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Abstract

The long-time behaviour of a stochastic 3D LANS-α model on a
bounded domain is analysed. First, we reformulate the model as an
abstract problem. Next, we establish sufficient conditions ensuring the
existence of stationary (steady state) solutions of this abstract non-
linear stochastic evolution equation, and study the stability properties
of the model. Finally, we analyse the effects produced by stochastic
perturbations in the deterministic version of the system (persistence of
exponential stability as well as possible stabilisation effects produced
by the noise). The general results are applied to our stochastic LANS-α
system throughout the paper.

1 Introduction

In this paper we are mainly interested in the study of the asymptotic be-
haviour of solutions of the 3D-Lagrangian averaged Navier-Stokes (LANS-α)
equations, with homogeneous Dirichlet boundary condition in a bounded do-
main, in the case in which random perturbations appear. To be more precise,
let D be a connected and bounded open subset of R3, with a C2 boundary
∂D. We denote by A the Stokes operator, and consider the system





∂t(u− α∆u) + ν(Au− α∆(Au)) + (u · ∇)(u− α∆u)
−α∇u∗ ·∆u +∇p = F (t, u) + G(t, u)Ẇ (t), in D × (0, +∞),
∇ · u = 0, in D × (0,+∞),
u = 0, Au = 0, on ∂D × (0,+∞),
u(0) = u0, in D,

(1)
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where u = (u1, u2, u3) and p are unknown random fields on D × (0, +∞),
representing, respectively, the large-scale (or averaged) velocity and the pres-
sure, in each point of D × (0, +∞), of an incompressible viscous fluid with
constant density filling the domain D. The constants ν > 0 and α > 0
represent respectively the kinematic viscosity of the fluid, and the square
of the spatial scale at which fluid motion is filtered. The terms F (t, u) and
G(t, u)Ẇ (t) are external forces depending eventually on u, where Ẇ (t) de-
notes the time derivative of a cylindrical Wiener process. Finally, u0 is a
given initial velocity field.

The deterministic version of (1), i.e. when G = 0, has received much
attention over the last years. The main reason is that this model has be-
come very useful in order to approximate the 3D Navier-Stokes equations
(notice that when α goes to zero, this problem converges to the usual 3D
Navier-Stokes model). More precisely, the global well-posedness of weak so-
lutions for the deterministic Lagrangian averaged Navier-Stokes equations
on bounded domains has been established in [8] and [14] amongst others,
and the asymptotic behaviour can be found in [8]. Similar results have been
proved by Foias et al. in [10] in the case of periodic boundary conditions.

However, in order to consider a more realistic model for our problem,
it is sensible to consider some kind of ‘noise’ in the equations. This may
reflect, for instance, some environmental effects on the phenomenon, some
external random forces, etc. To the best of our knowledge, the existence
and uniqueness of solution of the stochastic version (1) we will consider in
this paper has been analysed in [7] (see also [6]).

We start in this paper the analysis of the asymptotic behaviour of the
stochastic version, and point out that our analysis, in particular, also pro-
vides information on the long-time dynamics of the deterministic model (by
simply setting G = 0 in the appropriate formulas).

After reading this paper, one could immediately wonder about the pos-
sibility of doing a similar analysis in the case of general unbounded domains
(e.g. channels, pipes, etc.). This is beyond the scope of this paper since one
would first need some results on the existence of solutions of such a model,
and, as far as we know, this still has not been proved.

Being possible to carry out our analysis working directly with the 3D
LANS-α model, we have preferred to establish a theory for an abstract
stochastic model and then apply it to our system. In this way, with only a
little extra work one may be able to apply these abstract results to other
models of interest.

Although the techniques we use in the present paper are similar to those
used in [5] for the stochastic 2D Navier-Stokes model (in fact, these can be
considered, in certain sense, as standard techniques for the investigation of
stability properties for stochastic PDEs, see e.g. [2]), it is worth pointing out
that neither the stochastic 2D Navier-Stokes equations from [5] falls within
the abstract framework in the present paper, nor this abstract setting is a
particular case of the model in [5]. Nevertheless, the results we will prove
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may be applied to other interesting models as, for example, some stochastic
reaction-diffusion equations (by simply setting operator B̃ = 0 in problem
(23) below), or the same model but for periodic boundary conditions, etc.

The content of the paper is as follows. In Section 2 we show how our
problem can be reformulated as an abstract stochastic model. In Section 3
we first establish the existence and eventual uniqueness of stationary steady
state solutions when the viscosity is large enough, and prove a result ensur-
ing the exponential stability (in mean square and pathwise) of the stationary
solution. Finally, the stabilising effects produced by the noise in the deter-
ministic model is stated in Section 4.

2 Variational and Abstract formulation of the prob-
lem

In this section we will rewrite our problem as an abstract model. The
main reasons are the following. On the one hand, the results are presented,
in our opinion, with more clarity and the computations are done in a more
simplified way. On the other hand, the abstract formulation may be applied,
in addition, to other models as we commented in Section 1.

2.1 The cylindrical Wiener process

Let {Ω,F , P} be a complete probability space, and {Ft}t≥0 an increasing
and right continuous family of sub σ-algebras of F , such that F0 contains
all the P null sets of F . Let {βj(t), t ≥ 0, j = 1, 2, ...} be a sequence of mu-
tually independent standard real Ft-Wiener processes defined on this space,
and suppose that K is a given separable Hilbert space, and {ej ; j = 1, 2, ...},
an orthonormal basis of K. We denote by {W (t); t ≥ 0}, the cylindrical
Wiener process with values in K defined formally as

W (t) =
∞∑

j=1

βj(t)ej

It is well known that this series does not converge in K, but rather in any
Hilbert space K̃ such that K ⊂ K̃, and the injection of K in K̃ is Hilbert-
Schmidt (see e.g. [9]).

