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ABSTRACT
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1. Introduction and Preliminaries

The main aim of this paper is to establish some criteria for the mean square and almost

sure exponential stability of a class of nonlinear stochastic partial differential equations of

monotone type. In fact, a coercivity condition, extending the one considered by Chow

(1982) and Caraballo and Real (1994), is introduced and will play the role of a stability

criterion. To be precise, under the coercivity condition (Theorem 1.2 below) from Caraballo

and Real (1994), almost sure exponential stability of solutions is obtained, while in Chow

(1982) pathwise asymptotic stability is proved. However, as we will explain later, coercivity

criteria from Caraballo and Real (1994) are too restrictive to be applied to a number of

interesting and, in our opinion, important examples, especially in the non-autonomous

case. In this work, we shall improve their results to cover the general nonautonomous

stochastic differential equations in Hilbert spaces. For this purpose, let us first state some

basic notations and notions (mainly from Caraballo and Real (1994) and Chow (1982)).

Let V be a Banach space and H, K real, separable Hilbert spaces such that

V ↪→ H ≡ H ′ ↪→ V ′,

where the injections are continuous and dense.

Let ‖ · ‖, | · | and ‖ · ‖∗ denote the norms in V , H and V ′ respectively, < ·, · > the

duality product between V ′ and V , (·, ·) the inner product in H, and β a constant such

that

|x| ≤ β‖x‖, ∀x ∈ V.

Let Wt be a Wiener process defined on some complete probability space (Ω,F , P ) and

taking its values in the separable Hilbert space K, with increment covariance operator Q.

Consider the following nonlinear stochastic diffusion equation:

Xt = X0 +
∫ t

0

A(s, Xs)ds +
∫ t

0

B(s,Xs)dWs (1.1)

where A(t, ·) : V → V ′ is a family of nonlinear operators defined a.e.t. satisfying A(t, 0) = 0

for all t ∈ R+; and where B(t, ·) : V → L(K, H), the family of all bounded linear operators

from K into H, satisfies
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(b.1) B(t, 0) = 0;

(b.2) There exists k > 0 such that

‖B(t, y)−B(t, x)‖ ≤ k‖y − x‖, ∀x, y ∈ V, a.e.t;

(b.3) t ∈ (0, T ) → B(t, x) ∈ L(K, H) is Lebesgue-measurable ∀x ∈ V , ∀T > 0.

Definition 1.1. Let (Ω,F , {Ft}, P ) be the stochastic basis and Wt a K-valued Wiener

process with covariance operator Q. Suppose that X0 is an H-valued random variable such

that E|X0|2 < ∞. A stochastic process Xt is said to be a strong solution on Ω to the

SDE (1.1) for t ∈ [0, T ] if the following conditions are satisfied:

(a) Xt is a V -valued Ft-measurable random variable;

(b) Xt ∈ Ip(0, T ; V ) ∩ L2(Ω;C(0, T ; H)), p > 1, T > 0, where Ip(0, T ; V ) denotes the

space of all V -valued processes (Xt)t∈[0,T ] (we will write Xt for short) measurable (from

[0, T ]× Ω into V ), and satisfying

E

∫ T

0

‖Xt‖pdt < ∞.

Here C(0, T ; H) denotes the space of all continuous functions from [0, T ] to H;

(c) Equation (1.1) is satisfied for every t ∈ [0, T ] with probability one.

If T is replaced by ∞, Xt is called a global strong solution of (1.1).

