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Abstract
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1 Introduction

The study of functional differential equations is motivated by the fact that when one wants to
model some evolution phenomena arising in Physics, Biology, Engineering, etc., some hereditary
characteristics such as aftereffect, time lag and time delay can appear in the variables. Typical
examples arise from the researches of materials with termal memory, biochemical reactions,
population models, etc. (see, for instance, Hale and Lunel [8], Ruess [16]-[17], Webb [20], Wu
[23] and the references therein). On the other hand, one important and interesting problem in
the analysis of functional differential equations is the stability, the theory of which has been
greatly developed over the last years.

As is well known, in the case without any hereditary features, Lyapunov’s technique is
available to obtain sufficient conditions for the stability of solutions of (partial) differential
equations. However, in the case of differential equations with hereditary properties, for instance,
even in the case of constant time delays, Lyapunov’s method becomes difficult to apply effectively
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as Krasovskii [12] pointed out. The main reason is that it is much more difficult (or even
impossible in some cases) to construct proper Lyapunov functions (or functionals) for functional
differential equations than for those without any hereditary characteristics. As a consequence,
a comparison technique has been developed by various authors such as Krasovskii [12] and Mao
[14] (among others). Let us illustrate this point in more detail.

Consider the following one-dimensional delay differential equation

dx(t)
dt

= f(t, x(t), x(t− h)), t > 0, (1)

where h > 0, or equivalently,

dx(t)
dt

= f(t, x(t), x(t)) + [f(t, x(t), x(t− h))− f(t, x(t), x(t))] (2)

Clearly if h > 0 is small enough, the perturbation term f(t, x(t), x(t−h)) −f(t, x(t), x(t)) could
be expected to be so small that the perturbed equation (2) would behave asymptotically as
equation

dx(t)
dt

= f(t, x(t), x(t)). (3)

In particular, it can be proved that, under some circumstances, exponential stability is trans-
ferred from the nondelay equation (3) to the delay one (1) if the constant time lag h > 0
appearing in the problem is sufficiently small (see, e.g. [14]). So, in order to find out whether
the functional equation (1) is exponentially stable, one can check the exponential stability of
the equation (2) and then compute whether the time lag h > 0 is sufficiently small.

Nevertheless, it is worth pointing out that this kind of results can be somewhat restrictive
for many practical applications. In fact, the situation turns out to be rather complicated when
one considers the general functional differential equations, even the usual delay differential sys-
tems. To this respect, we should mention that in a wide variety of problems, the history of the
phenomenon has a decisive influence on the future behaviour of the system, and, in some cases,
not only a short period of the past has to be taken into account, but a large one. So it seems
rather unnatural to look for results which hold only for small values of the deviating arguments.
In this work, we shall carry out an investigation in this direction.

One of the main aims of this paper is to give sufficient conditions (which, in particular,
may contain the corresponding results in finite dimension) in order to transfer the exponential
stability of partial differential equations to partial functional differential equations. The problem
we are referring to is devoted to the consideration of an infinite dimensional version of (1) in
which f has the following form:

f(t, x, y) = A(t, x) + f1(t, y),

with the family of (non-linear) operators A(t, ·) satisfying some kinds of coercivity conditions
(see Section 3) as well as f1 satisfying Lipschitz continuous ones. We would also like to mention
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that, in some sense, a suitable coercivity condition implies the (exponential) stability of solutions
in nondelay cases. In addition to this, we will be able to assure exponential stability for a great
number of finite dimensional functional differential equations where the results in [14] only
guarantee this kind of stability for constant and sufficiently small delays.

In Section 2, we begin with some preliminary results. Section 3 is devoted to establish some
results on the existence and uniqueness of solutions for a class of partial functional differential
equations in a variational context. Some results on exponential stability are studied in Section 4.
Finally, several examples are given in Section 5 to illustrate the theory derived in the preceding
sections.

2 Preliminaries

First of all, we introduce the framework in which our analysis is going to be carried out. Let V
be a separable Banach space and H be a real separable Hilbert one such that

V ↪→ H ≡ H ′ ↪→ V ′ ,

where V ′ is the dual of V and the injections are continuous and dense. We denote by ‖ · ‖ , | · |
and ‖·‖∗ the norms in V , H and V ′ respectively; by 〈·, ·〉 the duality product between V ′, V ,
and by (·, ·) the scalar product in H .