Let T > 0 be given. For any separable Banach space X, we will denote
by M2

Ft
(0, T ; X) the space of all processes ϕ ∈ L2(Ω × (0, T ), dP × dt; X)

that are Ft-progressively measurable. The space M2
Ft

(0, T ; X) is a Hilbert
subspace of L2(Ω× (0, T ), dP × dt; X).

We will write L2(Ω;C([0, T ];X)) to denote the space of all continuous
and Ft-progressively measurable X-valued processes {ϕ(t); 0 ≤ t ≤ T}
satisfying

E

(
sup

0≤t≤T
‖ϕ(t)‖2

X

)
< ∞.
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For another separable Hilbert space H̃, with scalar product (·, ·) eH , let us
denote by L2(K; H̃) the separable Hilbert space of Hilbert-Schmidt opera-
tors from K into H̃, and by ((·, ·))L2(K; eH)

and ‖ · ‖L2(K; eH)
the scalar product

and norm in L2(K; H̃),where for all R and S in L2(K; H̃),

((R, S))L2(K; eH)
=

∞∑

j=1

(Rej , Sej) eH .

For any process Ψ ∈ M2
Ft

(0, T ;L2(K; H̃)) one can define the stochastic
integral of Ψwith respect to the cylindrical Wiener process W (t), denoted

∫ t

0
Ψ(s) dW (s), 0 ≤ t ≤ T,

as the unique continuous H̃-valued Ft-martingale such that for all h ∈ H̃,

(
∫ t

0
Ψ(s) dW (s), h) eH =

∞∑

j=1

∫ t

0
(Ψ(s)ej , h) eH dβj(s), 0 ≤ t ≤ T,

where the integral with respect to βj(s) is the Itô integral, and the se-
ries converges in L2(Ω;C([0, T ])). See e.g. [9] for the properties of the
stochastic integral defined in this way. In particular, we note that if Ψ ∈
M2
Ft

(0, T ;L2(K; H̃)) and φ ∈ L2(Ω; L∞(0, T ; H̃)) is Ft-progressively mea-
surable, then the series

∞∑

j=1

∫ t

0
(Ψ(s)ej , φ(s)) eH dβj(s), 0 ≤ t ≤ T,

converges in L1(Ω; C([0, T ])),and defines a real valued continuous Ft-mar-
tingale. We will use the notation

∫ t

0
(Ψ(s)dW (s), φ(s)) :=

∞∑

j=1

∫ t

0
(Ψ(s)ej , φ(s)) eH dβj(s), 0 ≤ t ≤ T.

2.2 Notations and properties of the nonlinear term

We first establish some notations and recall some properties regarding the
nonlinear term (u · ∇)(u− α∆u)− α∇u∗ ·∆u appearing in (1).

We will denote (·, ·)and |·|, respectively, the scalar product and associated
norm in (L2(D))3, and by (∇u,∇v)the scalar product in ((L2(D))3)3of the
gradients of uand v. We consider the scalar product in (H1

0 (D))3defined by

((u, v)) = (u, v) + α(∇u,∇v), u, v ∈ (H1
0 (D))3, (2)
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where its associated norm ‖ · ‖ is, in fact, equivalent to the usual gradient
norm.
Let us denote by H the closure in (L2(D))3 of the set

V = {v ∈ (D(D))3 : ∇ · v = 0 in D},

and by V the closure of V in (H1
0 (D))3. Then, H is a Hilbert space equipped

with the inner product of (L2(D))3, and V is a Hilbert subspace of (H1
0 (D))3.

Denote by A the Stokes operator, with domain D(A) = (H2(D))3 ∩ V,
defined by

Aw = −P(∆w), w ∈ D(A),

where P is the projection operator from (L2(D))3 onto H. Recall that as
∂D is C2, |Aw| defines in D(A) a norm which is equivalent to the (H2(D))3-
norm, i.e., there exists a constant c1(D) > 0, depending only on D, such
that

‖w‖(H2(D))3 ≤ c1(D)|Aw|, ∀w ∈ D(A), (3)

and so D(A) is a Hilbert space with respect to the scalar product

(v, w)D(A) = (Av, Aw).

For u ∈ D(A) and v ∈ (L2(D))3, we define (u · ∇)v as the element of
(H−1(D))3 given by

〈(u · ∇)v, w〉 =
3∑

i,j=1

〈∂ivj , uiwj〉, for all w ∈ (H1
0 (D))3. (4)

Observe that (4) is meaningful, since H2(D) ⊂ L∞(D), and H1
0 (D) ⊂

L6(D), with continuous injections. This implies that uiwj ∈ H1
0 (D), and

there exists a constant c2(D) > 0, depending only on D, such that

|〈(u · ∇)v, w〉| ≤ c2(D)|Au||v|‖w‖, ∀(u, v, w) ∈ D(A)×(L2(D))3×(H1
0 (D))3.

(5)
Observe also that if v ∈ (H1(D))3, then the definition above coincides
with the definition of (u · ∇)v as the vector function whose components
are

∑3
i=1 ui∂ivj , for j = 1, 2, 3. However, as it is not known whether the

solutions of the stochastic problem (1) have the same regularity as in the
deterministic case (we only can ensure H2 instead of H3), it is necessary the
present extension.

Now, if u ∈ D(A), then ∇u∗ ∈ (H1(D))3×3 ⊂ (L6(D))3×3, and conse-
quently, for v ∈ (L2(D))3, we have that ∇u∗ · v ∈ (L3/2(D))3 ⊂ (H−1(D))3,
with

〈∇u∗ · v, w〉 =
3∑

i,j=1

∫

D
(∂jui)viwj dx, for all w ∈ (H1

0 (D))3. (6)
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It follows that there exists a constant c3(D) > 0, depending only on D, such
that

|〈∇u∗ · v, w〉| ≤ c3(D)|Au||v|‖w‖, ∀(u, v, w) ∈ D(A)× (L2(D))3× (H1
0 (D))3.