As we are mainly interested in stability analysis, one always assumes that for each

H-valued random variable X0 with E|X0|2 < ∞, there exists a global strong solution to

(1.1). In this situation, it is reasonable to assume the following (see Pardoux (1975))

(a.1) (Coercivity). There exist α > 0, p > 1 and λ, γ ∈ R such that:

2 < A(t, x), x > +‖B(t, x)‖22 ≤ −α‖x‖p + λ|x|2 + γ, ∀x ∈ V, a.e.t.

where ‖ · ‖2 denotes the Hilbert-Schmidt norm of nuclear operator, i.e.,

‖B(t, x)‖22 = tr(B(t, x)QB(t, x)∗);
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(a.2) (Boundedness). There exists c > 0 such that

‖A(t, x)‖∗ ≤ c‖x‖p−1, ∀x ∈ V, a.e.t;

(a.3) (Monotonicity).

−2 < A(t, x)−A(t, y), x− y > +λ|x− y|2

≥ ‖B(t, x)−B(t, y)‖22, ∀x, y ∈ V, a.e.t;

(a.4) (Hemicontinuity). The map θ ∈ R 7→< A(t, x + θy), z >∈ R is continuous

∀x, y, z ∈ V, a.e.t;

(a.5) (Measurability). t ∈ (0, T ) 7→ A(t, x) ∈ V ′ is Lebesgue-measurable ∀x ∈ V, a.e.t,

∀T > 0.

The following stability criterion is proved in Caraballo and Real (1994):

Theorem 1.2. Assume conditions (b.1)–(b.3) and (a.1) hold. We also suppose that

Xt is a global strong solution to (1.1). Then, there exists r > 0 such that

E|Xt|2 ≤ E|X0|2e−rt, ∀t ≥ 0, (1.2)

if either one of the following hypotheses holds:

(a) λ < 0, γ ≤ 0, (∀p > 1);

(b) λβ2 − α < 0, γ ≤ 0, (p = 2).

Furthermore, under the same conditions the solution is almost surely stable. That is, there

exist positive constants ξ, η and a subset N0 ⊂ Ω with P (N0) = 0 such that, for each

ω 6∈ N0, there exists a positive random number T (ω) such that the following holds:

|Xt(ω)|2 ≤ η|X0|2e−ξt, ∀t ≥ T (ω).

However, when the time variable does appear in the operators A(t, ·) and B(t, ·) in an

explicit way or the term γ is finally positive so that neither hypothesis (a) nor (b) holds,

this criterion cannot be applied (see the examples in Section 3). In the following section,

we shall improve this theorem.
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2. The Main Results

In this section, we shall prove the mean square and almost sure exponential stability of

the solutions to (1.1). Before introducing the coercivity condition which will guarantee such

results, we are going to exhibit two simple examples of one-dimensional linear Itô equations

in order to motivate the subexponential growth imposed on the state independent term

appearing in such a condition:

Examples 2.1. First, assume Xt satisfies the following

dXt = −pXtdt + (1 + t)−qdWt, t ≥ 0

with initial data X0 = 0, where p, q > 0 are two positive constants and Wt is a one-

dimensional standard Brownian motion.

Let < ·, · > denote the standard inner product in R and we set A(t, x) = −px,

B(t, x) = (1 + t)−q. It easily follows that

2 < A(t, x), x > +‖B(t, x)‖2 = −2px2 + (1 + t)−2q, (2.1)

and, consequently, Theorem 1.2 can not be applied to this example since (1 + t)−2q > 0,

for all t ≥ 0, and so one cannot find a γ ≤ 0 which satisfies (a.1). However, it is easy to

obtain the explicit solution

Xt = e−pt

∫ t

0

eps · (1 + s)−qdWs ≡ e−ptMt, t ≥ 0.

Noticing the law of the iterated logarithm

lim sup
t→∞

Mt√
2 < Mt > log log < Mt >

= 1 a.s.

and

lim sup
t→∞

log
( ∫ t

0
e2ps(1 + s)−2qds

)

t
= 2p,

we get Lyapunov exponent

lim sup
t→∞

1
t

log |Xt| = 0 a.s.
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which means that almost all the sample paths of the solution will not tend to zero expo-

nentially.

Next, suppose Yt satisfies

dYt = −pYtdt + e−qtdWt, t ≥ 0

with initial data Y0 = 0, and p, q both are positive constants.

