0, if and only if there exist α, C > 0 and Ω0 ⊂ Ω
with P (Ω0) = 0 such that for ω /∈ Ω0 there exists T (ω) > 0 such that the
following holds for the solution of (16),

|u(t)| ≤ C|u0|e
−αt for t ≥ T (ω) almost surely.

Proof. ⇒ Let us denote by u(t) = u(t, ω; 0, u0) the solution of (16) for

u0 ∈ D(A), and by v(t) = v(t, ω; 0, u0) the corresponding solution to (19),
i.e. v(t) = U−1

ω (t)u(t). But, owing to the commutativity of operator A and
operators Sk, the problem (19) can be written now as







v̇(t) = Av(t)

v(0) = u0 ∈ D(A),
(20)

whose solution is given by v(t) = SA(t)u0, so we have an explicit expression
for our solution u(t):

u(t) = u(t, ω; 0, u0) = Uω(t)SA(t)u0. (21)

Now, since we know that SA(t) is exponentially stable, there exist M0, γ > 0
such that |S(t)| ≤ M0e

−γt for all t > 0. It is straightforward to bound |u(t)| as
follows. First, we notice that (see e.g. Pazy [14]) there exists Mk > 0, bk ∈ R

such that |Sk(t)| ≤ Mke
bk |t|, k = 1, · · · , d. Thus,

|u(t)| ≤ |Uω(t)SA(t)u0|

≤ |Uω(t)||SA(t)||u0|

≤ MM1 · · ·Md|u0| exp

{

−γt +
d
∑

k=1

bk|Wk(t)|

}

≤ C|u0| exp

{

t

(

−γ +
d
∑

k=1

bk|Wk(t)|

t

)}

, (22)

and as

lim
t→+∞

|Wk(t, ω)|

t
= 0, for all k = 1, · · · , d, (23)

there exists Ω0 ⊂ Ω with P(Ω0) = 0 such that if ω /∈ Ω0, then

lim
t→+∞

(

γ −
d
∑

k=1

bk|Wk(t, ω)|

t

)

= γ,

and, there exists T (ω) such that for all t ≥ T (ω)

γ −
d
∑

k=1

bk|Wk(t, ω)|

t
≥

γ

2
.
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Thus, this part of the proof is complete if we set α = γ/2. If we now consider
u0 ∈ H we can argue by approximation since D(A) in dense in H.

⇐ We omit the converse since the proof is similar taking into account now

that v(t) = U−1
ω (t)u(t), the properties of strongly continuous semigroups and

the Wiener processes.

3 Stability of stochastic PDEs: the noncommutative case

Notice that under our commutativity assumptions in the previous section, the
deterministic problem is exponentially stable if and only if the stochastically
perturbed equation has the same property. However, an immediate question
arises. What happens if no commutativity holds? In this case we will be able
to prove some sufficient conditions for the exponential stability of the zero
solution.

Theorem 3.1 Assume that (11),(18) hold, and there exists γ > 0 such that
|SA(t)| ≤ e−γt for all t ≥ 0. If in addition we assume that Uω(t) is unitary for
all t ≥ 0 and almost all ω (i.e., U ∗

ω(t) = U−1
ω (t)) then, there exists α > 0 such

that the following holds for the solution of (16),

|u(t)| ≤ |u0|e
−αt

for t ≥ 0 almost surely.

Proof. First, we notice that an operator A generates a strongly continuous
semigroup SA(t) satisfying |SA(t)| ≤ eαt, α ∈ R, if and only if (Au, u) ≤ α|u|2,
for all u ∈ D(A). We can now consider our problem







v̇(t) = U−1
ω (t)AUω(t)v(t)

v(0) = u0 ∈ D(A),

and observe that, thanks to our assumptions,

d

dt
|v(t)|2 = 2(U−1

ω (t)AUω(t)v(t), v(t))

≤ 2(AUω(t)v(t), Uω(t)v(t))

≤ −2γ|Uω(t)v(t)|2

= −2γ|v(t)|2.