(7)
We have the following results (see [7] for the proofs).

Proposition 2.1 For all (u,w) ∈ D(A) × D(A) and all v ∈ (L2(D))3, it
follows

〈(u · ∇)v, w〉 = −〈∇w∗ · v, u〉. (8)

Consider now the trilinear form defined by

b#(u, v, w) = 〈(u·∇)v, w〉+〈∇u∗·v, w〉, (u, v, w) ∈ D(A)×(L2(D))3×(H1
0 (D))3.

Proposition 2.2 The trilinear form b# satisfies

b#(u, v, w) = −b#(w, v, u), ∀(u, v, w) ∈ D(A)× (L2(D))3 ×D(A), (9)

and consequently,

b#(u, v, u) = 0, ∀(u, v) ∈ D(A)× (L2(D))3. (10)

Moreover, there exists a constant c(D) > 0, depending only on D, such that

|b#(u, v, w)| ≤ c(D)|Au||v|‖w‖, ∀(u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3,

(11)
|b#(u, v, w)| ≤ c(D)‖u‖|v||Aw|, ∀(u, v, w) ∈ D(A)×(L2(D))3×D(A). (12)

Thus, in particular, b# is continuous on D(A)× (L2(D))3 × (H1
0 (D))3.

2.3 Existence and uniqueness of a variational solution

Assume that F and G are measurable, Lipschitz mappings from Ω×(0,+∞)×
V into (H−1(D))3 and from Ω× (0, +∞)×V into L2(K; (L2(D))3), respec-
tively. More precisely, suppose that, for all u, v ∈ V, F (·, u) and G(·, v) are
Ft−progressively measurable, and

‖F (t, u)− F (t, v)‖(H−1(D))3 ≤ LF ‖u− v‖ , dP × dt− a.e., (13)

‖G(t, u)−G(t, v)‖L2(K;(L2(D))3) ≤ LG ‖u− v‖ , dP × dt− a.e.. (14)

We also suppose

F (t, 0) ∈ L4(Ω;L2(0, T ; (H−1(D))3), for all T > 0, (15)

G(t, 0) ∈ L4(Ω;L2(0, T ;L2(K; (L2(D))3)), for all T > 0, (16)

u0 ∈ L4(Ω,F0, P ;V ). (17)
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Definition 2.3 A variational solution to problem (1) is a stochastic process
u ∈ M2

Ft
(0, T ; D(A))∩L2(Ω;L∞(0, T ; V )), for all T > 0, weakly continuous

with values in V , such that for all w ∈ D(A),

((u(t), w)) + ν

∫ t

0
(u(s) + αAu(s), Aw) ds +

∫ t

0
b#(u(s), u(s)− α∆u(s), w) ds

= ((u0, w)) +
∫ t

0
〈F (s, u(s)), w〉 ds + (

∫ t

0
G(s, u(s)) dW (s), w), t ≥ 0. (18)

Observe that (18) follows from (1) by multiplying the first equation in
(1) by w ∈ D(A), taking into account the definition of the scalar product
((·, ·)), the definition of b#, and the equality (8).

Now, as a consequence of Theorem 3.3 in [7] we have the following result.

Theorem 2.4 Under the hypotheses (13)-(17), there exists a unique varia-
tional solution u of (1), and moreover,

u ∈ L4(Ω; C([0, T ]; V )) ∩ L4(Ω;L2(0, T ;D(A))), for all T > 0.

2.4 Formulation of problem (1) as an abstract problem

As we commented at the beginning of Section 2, we are going to rewrite our
model (1) as an abstract problem.

Let us set H = V, with scalar product (u, v)H = ((u, v)), and associated
norm |u|H = ‖u‖, and U = D(A), with scalar product ((u, v))U = (Au,Av),
and associated norm ‖u‖U = |Au|. Then, H and U are two separable real
Hilbert spaces, such that U ⊂ H with compact injection, and U is dense in
H.

We identify H with its topological dual H∗, but we consider U as a
subspace of H∗, identifying v ∈ U with the element fv ∈ H∗, defined by

fv(h) = (v, h)H, ∈ H.

We denote by 〈·, ·〉 the duality product between U∗ and U . Let us define

〈Ãu, v〉 = ν(Au, v) + να(Au,Av), u, v ∈ D(A).

It is clear that for all v ∈ D(A),

2〈Ãv, v〉 = 2ν(Av, v) + 2να(Av, Av) ≥ 2να|Av|2,
and, if we denote by λk and wk, k ≥ 1, the eigenvalues and their correspond-
ing eigenvectors associated to A,

〈Ãwk, v〉 = νλk((wk, v)).

Thus, taking
α̃ = 2να, (19)

we have that
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a) Ã is a linear continuous operator Ã ∈ L(U ,U∗), such that

a1) Ã is self adjoint,

a2) there exists α̃ > 0, such that

2〈Ãv, v〉 ≥ α̃‖v‖2
U , for all v ∈ U , (20)

On the other hand, denote

〈B̃(u, v), w〉 = b#(u, v − α∆v, w), (u, v, w) ∈ D(A)×D(A)×D(A),

((F̃ (t, u), w)) = 〈F (t, u), w〉, (u,w) ∈ V × V.

Then, it is straightforward to check that if we take

c1 = (1 + α)c1(D)c(D), L eF = LF , (21)

we obtain that

b) B̃ : U × U → U∗ is a bilinear mapping such that

b1) 〈B̃(u, v), u〉 = 0, for all u, v ∈ U ,

b2) ‖B̃(u, v)‖U∗ ≤ c1|u|H‖v‖U , for all (u, v) ∈ U × U ,

b3) |〈B̃(u, v), w〉| ≤ c1‖u‖U‖v‖U |w|H, for all u, v, w ∈ U ,

c) F̃ : Ω× (0,+∞)×H → H is a random mapping such that

c1) for all v ∈ H, F̃ (·, v) is Ft−progressively measurable,

c2) F̃ (·, 0) ∈ M2
Ft

(0, T ;H), for all T ≥ 0,

c3) |F̃ (t, u)−F̃ (t, v)|H ≤ L eF |u− v|H , dP×dt a.e. for all u, v ∈ H.