Assume A(t, x) = −px and B(t, x) = e−qt, then it is easy to deduce

2 < A(t, x), x > +‖B(t, x)‖2 = −2px2 + e−2qt, (2.1)

and again Theorem 1.2 cannot be applied.

However, the explicit solution is now given by

Yt = e−pt

∫ t

0

e(p−q)sdWs ≡ e−ptNt, t ≥ 0.

Taking into account again the law of the iterated logarithm for the process Nt and

lim sup
t→∞

log
( ∫ t

0
e2(p−q)sds

)

t
= 2(p− q),

we can obtain Lyapunov exponent

lim sup
t→∞

1
t

log |Yt| = −q a.s.

That is, the solution is almost surely exponentially stable.

Therefore, if the term γ appearing in condition (a.1) is permitted to be nonnegative

and time dependent, a polynomial decay of such a term is not sufficient, in general, to

ensure exponential stability of the solutions. However, the solution could be exponentially

stable provided the term tends to zero with an exponential decay.

Bearing these examples in mind, we can now formulate our stability hypothesis. Once

again, we consider the stochastic diffusion equation (1.1) where A(t, ·) : V → V ′ is supposed

to be a measurable family of nonlinear operators defined a.e.t. and B(t, ·) : V → L(K, H)

a measurable family of operators. Note that, at the moment, we do not assume A(t, 0) = 0

and B(t, 0) = 0, t ∈ R+, as in Caraballo and Real (1994).
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The following coercivity condition (CC) will play a key role in our stability result:

There exist constants α > 0, µ > 0, λ ∈ R, and a nonnegative continuous function

γ(t), t ∈ R+, such that

2 < A(t, v), v > +‖B(t, v)‖22 ≤ −α‖v‖p + λ|v|2 + γ(t)e−µt, v ∈ V, (2.2)

where p > 1 and, for arbitrary δ > 0, γ(t) satisfies γ(t) = o(eδt), as t → ∞, i.e.,

limt→∞ γ(t)/eδt = 0.

Remark 2.1. Observe that, owing to the continuity and subexponential growth of the

term γ(t)e−µt, there exists a positive constant γ̃ such that γ(t)e−µt ≤ γ̃ for all t ∈ R+. As

a consequence, (2.2) implies (a.1) (by replacing γ by γ̃), i.e., this assumption is compatible

with the existence of the strong solutions to (1.1).

Theorem 2.2. Assume conditions (CC), (b.2) and (b.3) hold. Then, if Xt is a global

strong solution to the equation (1.1), there exist constants τ > 0, C > 0 such that

E|Xt|2 ≤ C · e−τt, ∀t ≥ 0, (2.3)

if either one of the following hypotheses holds

(i) λ < 0, (∀p > 1);

(ii) λβ2 − α < 0, (p = 2).

Proof. We only show case (ii). Case (i) can be proved similarly. Firstly, we can choose

δ > 0 small enough such that µ− δ > 0. Then, Itô’s formula implies

e(µ−δ)t|Xt|2 − |X0|2

= (µ− δ)
∫ t

0

e(µ−δ)s|Xs|2ds + 2
∫ t

0

e(µ−δ)s < A(s,Xs), Xs > ds

+ 2
∫ t

0

e(µ−δ)s < Xs, B(s,Xs)dWs >

+
∫ t

0

e(µ−δ)str(B(s,Xs)QB(s,Xs)∗)ds. (2.4)

Now, since
∫ t

0
e(µ−δ)s < Xs, B(s,Xs)dWs >, t ∈ R+, is a continuous martingale, it follows

that

E
( ∫ t

0

e(µ−δ)s < Xs, B(s,Xs)dWs >
)

= 0, t ∈ R+.
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Therefore, condition (2.2) and the continuous injection V ↪→ H yield

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ − ν)
∫ t

0

e(µ−δ)sE|Xs|2ds +
∫ t

0

γ(s)e−δsds, (2.5)

where ν = (α− λβ2)/β2.