This implies that

|v(t)|2 ≤ |v(0)|2e−2γt, for all t ≥ 0,

and as v(t) = U−1
ω (t)u(t), we immediately obtain |u(t)| = |v(t)| ≤ |u0|e

−γt

for u0 ∈ D(A) and all t ≥ 0. Finally, the result holds true for u0 ∈ H by an
approximation argument.
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Nevertheless, when the operator U is not unitary, we can still prove a sufficient
condition ensuring this exponential behaviour of solutions. Notice that we do
not need the mutual commutativity of the operators Bk.

Theorem 3.2 Assume that A generates a strongly continuous semigroup SA(t)
such that |S(t)| ≤e−γt, for all t ≥ 0 and some γ > 0. Assume that Bk : H → H
is a linear and bounded operator for k = 1, · · · , d such that there exists bk ≥ 0
satisfying

bk|u|
2 ≤ (Bku, u), ∀ 1 ≤ k ≤ d, u ∈ H.

Then for every initial value u0 ∈ D(A) such that u0 6= 0, the corresponding
solution to (16), u(·) = u(·, ω; 0, u0), is defined in the future and satisfies
|u(t)| > 0 for all t > 0 almost surely,

lim sup
t→+∞

1

t
log |u(t)| ≤ −

(

γ −
d
∑

k=1

(|Bk|
2 − b2

k)

)

P−a.s.

Proof. Take u0 ∈ D(A) such that u0 6= 0, then it follows from the the-
ory of linear stochastic partial differential equations that the solution u(t) to
(16) (which in addition has a continuous version) is defined in the future and
|u(t)| > 0 for all t > 0, P−a.s. (see Da Prato & Zabczyk [8] p. 190-191). Then,
in order to apply Itô’s formula, we consider the equivalent Itô formulation for
our problem (17), i.e.

u(t) = u0 +
∫ t

0

(

Au(s) +
1

2

d
∑

k=1

B2
ku(s)

)

ds +
d
∑

k=1

∫ t

0
Bku(s) dWk(s).

Thus, it follows (we omit the argument s in the integrals for short)

log |u(t)|2 (24)

≤ log |u0|
2 +

∫ t

0

2
(

u, Au + 1
2

∑d
k=1 B2

ku
)

+
∑d

k=1 |Bku|
2

|u|2
ds

−
1

2

d
∑

k=1

∫ t

0

4(u, Bku)2

|u|4
ds + M(t),

≤ log |u0|
2 +

∫ t

0

2
(

(u, Au) +
∑d

k=1

(

1
2
(u, B2

ku) + 1
2
|Bku|

2 − b2
k|u|

2
))

|u|2
ds

+ M(t)

≤ log |u0|
2 + 2

∫ t

0

(

−γ +
d
∑

k=1

(|Bk|
2 − b2

k)

)

ds + M(t)

where M(t), owing to our assumptions, is a continuous local martingale given
by

M(t) = 2
d
∑

k=1

∫ t

0

(u(s), Bku(s))

|u(s)|2
dWk(s),
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and, by means of the law of iterated logarithm, satisfies

lim sup
t→+∞

M(t)

t
= 0.

Dividing both sides of (24) by t and taking limsup we complete the proof.

Observe that, in this case, we need that the diffusion term be small with
respect to the drift to ensure exponential stability. In the particular case in
which |Bk|

2 = b2
k (what happens, for instance when Bk is given by Bku = bku),

the exponential decay rate is the same since here |Bk|
2 − b2

k = 0.

4 Stabilisation of deterministic PDEs

Now, we will prove that the negative trace assumption (7) (which will be
stated more precisely later on) is a necessary and sufficient condition for the
stabilisation of a linear PDE by using a suitable Stratonovich noise.