Let us take h ≥ 0, p ≥ 1 and T > 0, let CH = C(−h, 0; H) be the space of all continuous
functions from [−h, 0] into H with sup-norm ‖ψ‖CH

= sup−h≤s≤0 |ψ(s)|, ψ ∈ CH , similarly,
let CV = C(−h, 0; V ), Lp

V = Lp(−h, 0; V ) and Lp
H = Lp(−h, 0; H). Given a function x(·) ∈

Lp(−h, T ;V )∩C(−h, T ; H), we associate with an Lp
V ∩CH -valued function xt, t ≥ 0, by setting

xt(s) = x(t + s), s ∈ [−h, 0]. The first purpose of this paper is to establish existence and
uniqueness results for a class of nonlinear partial functional differential equations of the form

dx(t)
dt

= A(t, x(t)) + f(t, xt), t ∈ [0, T ],

x(t) = ψ(t), t ∈ [−h, 0],
(4)

where, in general, the operators are assumed to be nonlinear. In fact, we are interested in the
case in which A(t, ·) : V → V ′ is a family of nonlinear monotone and coercive operators and
f(t, ·) : X → H is Lipschitz continuous, where X will denote CH , CV , L

p
H or Lp

V . On the one
hand, it is worth pointing out that, in many applications, A usually denotes a partial differential
operator (linear or nonlinear), while f uses to be a first order partial differential one. On the
other, we want to mention that the problem of existence of solutions to (4) and its stability
have been previously analyzed by Travis and Webb in [18] for linear autonomous operator A
generating a strongly continuous semigroup, and in [19] when A is the generator of an analytic
semigroup by using the tools of the semigroup theory of operators. Also Webb [21] considers a
similar problem for autonomous and accretive operator A by the same theory of (linear or not)
semigroups of operators. Moreover, there exits a wide literature on the existence of different
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classes of solutions (strong, mild, integral, etc.) to functional differential equations even in
the more general context of differential inclusions. It is well worth reading the work by Ruess
[16] (see also [17]), where we can find a description of some of the different techniques used
to handle with this question, in addition to a large list of references concerning these methods.
Among others, let us mention, for the univalued case, the method of lines (cf. Kartsatos [9]), the
Galerkin approximations (cf. Kartsatos and Parrott [10]), the Kato approximants (cf. Kartsatos
and Parrott [11]), etc. Extensions to the multivalued framework can be found in several works
included in the references in [16]. However, on the one hand, the case involving unbounded
(linear or not) operators f (i.e. when f is a partial differential operator of first order), despite of
its importance in applications, has only been treated in some specific and particular situations
(see, for instance, Fitzgibbon [7], Aizicovici [1], Crandall et al. [5]) and not always in a systematic
way; on the other hand, what is missed in the literature is a general treatment of this problem
from a variational point of view (see Artola [2]-[3] for some particular linear and nonlinear
partial differential equations with delays). Consequently, in this paper, we shall first establish
some existence results by a variational type of argument similar to that one carried out by Lions
[13] for a case without delays, but subject to necessary changes to make our scheme go through
when f(t, ·) : Lp

H → H. Then we will treat the more general case with f(t, ·) : Lp
V → H by using

a Galerkin approximation technique.

3 Existence and uniqueness of solutions

Let A(t, ·) : V → V ′ be a family of (nonlinear) operators defined a.e.t. (for almost every t) and
p ≥ 2. Assume the following hypotheses:

Coercivity: ∃α > 0, λ, ν ∈ R such that:

−2〈A(t, x), x〉+ λ|x|2 + ν ≥ α‖x‖p , ∀x ∈ V , a.e.t.; (5)

Monotonicity:

−2〈A(t, x)−A(t, y), x− y〉+ λ|x− y|2 ≥ 0 , ∀x, y ∈ V , a.e.t.; (6)

Boundedness: ∃ γ > 0 :
‖A(t, x)‖∗ ≤ γ‖x‖p−1 , ∀x ∈ V , a.e.t.; (7)

Hemicontinuity:

θ ∈ R → 〈A(t, x+ θy), z〉 ∈ R is continuous ∀x, y, z ∈ V , a.e.t.; (8)

Measurability:

t ∈ (0, T ) → A(t, x) ∈ V ′ is Lebesgue-measurable ∀x ∈ V , a.e.t. (9)
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Let f(t, ·) : L2
H → H be a family of nonlinear operators defined a.e.t., and satisfy the following

conditions:
∃cf ≥ 0 : sup

0≤t≤T
|f(t, 0)| ≤ cf < +∞; (10)

∃ k1 = k1(h) > 0 : |f(t, η)− f(t, ξ)| ≤ k1‖η − ξ‖CH
,∀η, ξ ∈ CH , a.e.t.; (11)

t ∈ (0, T ) 7→ f(t, η) ∈ H is Lebesgue-measurable ∀η ∈ L2
H . (12)

Given an initial valueψ ∈ Lp(−h, 0;V )∩C(−h, 0;H), the first objective in this Section is, under
the conditions described above, to find a unique function x(·) ∈ Lp(−h, T ;V ) ∩ C(−h, T ;H)
such that {

x(t) = ψ(0) +
∫ t
0 [A(s, x(s)) + f(s, xs)]dt, t ∈ [0, T ],

x(t) = ψ(t), t ∈ [−h, 0],
(13)

where the first equality is understood in V ′. We will refer to this solution as the variational
solution to (4).