If µ− ν ≤ 0, it follows immediately

e(µ−δ)tE|Xt|2 ≤ E|X0|2 +
∫ t

0

γ(s)e−δsds,

which means that there exists a positive constant k = k(δ) > 0 such that

E|Xt|2 ≤
(
E|X0|2 + k(δ)

)
e−(µ−δ)t.

On the other hand, if µ−ν > 0, we can choose δ > 0 small enough such that µ−ν−δ > 0.

Then, from (2.5) and Gronwall’s lemma one can obtain

e(µ−δ)tE|Xt|2 ≤
(
E|X0|2 +

∫ t

0

γ(s)e−δsds
)
et(µ−δ−ν),

and, once again, there exists a positive constant k(δ) > 0 such that

E|Xt|2 ≤
(
E|X0|2 + k(δ)

)
e−νt.

Theorem 2.3. Assume the hypotheses in Theorem 2.2 hold. Then there exist positive

constants M , ε and a subset N0 ⊂ Ω with P (N0) = 0 such that, for each ω 6∈ N0, there

exists a positive random number T (ω) such that

|Xt|2 ≤ M · e−εt, ∀t ≥ T (ω). (2.6)

Proof. We only prove case (ii) as in the last proof. We shall split our proof into several

steps, as follows.

Step 1. We claim that there exists C > 0, independent of t ∈ R+, such that

∫ t

s

E‖B(u,Xu)‖22du ≤ Ce−τs, 0 ≤ s ≤ t. (2.7)
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Indeed, applying Itô’s formula to (1.1) as in Theorem 2.2, we get that for any δ > 0 with

µ− δ > 0

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ − ν)
∫ t

0

e(µ−δ)sE|Xs|2ds +
∫ t

0

γ(s)e−δsds (2.8)

and

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ + λ)
∫ t

0

e(µ−δ)sE|Xs|2ds

+
∫ t

0

γ(s)e−δsds− α

∫ t

0

e(µ−δ)sE‖Xs‖2ds, (2.9)

where ν = (α− λβ2)/β2.

Now, if µ− ν ≤ 0, it follows from (2.8) that
∫ t

0

e(µ−δ)sE|Xs|2ds ≤ E|X0|2 +
∫ t

0
γ(s)e−δsds

ν + δ − µ
(2.10)

which, together with (2.9), immediately implies
∫ t

0

e(µ−δ)sE‖Xs‖2ds ≤ 1
α

[
E|X0|2 +

∫ t

0

γ(s)e−δsds

]

+
µ− δ + λ

α

∫ t

0

e(µ−δ)sE|Xs|2ds

≤ 1
α

[
µ− δ + λ

ν + δ − µ
+ 1

] [
E|X0|2 +

∫ t

0

γ(s)e−δsds

]

≤ 1
α

[
µ− δ + λ

ν + δ − µ
+ 1

] [
E|X0|2 + k(δ)

]
. (2.11)

Consequently, for 0 ≤ s ≤ t,
∫ t

s

E‖Xu‖2du ≤
∫ t

s

e(µ−δ)(u−s)E‖Xu‖2du

≤ e−(µ−δ)s

∫ t

s

e(µ−δ)uE‖Xu‖2du

≤ 1
α

[
µ− δ + λ

ν + δ − µ
+ 1

] [
E|X0|2 + k(δ)

]
e−(µ−δ)s (2.12)

which, together with (b.2) and (2.2), immediately yields that
∫ t

s

E‖B(u,Xu)‖22du ≤2
∫ t

s

E‖B(u,Xu)−B(u, 0)‖22du + 2
∫ t

s

E‖B(u, 0)‖22du

≤ k1

∫ t

s

E‖Xu‖2du + k2

∫ t

s

γ(u)e−µudu

≤ C(δ)e−(µ−δ)s, (2.13)
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where k1, k2 are two positive constants.