In order to motivate our general argument we consider the following simple
example, a one-dimensional heat equation



























∂u(t,x)
∂t

= ∂2u(t,x)
∂x2 + 2u(t, x), t > 0, 0 < x < π,

u(t, 0) = u(t, π) = 0, t > 0,

u(0, x) = u0(x), x ∈ [0, π].

(25)

This problem can be formulated in our framework by setting H = L2([0, π]),
A = ∂2

∂x2 + 2I; it follows that D(A) = H1
0 ([0, π]) ∩ H2([0, π]). It is well known

that this problem can be solved explicitly yielding

u(t, x) =
∞
∑

n=1

ane−(n2−2)t sin nx,

where u0(x) =
∑∞

n=1 an sin nx. Hence, it is clear that the zero solution of
our problem (25) is not stable. But we will choose an appropriate operator
B : H → H such that











du(t, x) = Au(t, x) dt + Bu(t, x) ◦ dW (t)

u(0, x) = u0(x),
(26)

becomes exponentially stable with probability one. It is worth pointing out
that the operator B cannot commute with A if we wish to obtain such a
stabilisation result.

Notice that operator A has a sequence of eigenvalues given by λn = 2 −

n2, n ≥ 1, with corresponding eigenfuntions en =
√

2
π

sin nx, which form an
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orthonormal basis of the Hilbert space H. This means that any u ∈ H can be
represented as

u =
∑

k≥1

(u, ek)ek =
∑

k≥1

ukek.

Now we define B : H → H as Be1 = −σe2, Be2 = σe1, Ben = 0, n ≥ 3 which
is a linear operator (and does not commute with A). Then, using the Fourier
representation for the solution u(t) to (26), our problem can be re-written as











∑

k≥1 duk(t) ek =
∑

k≥1 λkuk(t)ek dt + (σu2(t)e1 − σu1(t)e2) ◦ dW (t)

u(0) = u0 =
∑

k≥1 u0kek.
(27)

Identifying the coefficients we get two coupled problems (the first a 2-dimensional
stochastic ordinary differential system, and the second an infinite-dimensional
one which is exponentially stable since λn < 0 for all n ≥ 3):













































du1(t)

du2(t)





 =







λ1 0

0 λ2













u1(t)

u2(t)





+







0 σ

−σ 0













u1(t)

u2(t)





 ◦ dW (t)







u1(0)

u2(0)





 =







u01

u02





 ,

(28)

and










∑

k≥3 duk(t)ek =
∑

k≥1 λkuk(t)ek dt
∑

k≥3 uk(0)ek =
∑

k≥3 u0kek.
(29)

Now, as the matrix







0 1

−1 0





 is a basis for the linear space of skew symmetric

2×2 matrices, Arnold et al. proved in [4] that the leading Lyapunov exponent
of solutions to (28) tends to (λ1 + λ2) /2 = −1/2 as the parameter σ grows to
+∞. As it easily follows that the leading Lyapunov exponent for the solutions
to (29) is λ3 = −7, we can ensure that the top Lyapunov exponent for the
solutions of (27) is negative.

As can be seen in this example, the main idea for the stabilisation is to de-
compose the problem into two new problems: a finite-dimensional one which
can be stabilised by using previously available methods, and another infinite-
dimensional problem which is already exponentially stable. This idea can be
extended in a general way to solve the stabilisation problem for a class of
deterministic PDEs which appears very often in applications.

Consider the infinite-dimensional linear system

u̇ = Au (30)

where A : D(A) ⊂ H → H is a linear operator which has a sequence of
eigenvalues λj with corresponding eigenfunctions ej. We assume that these

11



eigenfunctions form an orthonormal basis of the separable Hilbert space H,
and that the eigenvalues λj are bounded above (but not necessarily below),
so that they can be ordered λ1 ≥ λ2 ≥ ....We denote by |·| the norm in H and
by (·, ·) its associated scalar product.

Now, we can prove our main stabilisation result.