Remark 1 (1) First, we notice that, although the results can be proved for p > 1, the interesting
situations in the applications appear when p ≥ 2. Because of this, we content ourselves with the
analysis of the case p ≥ 2.
(2) We have fixed the initial data in the space Lp(−h, 0;V )∩C(−h, 0;H) just only to ensure that
the solution belongs to Lp(−h, T ;V )∩C(−h, T ;H). However, we can of course take ψ ∈ Lp

V and
a value x0 ∈ H instead of ψ(0) in the problem. In this case, the argument we will use provides
a solution in the space Lp(−h, T ;V ) ∩ C(0, T ;H).
(3) Although it is possible to extend the results derived here to more general sytems involving
coefficients such that f(t, x(t), xt), we restrict ourselves to this more simple situation in order
to avoid unnecessary technicalities.

Now we shall prove that there exists at most one solution of (13). This result will be deduced
mainly from (6) and the energy equality.

Theorem 2 Assume the preceding hypotheses hold. Then, there exists at most one solution of
(13) in Lp(−h, T ;V ) ∩ C(−h, T ; H).

Proof. Suppose that x, y ∈ Lp(−h, T ; V ) ∩ C(−h, T ; H) are two solutions of (13). Then,
taking into account (6), we obtain

|x(t)− y(t)|2 = 2
∫ t
0 〈A(s, x(s))−A(s, y(s)), x(s)− y(s)〉ds

+2
∫ t
0 (f(s, xs)− f(s, ys), x(s)− y(s))ds

≤ λ
∫ t
0 |x(s)− y(s)|2ds

+2
∫ t
0 |f(s, xs)− f(s, ys)||x(s)− y(s)|ds.
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Now, it follows from (11) that for any t ∈ [0, T ]

sup
0≤s≤t

|x(s)− y(s)|2 ≤ (|λ|+ 1)
∫ t

0
|x(s)− y(s)|2ds (14)

+ k2
1

∫ t

0
||x(s)− y(s)||2CH

ds (15)

On the other hand, since x(s) = y(s) for s ≤ 0, we easily get∫ t
0 ||x(s)− y(s)||2CH

ds =
∫ t
0 sup
−h≤r≤0

|xs(r)− ys(r)|2ds

=
∫ t
0 sup
−h≤r≤0

|x(s+ r)− y(s+ r)|2ds

≤
∫ t
0 sup

0≤r≤s
|x(r)− y(r)|2ds.

(16)

Thus, it follows from (14)–(16)

sup
0≤s≤t

|x(s)− y(s)|2 ≤ 2
[
|λ|+ 1 + k2

1

] ∫ t

0
sup

0≤r≤s
|x(r)− y(r)|2ds, ∀t ∈ [0, T ],

and Gronwall’s lemma obviously implies uniqueness.

Remark 3 Observe that if we assume the following monotonicity hypothesis

For all ξ, η ∈ Lp(−h, T ; V ) with ξ0 = η0 it holds

−2〈A(t, ξ(t)) + f(t, ξt)−A(t, η(t))− f(t, ηt), ξ(t)− η(t)〉

+ λ|ξ(t)− η(t)|2 ≥ 0, t ∈ [0, T ],
(17)

instead of (6), uniqueness is also easily deduced. Indeed, notice that in this case, (17) implies

|x(t)− y(t)|2 ≤ λ

∫ t

0
|x(s)− y(s)|2 ds ∀t ∈ [0, T ],

for arbitrary two solutions x, y of the problem.

Now, before proving our first existence result, we shall state a theorem on existence and
uniqueness of solutions of evolution equations.

Theorem 4 Assume (5)–(9) hold with λ = 0. Then, given f1 ∈ Lp′
(0, T ;V ′) (with 1

p + 1
p′ = 1)

and x0 ∈ H, there exists a unique function x ∈ Lp(0, T ;V ) ∩ C(0, T ;H) such that

x(t) = x0 +
∫ t

0
[A(s, x(s)) + f1(s)]ds, for all t ∈ [0, T ].