On the other hand, if µ− ν > 0, it is always possible to choose a suitable δ > 0 such

that ν − δ > 0. Then, by applying Itô’s lemma to the strong solution Xt, it is easy to

deduce

e(ν−δ)tE|Xt|2 ≤ E|X0|2 + (ν − δ + λ)
∫ t

0

e(ν−δ)sE|Xs|2ds

+
∫ t

0

γ(s)e−(µ−ν+δ)sds− α

∫ t

0

e(ν−δ)sE‖Xs‖2ds

≤ E|X0|2 + (ν − δ + λ)
∫ t

0

e(ν−δ)sE|Xs|2ds

+
∫ t

0

γ(s)e−δsds− α

∫ t

0

e(ν−δ)sE‖Xs‖2ds. (2.14)

Noticing that, in this case, the parameter τ in Theorem 2.2 turns out to be ν, (2.14) yields

α

∫ t

0

e(ν−δ)sE‖Xs‖2ds ≤ E|X0|2 + k(δ) + (ν − δ + λ)
∫ t

0

e−δsds,

and we can argue in a similar manner as we did previously. Hence our claim is proved.

Step 2. We claim that there exists a positive constant M > 0 such that

E
(

sup
0≤t<∞

|Xt|2
)
≤ M.

Indeed, Itô’s formula implies

|Xt|2 − |X0|2 = 2
∫ t

0

< A(s,Xs), Xs > ds +
∫ t

0

tr(B(s,Xs)QB(s,Xs)∗)ds

+ 2
∫ t

0

< Xs, B(s, Xs)dWs > . (2.15)

On the other hand, from Burkholder-Davis-Gundy’s inequality, we get for any T ∈ R+

2E

[
sup

t∈[0,T ]

∣∣∣
∫ t

0

< Xs,B(s, Xs)dWs >
∣∣∣
]

≤ K1E

[(∫ T

0

∣∣Xs

∣∣2‖B(s,Xs)‖22ds
) 1

2
]

≤ K1E

{
sup

0≤s≤T

∣∣Xs

∣∣
[ ∫ T

0

‖B(s,Xs)‖22ds
] 1

2
}

≤ 1
2
E

[
sup

0≤s≤T

∣∣Xs

∣∣2
]

+ K2

∫ T

0

‖B(s,Xs)‖22ds, (2.16)
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where K1, K2 are two positive constants. Therefore, in addition to condition (CC), (2.15)

and (2.16) imply

E
(

sup
0≤s≤T

|Xs|2
)
≤ E|X0|2 + ν

∫ T

0

E|Xs|2ds +
∫ T

0

γ(s)e−µsds

+
1
2
E

(
sup

0≤s≤T

∣∣Xs

∣∣2
)

+ K2

∫ T

0

E‖B(s,Xs)‖22ds. (2.17)

Thus, our claim can be easily obtained thanks to (2.3), (2.7) and condition (CC).

Step 3. Now, we can finish our proof. We only sketch it because it is similar to that

in Haussmann (1978).

Firstly, the coercivity condition (CC) and (2.15) imply

|XT |2 ≤|XN |2 + ν

∫ T

N

|Xs|2ds +
∫ T

N

γ(s)e−µsds

+
[

sup
t∈[N,T ]

∣∣∣
∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣
]

(2.18)

for T ≥ N , where N is a natural number.

In particular, taking N ∈ N large enough, we can easily obtain

P
{

sup
t∈[N,N+1]

|Xt|2 ≥ ε2N

}

≤ P
{
|XN |2 ≥ ε2N/4

}
+ P

{
ν

∫ N+1

N

|Xs|2ds ≥ ε2N/4
}

+ P

{[
sup

t∈[N,N+1]

∣∣∣
∫ t

N

< Xs, B(s, Xs)dWs >
∣∣∣
]
≥ ε2N/4

}
(2.19)

where ε2N = Ce−τN/4.