Now, let I denote the identity operator in H, and define G̃(t, u) as

G̃(t, u) = (I + αA)−1 ◦ P ◦G(t, u), u ∈ V.

First, observe that I + αA is bijective from D(A) onto H, and

(((I + αA)−1f, w)) = (f, w), for all f ∈ H, w ∈ V.

Thus, for each f ∈ H,

‖(I + αA)−1f‖2 = (f, u) ≤ |f | |u| ,

where u = (I + αA)−1f, i.e., (u,wk) + α(Au,wk) = (f, wk), for all k ≥ 1 so,
(1 + αλk)(u,wk) = (f, wk), which implies

(u, wk) =
1

(1 + αλk)
(f, wk) ≤ 1

(1 + αλ1)
(f, wk),
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|u|2 =
∞∑

k=1

(u,wk)2 ≤ 1
(1 + αλ1)2

∞∑

k=1

(f, wk) =
1

(1 + αλ1)2
|f |2.

Therefore,

‖(I + αA)−1f‖2 ≤ 1
1 + αλ1

|f |2,

and consequently, taking

L eG =
LG√

1 + αλ1
, (22)

we obtain that

d) G̃ : Ω × (0, +∞) × H → L2(K;H) is a measurable random mapping
such that

d1) for any v ∈ H, G̃(·, v) is Ft-progressively measurable,

d2) G̃(·, 0) ∈ M2
Ft

(0, T ;L2(K;H)), for all T ≥ 0,

d3) ‖G̃(t, u)−G̃(t, v)‖L2(K;H) ≤ L eG |u− v|H , dP×dt a.e. for all u, v ∈ H.

Next, for each j ≥ 1, and all (t, u, w) ∈ (0,+∞)× V ×D(A), we have

(G(t, u)ej , w) = ((I + αA)(G̃(t, u)ej), w) = ((G̃(t, u)ej , w)),

and, for all u ∈ M2
Ft

(0, T ; V ), (t, w) ∈ (0, T )×D(A), it follows

(
∫ t

0
G(s, u(s)) dW (s), w) =

∞∑

j=1

∫ t

0
(G(s, u(s))ej , w) dβj(s)

=
∞∑

j=1

∫ t

0
((G̃(s, u(s))ej , w)) dβj(s) = ((

∫ t

0
G̃(s, u(s)) dW (s), w)).

Consequently, in a abstract framework, a variational solution of problem
(1) is, equivalently, a stochastic process

u ∈ M2
Ft

(0, T ;U) ∩ L2(Ω;L∞(0, T ;H)), for all T > 0,

such that the equation

u(t) +
∫ t

0
Ãu(s) ds +

∫ t

0
B̃(u(s), u(s)) ds

= u0 +
∫ t

0
F̃ (s, u(s)) ds +

∫ t

0
G̃(s, u(s)) dW (s), t ≥ 0, (23)

is satisfied in U∗, a.s. for all t ≥ 0.
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Finally, observe that if u ∈ D(A), then

λ2
1|u|2 ≤ |Au|2, |∇u|2 = (Au, u) ≤ |Au||u|,

and consequently,

‖u‖2 = |u|2 + α|∇u|2 ≤ 1 + αλ1

λ2
1

|Au|2, for all u ∈ D(A).

Thus, if we take

c2 =
√

1 + αλ1

λ1
, (24)

we can write
|u |H ≤ c2 ‖u‖U , for all u ∈ U . (25)

3 A pathwise stability result for stationary solu-
tions

In this section we analyse the stability properties of the stationary solutions
to (1). For this reason, we suppose that F̃ (t, v) = F̃ (v) (i. e. F (t, v) = F (v))
is independent of ω and t. Associated to (23), we consider its deterministic
version

u(t) +
∫ t

0
Ãu(s) ds +

∫ t

0
B̃(u(s), u(s)) ds = u0 +

∫ t

0
F̃ (u(s)) ds, t ≥ 0.(26)

Definition 3.1 It is said that u∞ ∈ U is a stationary solution of (26) if

Ãu∞ + B̃(u∞, u∞) = F̃ (u∞). (27)

Observe that a stationary solution of (26) is a stationary solution of the
corresponding variational formulation of (1) when G = 0.

We have the following result.

Lemma 3.2 Suppose that
α̃ > 2c2

2L eF . (28)

Then there exists a stationary solution u∞ ∈ U of (26).
If moreover

(α̃− 2c2
2L eF )2 > 4c1c

2
2|F̃ (0)|H, (29)

then the stationary solution is unique.

Proof. As the proof follows the same lines as those of Theorem 10.1 in [17]
(see also [5]), we omit it.
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Observe that, for example, condition (28) can be written for the problem
(1) as

ναλ2
1 > (1 + αλ1)LF .

Thus, the existence of stationary solutions is guaranteed provided the vis-
cosity dominates the external forcing term, and the stationary solution is
unique when the viscosity is large enough (see condition (29)).

Now we can study the pathwise stability properties of the stationary
solutions.