In addition to this, the following energy equality holds:

|x(t)|2 = |x0|2 + 2
∫ t

0
〈A(s, x(s)) + f1(s), x(s)〉ds, t ∈ [0, T ].
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Proof. See Lions [13] (Theorem 1.2, page 162).

Theorem 5 Assume that (5)–(9), (11) and (12) hold. Then, for each initial datum ψ ∈
Lp(−h, 0; V )∩C(−h, 0; H), there exists a unique solution of the problem (13) in Lp(−h, T ; V )∩
C(−h, T ; H).

Proof. Uniqueness follows from Theorem 2. For the existence, we consider the equations{
x1(t) = ψ(0) +

∫ t
0

[
A(s, x1(s))− λ

2x
1(s)

]
ds, t ∈ [0, T ],

x1(t) = ψ(t), t ∈ [−h, 0],
(18)


xn+1(t) = ψ(0) +

∫ t
0

[
A(s, xn+1(s))− λ

2x
n+1(s)

]
ds

+λ
2

∫ t
0 x

n(s)ds+
∫ t
0 f(s, xn

s )ds, t ∈ [0, T ],∀n ≥ 1,

xn+1(t) = ψ(t), t ∈ [−h, 0], ∀n ≥ 1.

(19)

By virtue of (5)–(9), the family A1(t, .) : V → V ′ defined as A1(t, x) = A(t, x)−(λ/2)x , satisfies
assumptions in Theorem 4. Consequently, (18) has a unique solution x1 ∈ Lp(−h, T ; V ) ∩
C(−h, T ; H). We note that, from (11) it follows that the mapping t ∈ (0, T ) 7→ f(t, x1

t ) ∈ H
belongs to L2(0, T ; H) . Consequently, bearing these remarks in mind, we can use Theorem 4 and
get that there exists a unique function x2 ∈ Lp(−h, T ; V )∩C(−h, T ; H) , which is the solution
of (19) for n = 1 . By recurrence, we obtain a sequence of solutions of (18)–(19), {xn}n≥1 ⊂
Lp(−h, T ; V ) ∩ C(−h, T ; H) . Now, we want to prove that the sequence {xn} converges to a
function x in Lp(−h, T ; V )∩C(−h, T ; H) , which will be the solution of (13). For this end, we
shall first prove the following lemmas.

Lemma 6 {xn}n≥1 is a Cauchy sequence in C(−h, T ; H).

Proof. Indeed, it follows for n ≥ 2

|xn+1(t)− xn(t)|2 = 2
∫ t
0 〈A(xn+1)−A(xn), xn+1 − xn〉ds

−λ
∫ t
0 |x

n+1 − xn|2ds

+λ
∫ t
0 (xn+1 − xn, xn − xn−1)ds

+2
∫ t
0 (f(xn

s )− f(xn−1
s ), xn+1 − xn)ds,

(20)

where, for short we denote, xn := xn(s) , A(xn) := A(s, xn(s)) and f(xn) := f(s, xn
s ). Now, it

is easy to deduce from (6)

sup
0≤θ≤t

|xn+1(θ)− xn(θ)|2 ≤ |λ|
∫ t
0 |x

n+1 − xn||xn − xn−1|ds

+2
∫ t
0 |f(xn

s )− f(xn−1
s )||xn+1 − xn|ds.

(21)
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Firstly,

|λ|
∫ t
0 |x

n+1 − xn||xn − xn−1|ds ≤ 1
4 sup
0≤θ≤t

|xn+1(θ)− xn(θ)|2

+λ2T
∫ t
0 sup

0≤θ≤s
|xn(θ)− xn−1(θ)|2ds,

(22)

and noticing that xn(s) = xn−1(s) for −h ≤ s ≤ 0,

2
∫ t
0 |f(xn

s )− f(xn−1
s )||xn+1 − xn|ds

≤ 1
4T

∫ t
0 |x

n+1 − xn|2ds+ 4k2
1T
∫ t
0 ||x

n
s − xn−1

s ||2CH
ds

≤ 1
4 sup
0≤θ≤t

|xn+1(θ)− xn(θ)|2 + 4k2
1T
∫ t
0 sup

0≤θ≤s
|xn+1(θ)− xn(θ)|2ds.