Now, we can estimate the terms on the right-hand side of (2.19) using Kolmogorov’s in-

equality and (2.3) for the first two terms, and Burkholder-Davis-Gundy’s lemma, Hölder’s

inequality and an argument similar to that used in Steps 1 and 2 for the last one. Conse-

quently, there exists a positive constant K3 > 0 such that

P
[

sup
t∈[N,N+1]

|Xt|2 ≥ ε2N

]
≤ K3e

−τN/4.
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Finally, a Borel-Cantelli’s lemma type argument completes the proof.

Next, we shall state a theorem which is a generalization of Theorem 2.2. Due to

the fact that Theorem 2.2 appears as a particular case of this general result, we could

have established only this last one. However, for the sake of clarity, we have preferred to

describe first the simpler one, and then show the general one.

We shall assume the following generalized coercivity condition (CC)’:

There exist constants α > 0, λ ∈ R, µ > 0, 0 ≤ σ < 1 and non-negative continuous

functions γ(t), τ(t), t ∈ R+, such that

2 < A(t, v), v > +‖B(t, v)‖22 ≤ −α‖v‖p +λ|v|2 + τ(t)e−µt|v|2σ +γ(t)e−µt, v ∈ V, (2.20)

where p > 1, and for arbitrary δ > 0, γ(t) and τ(t) satisfy τ(t) = o(eδt) and γ(t) = o(eδt),

as t →∞.

Remark 2.2. The same comments concerning the compatibility of (2.20) with the

existence of the strong solutions of (1.1) as in Remark 2.1 once more remains true. This

follows immediately from the fact that h2σ ≤ 1 + h2 for all h ∈ R and 0 ≤ σ < 1.

Theorem 2.4. Assume assumptions (CC)’, (b.2) and (b.3) hold. Let Xt be a global

strong solution to the equation (1.1). Then there exist constants τ > 0, C > 0 such that

E|Xt|2 ≤ C · e−τt, ∀t ≥ 0, (2.21)

if either one of the hypotheses (i) or (ii) in Theorem 2.2 holds.

Proof. By a similar argument to that one in the proof of Theorem 2.2, we can get

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ − ν)
∫ t

0

e(µ−δ)sE|Xs|2ds

+
∫ t

0

τ(s)e−δsE|Xs|2σds +
∫ t

0

γ(s)e−δsds

≤ E|X0|2 + (µ− δ − ν)
∫ t

0

e(µ−δ)sE|Xs|2ds

+
∫ t

0

τ(s)e−(δ+σ(µ−δ))s
(
e(µ−δ)sE|Xs|2

)σ

ds

+
∫ t

0

γ(s)e−δsds, (2.22)
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where ν = (α− λβ2)/β2.

If µ− ν ≤ 0, it follows

e(µ−δ)tE|Xt|2 ≤ E|X0|2 +
∫ t

0

τ(s)e−(δ+σ(µ−δ))s
(
e(µ−δ)sE|Xs|2

)σ

ds +
∫ t

0

γ(s)e−δsds.

Now, an extended Gronwall type lemma from Mao (1994) (in fact, Corollary 7.5 in Chapter

1, page 27), immediately yields

e(µ−δ)tE|Xt|2 ≤
[(

E|X0|2 +
∫ t

0

γ(s)e−δsds
)1−σ

+ (1− σ)
∫ t

0

τ(s)e−(δ+σ(µ−δ))sds

] 1
1−σ

,

which implies that there exists a positive constant K(δ) > 0 such that

E|Xt|2 ≤ K(δ) · e−(µ−δ)t. (2.23)

On the other hand, if µ− ν > 0, it is always possible to choose a suitable δ > 0 such that

µ− ν − δ > 0. Then, by virtue of Gronwall’s lemma we easily derive from (2.22) that

E|Xt|2 ≤
[
E|X0|2 +

∫ t

0

τ(s)e−δs
(
E|Xs|2

)σ

ds +
∫ t

0

γ(s)e−δsds
]
e−νt.