Theorem 3.3 Let u∞ ∈ U be a stationary solution of problem (26), and
suppose there exist constants M̃ ≥ 0, θ > 0, such that a.e. in Ω× (0,+∞),

‖G̃(t, u∞)‖2
L2(K;H) ≤ M̃e−θt, (30)

and
α̃ > c1 |u∞|H + c2

2(2L eF + L2
eG) . (31)

Then, there exist constants γ ∈ (0, θ) and M ≥ 0 such that

E |u(t)− u∞|2H ≤
(

E|u0 − u∞|2H +
M

θ − γ

)
e−γt, for all t ≥ 0, (32)

for any solution u(t) of (23). Furthermore, u∞ is the unique stationary so-
lution of problem (26), and there exists γ̃ > 0 such that for any solution u(t)
of (23) there is a random time T (u0, ω) ≥ 0, such that for almost all ω ∈ Ω

|u(t, ω)− u∞|2H ≤ e−eγt, for all t ≥ T (u0, ω). (33)

Proof. Taking into account (23) and (27), it is easy to see, by applying
Itô’s formula to the process eγt |u(t)− u∞|2H, and using a2), c3), d3) and
(30), that

eγtE |u(t)− u∞|2H
≤ E|u0 − u∞|2H + γ

∫ t

0
eγsE |u(s)− u∞|2H ds

−α̃

∫ t

0
eγsE ‖u(s)− u∞‖2

U ds

+2E
∣∣∣∣
∫ t

0
eγs〈B̃(u(s), u(s))− B̃(u∞, u∞), u(s)− u∞〉 ds

∣∣∣∣

+2c2
2L eF

∫ t

0
eγsE ‖u(s)− u∞‖2

U ds

+
∫ t

0
eγs

(
Mεe

−θs + (1 + ε)c2
2L

2
eGE ‖u(s)− u∞‖2

U
)

ds, (34)

with Mε = (1 + 1/ε)M̃ and ε > 0.
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By b1) and b2), we have

〈B̃(u(s), u(s))− B̃(u∞, u∞), u(s)− u∞〉
= 〈B̃(u∞, u(s)− u∞), u(s)− u∞〉
≤ c1 |u∞|H ‖u(s)− u∞‖2

U ,

and thus, by (25), we obtain from (34)

eγtE|u(t)− u∞|2H ≤ E|u0 − u∞|2H +
Mε

γ − θ

(
e(γ−θ)t − 1

)
(35)

+
(
γc2

2 − α̃ + c1 |u∞|H + 2c2
2L eF + (1 + ε)c2

2L
2
eG

)∫ t

0
eγsE ‖u(s)− u∞‖2

U ds.

By assumption (31), we can choose ε > 0 and 0 < γ < θ such that

γc2
2 − α̃ + c1 |u∞|H + 2c2

2L eF + (1 + ε)c2
2L

2
eG ≤ 0,

and (32) holds.
As for the uniqueness of u∞, notice that setting G̃ = 0 as well as its

corresponding associated constants M̃ = 0 and L eG = 0, condition (31) en-
sures that any solution of the deterministic model approaches the stationary
solution u∞ with an exponential rate.

The proof of the pathwise exponential convergence follows from the stan-
dard and well known technique based on the application of the Itô formula,
the Burkholder-Davis-Gundy and Tchebyshev inequalities, and the Borel-
Cantelli lemma (see, e.g. [5] for a similar proof in the case of a stochastic
2D Navier-Stokes model).

Remark 3.4 Observe that, for problem (1), conditions (30) and (31) be-
come

‖G(t, u∞)‖2
L2(K;H) ≤ M̃(1 + αλ1)e−θt,

2ανλ2
1 > c1λ

2
1‖u∞‖2 + 2(1 + αλ1)LF + L2

G.

And the conclusion of Theorem 3.3 ensures the pathwise exponential decay
of the L2 gradient norm of the solution.

Remark 3.5 Although we content ourselves in this paper with the analysis
of the exponential asymptotic behaviour of the stationary solutions of our
problem, it is also possible to prove more general results concerning differ-
ent convergence rate, e.g. polynomial or even super-exponential (see, for
instance, [2]).

4 Stabilisation results.

It is well known that stochastic perturbations can produce stabilising as well
as destabilising effects on the long-term behaviour of a deterministic evolu-
tion system (see for example [1], [16] for the finite dimensional framework,

12



and [3], [4] for the infinite dimensional context). We will not discuss in this
paper the suitability of considering one kind of noise or other (say Itô versus
Stratonovich) and refer the reader to the previous papers (especially [3] and
[4]) for more details on this topic. Instead, we will be interested in improving
the stability properties of our model when a stochastic perturbation appears
in the system.

As an auxiliary result, we are going to prove a lemma which states
that, when two initial data coincide in a subset Ω0 ⊂ Ω with P (Ω0) > 0,
then the corresponding solutions to (23) coincide in a subset Ω1 ⊂ Ω0 with
P (Ω1) = P (Ω0). This result is a nontrivial consequence of the uniqueness
of solutions of problem (23), and will be crucial in the rigorous proof of our
main stabilisation result, namely Theorem 4.3.

Lemma 4.1 Let u0
i : Ω → H, i = 1, 2, be two F0−measurable random

variables such that E|u0
i |2H < +∞. Suppose there exist their corresponding

solutions ui to problem (23) with initial datum u0
i .

Let us denote
Γ =

{
ω ∈ Ω; u0

1(ω) = u0
2(ω)

}
.

Then,
1Γ(ω)u1(ω, t) = 1Γ(ω)u2(ω, t), for all t ≥ 0, a.s. (36)

Proof. Let us denote

F̂ (s, ui(s)) = −Ãui(s)− B̃(ui(s), ui(s)) + F̃ (s, ui(s)).