(23)

If we set ϕn(t) = sup0≤θ≤t |xn+1(θ)− xn(θ)|2, it then follows from (21)–(23) that there exists a
positive constant k > 0 such that

ϕn(t) ≤ k

∫ t

0
ϕn−1(s) ds . (24)

By iteration from (24), we get

ϕn(t) ≤ kn−2Tn−1

(n− 2)!
ϕ2(T ) , ∀n ≥ 2 , ∀t ∈ [0, T ] . (25)

Therefore,

sup
0≤θ≤T

|xn+1(θ)− xn(θ)|2 ≤ kn−2Tn−2

(n− 2)!
ϕ2(T ) , ∀n ≥ 2. (26)

Obviously, since xn+1(θ) = xn(θ) for θ ∈ [−h, 0], (26) implies that {xn} is a Cauchy sequence in
C(−h, T ; H).

Lemma 7 The sequence {xn} is bounded in Lp(−h, T ; V ).

Proof. Indeed, for n ≥ 2 we immediately obtain

|xn(T )|2 = 2
∫ T
0 〈A(xn), xn〉ds− λ

∫ T
0 |xn|2ds

+|ψ(0)|2 + 2
∫ T
0 (f(xn−1), xn)ds+ λ

∫ T
0 (xn−1, xn)ds.

(27)

Therefore,
−2
∫ T
0 〈A(xn), xn〉ds+ λ

∫ T
0 |xn|2ds

≤ |ψ(0)|2 + 2
∫ T
0 |f(xn−1)||xn|ds+ |λ|

∫ T
0 |xn−1||xn|ds.

(28)

Since {xn} converges in C(−h, T ; H), it will be bounded in this space. Now, it is not difficult
to check that there exists a positive constant k′ > 0 such that the right-hand side of (28) is
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bounded by this constant. For instance, we will estimate one of those terms. Firstly, we observe
that ∫ T

0 ||xn−1
s ||2CH

≤
∫ T
0 sup
−h≤θ≤s

|xn−1(θ)|2ds

Next, (10) and (11) imply

2
∫ T
0 |f(xn−1)||xn|ds ≤

∫ T
0

[
|f(xn−1)|2 + |xn|2

]
ds

≤ T
(
k1||xn−1||C(−h,T ;H) + cf

)2 + T ||xn||2C(0,T ;H),
(29)

which, in addition to (28) and (5), leads to

α

∫ T

0
‖xn(s)‖p ds ≤ −2

∫ T

0
〈A(xn), xn〉 ds+ λ

∫ T

0
|xn|2 ds+ νT ≤ k′,

and the lemma is proved.

Now in order to complete the proof of the theorem, we shall prove that the limit of the
sequence {xn} is a solution to (13).

Firstly, observe that Lemma 6 implies that there exists x ∈ C(−h, T ; H) such that xn → x

in C(−h, T ; H). Now, thanks to (11), we have f(xn) → f(x) (in L∞(0, T ; H)). On the other
hand, by virtue of Lemma 7, {xn} has a subsequence which converges weakly in Lp(−h, T ; V ).
But, since xn → x in C(−h, T ; H), we can assure that xn → x weakly in Lp(−h, T ; V ) (in the
sequel, we will denote this by xn ⇀ x in Lp(−h, T ; V )). Nevertheless, it follows from (7) that
{A(xn)} is bounded in Lp′

(0, T ; V ′) (with p′ such that (1/p) + (1/p′) = 1), since∫ T

0
‖A(t, xn(t))‖p/(p−1)

∗ dt ≤ γ

∫ T

0
‖xn(t)‖pdt ≤ γk′/α.

Therefore, from each subsequence of {A(xn)}, we can get another subsequence weakly convergent
in Lp′

(0, T ; V ′). Now, as it is easy to see that all the limits of different subsequences coincide,
we finally get that A(xn) ⇀ v in Lp′

(0, T ; V ′). In conclusion, we have proved:

xn → x in C(0, T ; H), (30)

f(xn) → f(x) in L∞(0, T ; H), (31)

xn ⇀ x in Lp(−h, T ; V ), (32)

A(xn) ⇀ v in Lp′
(0, T ; V ′). (33)

Finally, by the virtue of (30)-(33), we can take limits in (19) and obtain

x(t) = ψ(0) +
∫ t

0
v(s) ds+

∫ t

0
f(s, xs) ds. (34)
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Thus, in order to finish the proof of the theorem, it is sufficient to prove that A(s, x(s)) = v(s)
in Lp′