Once again, the extended Gronwall type lemma from Mao (1994) immediately implies

E|Xt|2 ≤e−νt

{(
E|X0|2 +

∫ t

0

γ(s)e−δsds
)1−σ

+ (1− σ)
∫ t

0

τ(s)e−δsds

} 1
1−σ

≡C(δ) · e−νt,

and the proof is complete.

In a similar manner as in the proof of Theorem 2.3, we could also prove the following

result.

Theorem 2.5. Assume that the hypotheses in Theorem 2.4 hold. Then there exist

positive constants M , ε and a subset N0 ⊂ Ω with P (N0) = 0 such that, for each ω 6∈ N0,

there exists a positive random number T (ω) such that

|Xt|2 ≤ M · e−εt, ∀t ≥ T (ω). (2.24)
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3. Examples

In this section, we consider some stochastic partial differential equations, in order to

illustrate our theory.

Example 3.1. Firstly, we consider the following semilinear stochastic partial differ-

ential equation, which models the heat production by an exothermic reaction taking place

inside a rod of length π whose ends are maintained at 0◦ and whose sides are insulated

(see Haussmann (1978) for a similar situation in the linear case):




dYt(x) =
[
∂2Yt(x)

∂x2
+ r0Yt(x)

]
dt + α

(
Yt(x)

)
dWt, t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt(0) = Yt(π) = 0, t ≥ 0.

(3.1)

Here Wt is a real standard Wiener process (so, K = R and Q = 1), r0 ∈ R, and α(·) :

R → R is a Lipschitz continuous function such that α(0) = 0. We can set this problem in

our formulation by taking H = L2[0, π], V = W 1,2
0 ([0, π]) (a Sobolev space with elements

satisfying the boundary conditions above), K = R, A(t, u) = d2

dx2 u(x) + r0u(x), and

B(t, u) = α(u).

Clearly, the operator B satisfies (b.2) and (b.3). On the other hand, it is easy to

deduce for arbitrary u ∈ V that

2 < A(t, u), u > +‖B(t, u)‖22 ≤ −2‖u‖2 + 2r0|u|2 + k2|u|2

where k is the Lipschitz constant for the function α, and the norm in V is given by

‖u‖2 =
∫ π

0
(u′(x))2 dx.

Therefore, it follows that hypothesis (b) in Theorems 2.2 and 2.3 is fulfilled provided

(k2 + 2r0)β2 < 2 (observe that we can set β = π/
√

2 in this case).

Consequently, we easily deduce that the strong solution of the equation is the mean

square and almost surely exponentially stable.

Remark 3.1. Observe that Theorem 1.2 can also be applied to this situation since

our operators satisfy A(t, 0) = 0 and B(t, 0) = 0.

Nevertheless, it happens that under some circumstances, additional heat is applied

to the system in order to drive it to a desired state, if possible. This can be modeled by
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introducing some time dependent terms in the equation. In our case, if we suppose that

the additional heat applied in each point is the same (so it is given by a function h(t),

independent of x), we can consider several possibilities according to the term in which this

function can appear (the diffusion, the drift or both of them).

Thus, we can study the following problems:




dYt(x) =
[
∂2Yt(x)

∂x2
+ r0Yt(x)

]
dt +

(
α
(
Yt(x)

)
+ h(t)

)
dWt, t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt(0) = Yt(π) = 0, t ≥ 0,

(3.2)





dYt(x) =
[
∂2Yt(x)

∂x2
+ r0Yt(x) + h(t)

]
dt + α

(
Yt(x)

)
dWt, t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt(0) = Yt(π) = 0, t ≥ 0,

(3.3)

and




dYt(x) =
[
∂2Yt(x)

∂x2
+ r0Yt(x) + h(t)

]
dt +

(
α
(
Yt(x)

)
+ h(t)

)
dWt, t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt(0) = Yt(π) = 0, t ≥ 0.