Then, for all t ≥ 0,

1Γui(t) = 1Γu0
i + 1Γ

∫ t

0
(F̂ (s, ui(s))− F̃ (s, 0) ) ds

+1Γ

∫ t

0
F̃ (s, 0) ds + 1Γ

∫ t

0
(G̃(s, ui(s))− G̃(s, 0)) dW (s)

+1Γ

∫ t

0
G̃(s, 0) dW (s), (37)

with

1Γ

∫ t

0
(F̂ (s, ui(s))− F̃ (s, 0) ) ds =

∫ t

0
1Γ(F̂ (s, ui(s))− F̃ (s, 0) ) ds,

1Γ

∫ t

0
F̃ (s, 0) ds =

∫ t

0
1ΓF̃ (s, 0) ds,

and, by the F0−measurability of the set Γ,

1Γ

∫ t

0
(G̃(s, ui(s))− G̃(s, 0)) dW (s) =

∫ t

0
1Γ(G̃(s, ui(s))− G̃(s, 0)) dW (s),

13



1Γ

∫ t

0
G̃(s, 0) dW (s) =

∫ t

0
1ΓG̃(s, 0) dW (s).

But, as can be easily checked,

1Γ(F̂ (s, ui(s))− F̃ (s, 0)) = F̂ (s, 1Γui(s))− F̃ (s, 0),
1Γ(G̃(s, ui(s))− G̃(s, 0)) = G̃(s, 1Γui(s))− G̃(s, 0),

for all t ≥ 0.
Consequently, by (37),

1Γui(t) = 1Γu0
i −

∫ t

0
Ã1Γui(s) ds−

∫ t

0
B̃(1Γui(s), 1Γui(s)) ds

+
∫ t

0
F̃ (s, 1Γui(s)) ds−

∫ t

0
1ΓcF̃ (s, 0) ds

+
∫ t

0
G̃(s, 1Γui(s)) dW (s)−

∫ t

0
1ΓcG̃(s, 0) dW (s), (38)

for all t ≥ 0, where Γc = Ω \ Γ.
Taking into account that 1Γu0

1 = 1Γu0
2, it follows from (38) that 1Γu1

and 1Γu2 are solutions of the same equation with the same initial datum,
and then, by uniqueness of solution, we obtain (36).

Corollary 4.2 Under the assumptions of the preceding lemma, suppose in
addition that F̃ (t, 0) = 0 and G̃(t, 0) = 0 dP×dt-a.e. Let u0 ∈ L2(Ω,F0, P ;H)
such that there exists u(t), solution of (23) with initial datum u0, and denote

Ω0 =
{
ω ∈ Ω; u0(ω) = 0

}
.

Then,
1Ω0u(t) = 0 for all t ≥ 0, a.s.

Proof. As ũ = 0 is the solution of problem (23) with initial datum ũ0 = 0,
the result follows from Lemma 4.1.

Theorem 4.3 Suppose that conditions a1), a2), b1), b2), b3), c1), c2), c3),
d1), d2), and d3) hold. Suppose also that

F̃ (t, 0) = 0, G̃(t, 0) = 0, for all t ≥ 0,

and there exists δ > 0 such that

∞∑

k=1

(G̃(t, v)ek, v)2H ≥ δ |v|4H , for all v ∈ H, dP × dt-a.e., (39)

and
α̃c−2

2 + 2δ − 2L eF − L2
eG > 0. (40)

14



Then, there exists a constant γ > 0 such that for all u0 ∈ L4(Ω,F0, P ;H)
there is a T (u0, ω) ≥ 0 for which the solution u(t) of (23) with corresponding
initial datum u0 satisfies

|u(t, ω)|2H ≤ e−γt
∣∣u0(ω)

∣∣2
H for all t ≥ T (u0, ω), a.s. (41)

Proof. Although we could use a heuristic argument which would avoid
some technicalities in the proof, we prefer to include all the necessary tools
to prove the result in a rigorous way. This requires the use of the exponential
martingale inequality, and the consideration of several stopping times.

Let u0 ∈ L4(Ω,F0, P ;H) be fixed.
Thanks to Lemma 4.1 we can assume, without lose of generality, that u0

satisfies
u0(ω) 6= 0, for any ω ∈ Ω. (42)

Otherwise, denoting Ω0 =
{
ω ∈ Ω; u0(ω) = 0

}
, and taking ξ ∈ H \ {0},

we can consider the solution ũ(t) of problem of (23) with initial datum ũ0

defined as

ũ0(ω) =
{

u0(ω), if ω ∈ Ω \ Ω0,
ξ, if ω ∈ Ω0.

Then, by Lemma 4.1 and Corollary 4.2, we have

u(t, ω) = ũ(t, ω), for all t ≥ 0, a.s. in Ω \ Ω0,

u(t, ω) = 0, for all t ≥ 0, a.s. in Ω0,

and, consequently, (41) follows from the corresponding inequality for ũ(t).
Thus, from now on we suppose that u0 satisfies (42).
Let us define

τ0(ω) = inf {t ≥ 0; u(t, ω) = 0} ,

v(t) = u(t ∧ τ0).

From the fact that if τ0(ω) is finite then u(τ0(ω), ω) = 0, it is easy to see that
v(t) satisfies the same equation than u(t), and consequently, by uniqueness,

v(t) = u(t ∧ τ0) = u(t), for all t ≥ 0, a.s.,

i.e., if we denote
Ω̃ = {ω ∈ Ω; τ0(ω) < +∞} , (43)

u(t, ω) = u(τ0(ω), ω) = 0, for all t ≥ τ0(ω), a.s. in Ω̃. (44)

Consider now the sequence of Ft-stopping times {τn, n ≥ 1} defined by

τn(ω) = inf{t ≥ 0; |u(t, ω)|H ≤
1
n
}.

This is an increasing sequence, almost surely convergent to τ0.
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Denote
vn(t) = u(t ∧ τn).