(0, T ;V ′). To this respect, (27) yields to

2
∫ T
0 〈A(xn), xn〉 ds = λ

∫ T
0 |xn|2ds+ |xn(T )|2 − |ψ(0)|2

−2
∫ T
0 (f(xn−1), xn)ds− λ

∫ T
0 (xn−1, xn)ds,

(35)

which, together with (30)–(31), immediately implies

lim
n→∞

2
∫ T

0
〈A(xn), xn〉 ds = |x(T )|2 − |ψ(0)|2 − 2

∫ T

0
(f(x), x)ds. (36)

However, (34) and the energy equality yield

lim
n→∞

∫ T

0
〈A(xn), xn〉 ds =

∫ T

0
〈v, x〉 ds. (37)

Thanks to (6),

−2
∫ T

0
〈A(xn)−A(z), xn − z〉 ds+ λ

∫ T

0
|xn − z|2 ds ≥ 0 (38)

for all z ∈ Lp(0, T ; V ) ∩ L2(0, T ; H) . Nevertheless, (30), (32) and (33) allow us to take limits
in (38) and we have

−2
∫ T

0
〈v −A(z), x− z〉 ds+ λ

∫ T

0
|x− z|2 ds ≥ 0 . (39)

Now, if we set z = x− θz2 (for θ > 0 , z2 ∈ Lp(0, T ; V ) ∩ L2(0, T ;H) ), we obtain

−2
∫ T

0
〈v −A(x− θz2), θz2〉 ds+ λθ2

∫ T

0
|z2|2 ds ≥ 0 . (40)

In (40), we divide by θ, take limit as θ → 0 and then use hemicontinuity (8) to obtain

−
∫ T

0
〈v −A(x), z2〉 ds ≥ 0 , ∀z2 ∈ Lp(0, T ; V ) ∩ L2(0, T ;H) , (41)

and therefore v = A(x). Since (34) now holds with v = A(x), the proof of the Theorem is finally
complete.

Remark 8 We would like to point out that, in many situations, it is convenient to consider
another norm ‖ · ‖L2

H
instead of ‖ · ‖CH

for initial datum spaces in (13). The arguments used in
our preceding analysis still carry through when the norm ‖ · ‖CH

is replaced by ‖ · ‖L2
H

in (11).
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In what follows, we shall investigate an existence and uniqueness result for (13) in a more
general situation which, in particular, allows f to contain some gradient terms in the applications.
Precisely, let us assume hypotheses (5)–(9) for the family of operators A(t, ·). Suppose f(t, ·) :
CV → H is a family of nonlinear operators defined a.e.t. and satisfying:

There exists cf ≥ 0 such that sup
t∈[0,T ]

|f(t, 0)| ≤ cf ; (42)

∃ k1 = k1(h) > 0 : |f(t, η)− f(t, ξ)| ≤ k1‖η − ξ‖CV
, ∀η, ξ ∈ CV , a.e. t; (43)

t ∈ (0, T ) 7→ f(t, η) ∈ H is Lebesgue-measurable,∀η ∈ L2
V . (44)

∃Cf > 0 such that ∀t ∈ [0, T ],∀u, v ∈ C([−h, T ];V ),∫ t
0 |f(s, us)− f(s, vs)|2 ds ≤ Lf

∫ t
−h ‖u(s)− v(s)‖2 ds.

(45)

Observe that (42)-(44) imply that given u ∈ C(−h, T ;V ), the function fu : t ∈ [0, T ] 7→ fu(t) ∈
H defined by fu(t) = f(t, ut), for t ∈ [0, T ], is measurable (see Bensoussan et al. [4]) and,
in fact, belongs to L∞(0, T ;H). Then, thanks to (45), the mapping F : u ∈ C(−h, T ;V ) →
fu ∈ L2(0, T ;H) has a unique extension to a mapping F̃ which is uniformly continuous from
L2(−h, T ;V ) to L2(0, T ;H). From now on, we will denote f(t, ut) = F̃(u)(t), for each u ∈
L2(−h, T ;V ), and thus, ∀t ∈ [0, T ], u, v ∈ L2(−h, T ;V ) we will have that (45) holds.

Now we can establish our general existence and uniqueness result. To this end, we will use a
Galerkin approximation which requires the existence of a orthonormal basis in H whose elements
are in V. More precisely, let us assume that {v1, v2, ..., vn, ...} ⊂ V is an orthonormal basis of
H. Let us denote by Pn the orthogonal projector from H onto the vector space generated by
{v1, ...vn}, and assume that the sequence {‖Pn‖L(H,V )}n≥1 is bounded.