(3.4)

For instance, in the case of (3.2), taking into account that the inequality 2ab ≤
εa2 + ε−1b2 holds for a, b ∈ R and ε > 0, it can be easily deduced that

2 < A(t, u), u > +‖B(t, u)‖22 ≤ −2‖u‖2 +
(
2r0 + (1 + ε)k2

) |u|2 + π(1 + ε−1)h(t)2. (3.5)

Thus, if (k2 + 2r0)β2 < 2, we can choose a positive constant ε > 0 small enough such that

(k2(1+ ε)+2r0)β2 < 2. If, in addition, h(t) is of subexponential type, i.e. h(t) = γ(t)e−µt

with µ > 0 and γ satisfying the conditions in (CC), the hypotheses in Theorems 2.2 and

2.3 are satisfied again.

Remark 3.2. Observe that Theorem 1.2 can not be applied to this occasion since the

coercivity condition there does not hold.

Now, the problems (3.3) and (3.4) can be analyzed by applying Theorems 2.4 and 2.5.

For instance, in the case of the problem (3.3) we can obtain

2 < A(t, u), u > +‖B(t, u)‖22 ≤ −2‖u‖2 +
(
2r0 + k2

) |u|2 +
√

π|h(t)||u|,
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where |h(t)| denotes the absolute value of h(t). Thus, if h(t) is of subexponential type as

above, the hypotheses in Theorems 2.4 and 2.5 are fulfilled by taking σ = 1/2, provided

that (2r0 + k2)β2 < 2.

Lastly, let us simply come back to an example investigated in Caraballo and Real

(1994).

Example 3.2. Let D = [0, 1] and 2 < p < +∞, r > 0, and consider the following:





dXt(x) =
[ ∂

∂x

(∣∣∣∂Xt(x)
∂x

∣∣∣
p−2 ∂Xt(x)

∂x

)
− a(x)Xt(x)

]
dt

+ g(Xt(x))dWt, t > 0, x ∈ D

X0(x) =x0(x), x ∈ D, Xt(0) = Xt(1) = 0, a.s.

(3.6)

where a ∈ L∞(D) satisfies a(x) ≥ ã > 0 a.s., x ∈ D and g : R → R is Lipschitz continuous

with constant k > 0 such that k2 < 2ã and g(0) = 0. Wt is a standard real Wiener process.

Let H = L2(D), V = W 1,p
0 (D) be the Sobolev space with elements satisfying the

above boundary conditions. At the moment, A(t, u) is nonlinear, B(t, u) = g(u), for all

u ∈ V .

It is easy to check that in this case (2.2) holds with γ(s) = 0, λ = −ε < 0, p > 2,

α = 2, where ε > 0 is such that k2 < 2ã − ε. Using Theorem 2.2, we easily obtain the

required exponential stability.

4. Remarks and conclusions

We have proved some results which, in particular, extend the theory developed by

Caraballo and Real (1994). In fact, our results can be applied to a number of examples

where the criteria in that paper do not hold, since the coercivity condition assumed there

requires a uniform bound on the operators. We no longer require the condition A(t, 0) =

B(t, 0) = 0 from Caraballo and Real (1994); nevertheless, even in this case (when Xt ≡ 0

is solution to (1.1)) our theory improves that which obtains exponential stability in the

mean square and almost surely of the trivial solution to (1.1). However, the results proved

in Section 2 are stronger still. Indeed, what we have shown is that, under the assumptions
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in Theorem 2.2 (or Theorem 2.4) the strong solution to (1.1) exponentially converges in

the mean square (and almost surely) to zero even if Xt ≡ 0 is not a solution of the equation

(1.1).
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