Then,

vn(t) +
∫ t

0
1[0,τn](s)Ãvn(s) ds +

∫ t

0
1[0,τn](s)B̃(vn(s), vn(s)) ds

= u0 +
∫ t

0
1[0,τn](s)F̃ (s, vn(s)) ds +

∫ t

0
1[0,τn](s)G̃(s, vn(s)) dW (s),

for all t ≥ 0, and consequently,

|vn(t)|2H + 2
∫ t

0
1[0,τn](s)〈Ãvn(s), vn(s)〉 ds

+2
∫ t

0
1[0,τn](s)〈B̃(vn(s), vn(s)), vn(s)〉 ds

=
∣∣u0

∣∣2
H + 2

∫ t

0
1[0,τn](s)〈F̃ (s, vn(s)), vn(s)〉 ds

+2
∫ t

0

(
1[0,τn](s)G̃(s, vn(s))dW (s), vn(s)

)

+
∫ t

0
1[0,τn](s)‖G̃(s, vn(s))‖2

L2(K;H)ds, for all t ≥ 0. (45)

Let us denote

Ωn =
{

ω ∈ Ω; |u0(ω)|H ≤ 1
n

}
.

It is clear that

τn(ω) = 0 and vn(t, ω) = u0(ω) if ω ∈ Ωn, (46)

|vn(t, ω)|H ≥ 1
n

if ω ∈ Ω \ Ωn. (47)

Let us take any function φn ∈ C2(R) such that

φn(r) = log r, for all r ≥ 1
n2

.

Applying the Itô formula to φn(|vn(t, ω)|2H), and taking into account (45),
(46) and (47), we obtain

log |vn(t)|2H = log
∣∣u0

∣∣2
H + 2

∫ t

0
1[0,τn](s)

〈−Ãvn(s) + F̃ (s, vn(s)), vn(s)〉
|vn(s)|2H

ds

+
∫ t

0
1[0,τn](s)

‖G̃(s, vn(s))‖2
L2(K;H)

|vn(s)|2H
ds + Mn(t)− 1

2
qn(t), t ≥ 0,

(48)
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where

Mn(t) = 2
∫ t

0

(
1[0,τn](s)G̃(s, vn(s)) dW (s),

vn(s)
|vn(s)|2H

)
, (49)

qn(t) = 4
∫ t

0

1[0,τn](s)

|vn(s)|4H

( ∞∑

k=1

(G̃(s, vn(s))ek, vn(s))2H

)
ds. (50)

Thus Mn(t) is a real continuous square integrable Ft-martingale such that
Mn(0) = 0, with associated increasing process 〈Mn〉t = qn(t).

Let us now define

M(t) = 2
∫ t∧τ0

0

(
G̃(s, u(s)) dW (s),

u(s)
|u(s)|2H

)
,

q(t) = 4
∫ t∧τ0

0

1
|u(s)|4H

( ∞∑

k=1

(G̃(s, u(s))ek, u(s))2H

)
ds.

Observe that, as u = vn on [0, τn(ω)], then

M(t ∧ τn) = Mn(t), q(t ∧ τn) = qn(t),

lim
n→+∞Mn(t) = M(t), lim

n→+∞ qn(t) = q(t),

and consequently, M(t) is a real continuous square integrable local Ft-
martingale such that M(0) = 0, with associated increasing process 〈M〉t =
q(t).

Thus, from the exponential martingale inequality (see [12] and [15]) we
have that for any positive numbers T, ε and k > 0,

P ( max
t∈[0,T ]

(M(t)− ε

2
q(t)) ≥ k) ≤ e−εk. (51)

Let us fix ε > 0 such that

λ := α̃c−2
2 + 2δ − 2L eF − L2

eG − 2εL2
eG > 0, (52)

whose existence is guaranteed by (40).
Taking k = (2/ε) log m, with m ≥ 1 any integer number, we obtain from

(51),

P

(
max

t∈[0,m+1]
(M(t)− ε

2
q(t)) ≥ 2

ε
log m

)
≤ 1

m2
. (53)

Consequently, we deduce from the Borel-Cantelli lemma that there exists
F0 ∈ F , with P (F0) = 0, such that for any ω ∈ Ω \ F0 there is an integer
m0(ω) ≥ 1 for which

max
t∈[0,m+1]

(M(t, ω)− ε

2
q(t, ω)) <

2
ε

log m, for all m ≥ m0(ω). (54)
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In particular, if we take any ω ∈ Ω \ F0, m ≥ m0(ω), and take into account
that qn(t) is increasing, we obtain from (54),

Mn(t, ω)− ε

2
qn(m + 1, ω) ≤ Mn(t, ω)− ε

2
qn(t, ω)

= M(t ∧ τn(ω), ω)− ε

2
q(t ∧ τn(ω), ω)

≤ max
s∈[0,m+1]

(M(s, ω)− ε

2
q(s, ω))

<
2
ε

log m,

for all n ≥ 1, t ∈ [0,m + 1].
Consequently, for all ω ∈ Ω \ F0, there exists m0(ω) ≥ 1 such that

Mn(t, ω)− ε

2
qn(m + 1, ω) <

2
ε

log m, (55)

for all n ≥ 1, m ≥ m0(ω), t ∈ [0,m + 1].
From (39), (48), (55) and the hypotheses on Ã, F̃ and G̃, we have that

almost surely

log |vn(t, ω)|2H
≤ log |u0(ω)|2H +

∫ t∧τn(ω)

0
(−α̃c−2

2 + 2L eF + L2
eG − 2δ) ds

+
2
ε

log m +
ε

2
qn(m + 1, ω), (56)

for all n ≥ 1, m ≥ m0(ω), t ∈ [0,m + 1].
But from the expression for qn, we deduce

ε

2
qn(m + 1, ω) ≤ 2εL2

eG ((m + 1) ∧ τn(ω)) .

Also observe that if t ∈ [m,m + 1], then (m + 1) ∧ τn(ω) ≤ (t ∧ τn(ω)) + 1,
and, hence, log m ≤ log t.