Theorem 9 In addition to (5)–(9) and (42)–(45), suppose the following hypothesis holds:

(M): For all ξ, η ∈ Lp(−h, T ;V ) with ξ0 = η0 it holds for a.e. t ∈ [0, T ],

−2 〈A(t, ξ(t)) + f(t, ξt)−A(t, η(t))− f(t, ηt), ξ(t)− η(t)〉+ λ|ξ(t)− η(t)|2 ≥ 0

Then, for each ψ ∈ Lp(−h, 0;V )∩C(−h, 0;H) there exists a unique solution of the problem (13)
in Lp(−h, T ;V ) ∩ C(−h, T ;H).

Proof. Uniqueness follows immediately from Assumption (M) and Gronwall’s lemma.
As for the existence, we shall split the proof into the following steps.

STEP 1. Finite-dimensional approximation.
Let {v1, v2, ..., vn, ...} be the orthonormal basis of H with vi ∈ V for all i ≥ 1. Let Vn =

Hn = V ′n denote the vector space generated by {v1, ...vn}. Let Pn ∈ L(H, Hn) be the orthogonal
projection from H onto Hn. Then, Pn can be extended to an operator P̃n from V ′ onto V ′n in
the following way

P̃nu =
n∑

i=1

〈u, vi〉vi, u ∈ V ′.

11



Now we consider the problem
d

dt
(xn(t), vi) = 〈A(t, xn(t)) + f(t, xn

t ), vi〉 , 1 ≤ i ≤ n,

xn(t) = Pnψ(t), t ∈ [−h, 0].
(46)

This equation can be rewritten in an equivalent way as follows. Let An(t, ·) denote the family of
operators from Vn into V ′n defined as An(t, x) = P̃nA(t, x), x ∈ Vn and assume fn(t, ·) : L2

Hn
→

Hn is given by fn(t, ξ) = Pnf(t, ξ) for ξ ∈ L2
Hn

Then, Eq. (46) can be rewritten as
d

dt
(xn(t), vi) = 〈An(t, xn(t)) + fn(t, xn

t ), vi〉 ,

xn(t) = ψn(t) = Pnψ(t), t ∈ [−h, 0].
(47)

Although Eq. (47) can be considered as a functional differential equation in Rn, we can not
apply the classic results on existence and uniqueness of solutions since, in general, An does
not satisfy a Lipschitz condition. However, we can apply to this situation the results proved
in the preceding section, i.e. Theorem 4 with ‖ · ‖CH

replaced by ‖ · ‖L2
H

in (11). Indeed,
it is easy to check that An, fn and ψn satisfy the assumptions in Theorem 4 by replacing
V , H, V ′ by Vn, Hn, V ′n. Therefore, for each natural number n ≥ 1, there exists a unique
xn ∈ Lp(−h, T ;Vn)∩C(−h, T ; Hn) which is the solution to (47). Owing to the natural injections,
we have that, in fact,

xn ∈ Lp(−h, T ; V ) ∩ C(−h, T ; H).

STEP 2. A priori computations.

As in the proof of Theorem 4, we set xn := xn(s), An(xn) := An(s, xn(s)) and fn(xn) :=
fn(s, xn

s ). The energy equality, (42)-(45) and (5) yield that, for any ε > 0 (chosen later),

|xn(t)|2 = |ψ(0)|2 + 2
∫ t

0
〈An(xn), xn〉 ds+ 2

∫ t

0
(fn(xn), xn) ds

≤ |ψ(0)|2 + λ

∫ t

0
|xn|2ds+ νt− α

∫ t

0
‖xn‖p ds

+ ε

∫ t

0
|fn(xn)|2 ds+ ε−1

∫ t

0
|xn|2ds,

12



and, evaluating

ε

∫ t

0
|fn(xn)|2 ds ≤ ε

∫ t

0
|fn(s, xn

s )− fn(s, 0) + fn(s, 0)|2 ds

≤ 2ε
∫ t

0
|fn(s, xn

s )− fn(s, 0)|2 ds+ 2ε
∫ t

0
|fn(s, 0)|2 ds

≤ 2εcf t+ 2εLf

∫ t

−h
‖xn(s)‖2 ds

≤ 2εcf t+ 2εLf

∫ t

−h
(1 + ‖xn(s)‖p) ds

≤ 2εcf t+ 2εLf

[
t+ h+ C

∫ 0

−h
‖ψ(s)‖p ds

]
+ 2εLf

∫ t

0
‖xn(s)‖p ds,

so, for ε small enough, namely for ε such that 2εLf < α, we have

|xn(t)|2 + (α− 2εLf )
∫ t

0
‖xn‖pds ≤ |ψ(0)|2 + νt+ 2εcf t

+ 2εLf

[
t+ h+ C

∫ 0

−h
‖ψ(s)‖p ds

]
+
(
λ+ ε−1

) ∫ t

0
|xn|2ds.