Theorem 4.1 Assume that the trace of A is negative, in other words that

∞
∑

j=1

λj < 0. (31)

Then there exist linear operators Bk : H → H, k = 1, 2, ..., d, such that for

du = Au dt +
d
∑

j=1

Bku ◦ dWk (32)

the zero solution is exponentially stable with probability one. The operators Bk

are such that for some N > 0, the N × N matrices D1, ..., Dk defined as

Dk =





















(Bke1, e1) (Bke2, e1) · · · (BkeN , e1)

(Bke1, e2) (Bke2, e2) · · · (BkeN , e2)

: : :

(Bke1, eN) (Bke2, eN) · · · (BkeN , eN)





















are skew-symmetric.

Conversely, if there exist linear operators Bk : H → H, k = 1, 2, ..., d with the
above properties for which the zero solution of (32) is exponentially stable with
probability one then the trace of A is negative, i.e. (31) holds.

Proof. Assumption (31) implies, in particular, that there exists an N ∈ N

such that
N
∑

j=1

λj < 0.

Let P : H → PH be the projection onto the first N eigenfunctions, and Q its
orthogonal complement, i.e, given u ∈ H we have

Pu =
N
∑

j=1

(u, ej)ej, Qu =
∞
∑

j=N+1

(u, ej)ej.

Write p = Pu and q = Qu, and let

A− = PAP and A+ = QAQ.

In particular, A− corresponds to a finite-dimensional (N × N) matrix with
negative trace, while A+ is a negative definite operator since it easily follows
that (A+u, u) ≤ λN+1|u|

2 for any u ∈ H.

12



Our original deterministic partial differential equation (30) is equivalent to
the coupled system

ṗ = A−p

q̇ = A+q,

so that all the possible ‘unstable’ behaviour occurs in the finite-dimensional
p equation, while the origin is stable for the q equation. Since the trace of
A− is negative, this part can be stabilised thanks to the finite-dimensional
results by Arnold and his collaborators (see [3] and [4]), i.e. there exist N ×N
skew-symmetric matrices C(k) such that the stochastic ordinary differential
system

dp = A−p dt +
d
∑

k=1

C(k)p ◦ dWk (33)

is exponentially stable with probability one. Now we define operators Mk :
H → H as follows: if we assume that u =

∑

k≥1 ukek and C(k) =
((

c
(k)
ij

))

1≤i,j≤N
,

and we set

Bku =
N
∑

i=1





N
∑

j=1

c
(k)
ij uj



 ei,

then it follows that the equation

du = Au dt +
d
∑

k=1

Bku ◦ dWk

is now stable.

Conversely, if there exist operators Bk, k = 1, 2, ..., d, such that (32) is path-
wise exponentially stable, then it is easy to check that for any r ∈ N, the
corresponding finite dimensional system in R

r

dpr = A−pr dt +
d
∑

k=1

Dkpr ◦ dWk (34)

is also exponentially stable with probability one: indeed, |u(t, ω)u0| ≤ Ce−γt|u0|
implies that |Pru(t, ω)u0| ≤ Ce−γt|u0|, and therefore the solutions to (34) de-
cay to zero exponentially fast and almost surely. Now we claim that there
exists r ∈ N such that

r
∑

i=1

λi < 0.

If not, i.e., if for any r ∈ N we have that
∑r

i=1 λi ≥ 0, then, in particular we
have

∑N
i=1 λi ≥ 0, contradicting the result of Arnold et al. since the ordinary

differential system dpN = A−pN dt would have been stabilised by using a
finite number of skew-symmetric matrices despite the fact that the trace of
the matrix A− is non-negative. So

∑N
i=1 λi is negative and consequently

∑∞
i=1 λi

is negative too.

Conclusions
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In this paper we have characterised when a wide class of linear PDEs can be
stabilised by using a suitable Stratonovich noise. We have also indicated why
this is more significant than the similar effect produced by Itô noise, which
really only reflects the systematic linear stabilisation inherent in such terms.
However, we should remark here that noise can also produce destabilisation
(see Arnold [2] pp. 162 for more details).
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