Consequently, (52) and (56) imply

log |vn(t, ω)|2H ≤ log
∣∣u0(ω)

∣∣2
H − λ (t ∧ τn(ω)) + 2εL2

eG +
2
ε

log t,

or, in other words,

|u(t ∧ τn(ω), ω)|2H ≤ |u0(ω)|2Ht2/εe−λ(t∧τn(ω))e
2εL2

eG , (57)

for all t ≥ m0(ω), n ≥ 1,
Letting n → +∞ in (57), we deduce

|u(t ∧ τ0(ω), ω)|2H ≤ |u0(ω)|2Ht2/εe−λ(t∧τ0(ω))e
2εL2

eG , for all t ≥ m0(ω),
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and, in particular, as

lim
t→+∞(e−

λ
2
te

2εL2
eGt2/ε) = 0,

then there exists T0(ω) ≥ m0(ω) such that

|u(t, ω)|2H ≤ e−
λ
2
t
∣∣u0(ω)

∣∣2
H for all t ≥ T0(ω), a.s. in Ω \ Ω̃, (58)

where Ω̃ is defined by (43). Now, (41) follows from (44) and (58).

Remark 4.4 Observe that this result shows how the noise can produce a
stabilising effect on the deterministic problem when the intensity is large
enough. Indeed, thanks to Theorem 3.3, we observe that if

α̃c−2
2 − 2L eF > 0,

then the trivial stationary solution of the deterministic problem is exponen-
tially stable, but if this condition does not hold, and the noise appearing in
the model (or the noise added to the model) is such that

α̃c−2
2 + 2δ − 2L eF − L2

eG > 0,

then the trivial solution of the stochastic system becomes pathwise exponen-
tially stable. Furthermore, if we are interested in stabilising the deterministic
system and we are allowed to choose appropriate stochastic terms to do this,
then we can always use a very simple one, namely, a one dimensional Brow-
nian motion multiplied by a linear operator. From this point on we consider
this special noise.

We will describe below in more details this stabilisation procedure in the
general case of considering a non-trivial stationary solution.

Remark 4.5 Observe that Theorem 4.3 affirms for (1) that, if F (t, 0) = 0,
G(t, 0) = 0, and there exists δ > 0 such that

∞∑

k=1

(G(t, v)ek, v)2 ≥ δ‖v‖4, for all v ∈ V , dP × dt-a.e.,

with
2ναλ2

1 + 2δ(1 + αλ1) > 2LF (1 + αλ1) + L2
G,

then, there exists a constant γ > 0 such that for all u0 ∈ L4(Ω,F0, P ;V )
there is a T (u0, ω) ≥ 0 for which the variational solution u(t) of (1) with
corresponding initial datum u0, satisfies

‖u(t, ω)‖2 ≤ e−γt‖u0(ω)‖2 for all t ≥ T (u0, ω), a.s.
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Suppose now that F̃ : H → H is independent of ω and t, and

α̃ > 2c2
2L eF . (59)

Under this condition, there exists a stationary solution of problem (26),
say u∞ ∈ U .

If, in addition,
α̃ > c1 |u∞|H + 2c2

2L eF , (60)

then, as a consequence of Theorem 3.3, taking G̃ ≡ 0, we deduce that u∞ is
exponentially stable, i.e., there exists γ > 0 such that for all u0 ∈ H,

|ũ(t)− u∞|2H ≤
∣∣u0 − u∞

∣∣2
H e−γt, for all t ≥ 0,

where ũ(t) is the solution of problem (26) with initial datum u0.
However, if the Lipschitz constant L eF is large enough, then (60) might

not hold, and we would not know if u∞ is exponentially stable. Nevertheless,
we can always choose a very simple noise to stabilise our problem (26).

To this end, let us consider a fixed Ft-Wiener process β(t). For any
σ ∈ R, define

G̃σ(t, v) = σ(v − u∞), v ∈ H, (61)

and consider the problem

u(t) +
∫ t

0
Ãu(s) ds +

∫ t

0
B̃(u(s), u(s)) ds

= u0 +
∫ t

0
F̃ (u(s)) ds +

∫ t

0
G̃σ(s, u(s)) dβ(s), a.s., ∀ t ≥ 0. (62)

We can prove the following result.

Theorem 4.6 Suppose that F̃ : H → H and satisfies (59). Let u∞ ∈ U be
a stationary solution of problem (26), and suppose that

α̃− 2c1c2 ‖u∞‖U > 0. (63)

Let σ be any real number such that

α̃− 2c1c2 ‖u∞‖U + c2
2σ

2 > 2c2
2L eF . (64)

Then, there exists γ > 0 satisfying that for any u0 ∈ L4(Ω,F0, P ;H), there
exists T (u0, ω) ≥ 0 such that

|u(t, ω)− u∞|2H ≤ e−γt|u0(ω)− u∞|2H, for all t ≥ T (u0, ω), a.s., (65)

where u(t, ω) is the corresponding solution of (62).

20



Proof. The proof is similar to that of Theorem 4.3 but arguing with u0−u∞
and u(t) − u∞ instead of u0 and u(t) respectively, and taking into account
that the special form of the noise allows us to finish the proof either using
the subexponential decay of the Wiener process instead of the exponential
martingale inequality, or repeating the analysis already done in that proof
(see [13] for more details).

Remark 4.7 As for problem (1), Theorem 4.6 states that, under conditions

να > c2
2LF , ναλ1 > c1

√
1 + αλ1|Au∞|,

for a suitable choice of σ, there exists γ > 0 satisfying that for any u0 ∈
L4(Ω,F0, P ; V ), there exists T (u0, ω) ≥ 0 such that

‖u(t, ω)− u∞‖2 ≤ e−γt‖u0(ω)− u∞‖2, for all t ≥ T (u0, ω), a.s.,

where u(t, ω) is the corresponding variational solution of (1), with G(t, u)Ẇ (t) =
σ(u− u∞)β̇(t).
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