In particular, this immediately implies

sup
0≤t≤T

|xn(t)|2 ≤ |ψ(0)|2 + νt+ 2εcf t

+ 2εLf

[
t+ h+ C

∫ 0

−h
‖ψ(s)‖p ds

]
+
(
|λ|+ ε−1

) ∫ T

0
|xn|2ds.

So, we finally have that

{xn}n≥1 is bounded in Lp(−h, T ; V ) ∩ C(−h, T ; H),

{A(xn)}n≥1 is bounded in Lp′
(0, T ; V ′),

{f(xn)}n≥1 is bounded in L2(0, T ; H),

where A(xn) and f(xn) are defined in the obvious way and p′ denotes the conjugate of p.

STEP 3. Taking weak limits

13



Owing to the last assertions in Step 2, we can claim that there exists a subsequence {xnk}
of {xn} such that

xnk ⇀ x in Lp(−h, T ; V ) and weakly star in L∞(−h, T ; H),

xnk(T ) ⇀ ξ in H,

A(xnk) ⇀ χ in Lp′
(0, T ; V ′),

f(xnk) ⇀ σ in L2(0, T ; H),

Let θ : R → R be defined as

θ(t) =

{
0 if t < 0
1 if t ≥ 0.

If ϕ is a function from [0, T ] into R, we can define another function ϕ : (−ρ, T + ρ) → R (where
ρ is a positive fixed number) in the following way:

ϕ(t) =

{
ϕ(t) if t ∈ [0, T ]
0 otherwise.

This permits us to rewrite Eq. (46) (with n = nk) as follows

(xnk(t), vi) = (ψ(0), vi)θ(t)− (xnk(T ), vi)θ(t− T )

+
∫ t
0 〈A(xnk) + f(xnk), vi〉ds, i = 1, 2, ..., nk.

(48)

Now, we can take weak limits in (48) and obtain, for all t ∈ (−ρ, T + ρ),

(x(t), vi) = (ψ(0), vi)θ(t)− (ξ, vi)θ(t− T ) +
∫ t
0 〈χ+ σ, vi〉 ds, (49)

so it follows that
ξ = x(T )

dx(t) = (χ(t) + σ(t))dt, t ∈ [0, T ]

x(t) = ψ(t), t ∈ [−h, 0].

(50)

Therefore, it remains to prove that χ+ σ = A(x) + f(x).

STEP 4. Final step.

Now we are going to use the monotonicity method. Consider v ∈ Lp(−h, T ; V )∩L2(−h, T ; H)
and set

unk = −2
∫ T
0 e−λs 〈A(xnk) + f(xnk)−A(v)− f(v), xnk − v〉 ds

+λ
∫ T
0 e−λs|xnk − v|2ds.

(51)

Note that unk ≥ 0 due to Assumption (M). On the other hand, we can take limits in the terms
of (51) except for the following one

ynk = −2
∫ T
0 e−λs 〈A(xnk) + f(xnk), xnk〉 ds+ λ

∫ T
0 e−λs|xnk |2ds. (52)
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But, we immediately obtain that

|xnk(t)|2 = |Pnk
ψ(0)|2 + 2

∫ t

0
〈A(xnk) + f(xnk), xnk〉 ds. (53)

In particular, (53) proves that the function t 7→ |xnk(t)|2 is absolutely continuous and hence

d
[
e−λt|xnk(t)|2

]
+ λe−λt|xnk(t)|2 = e−λtd|xnk(t)|2. (54)

Now, it follows that

e−λT |xnk(T )|2 ≤ |Pnk
ψ(0)|2 − λ

∫ T
0 e−λt|xnk(t)|2dt

+2
∫ T
0 e−λt〈A(xnk) + f(xnk), xnk〉dt

(55)

and, therefore
ynk ≤ |ψ(0)|2 − e−λT |xnk(T )|2. (56)

As a straightforward consequence, it follows that

lim sup
k→∞

ynk ≤ |ψ(0)|2 − e−λT |x(T )|2. (57)

Applying once again the energy equality for Eq. (50),

e−λT |x(T )|2 = |ψ(0)|2 − λ

∫ T

0
e−λt|x|2dt+ 2

∫ T

0
e−λt〈χ+ σ, x〉dt. (58)

So

lim sup
k→∞

ynk ≤
∫ T

0
e−λt

[
2〈χ+ σ, x〉+ λ|x|2

]
dt, (59)

and finally,

0 ≤ lim sup
k→∞

unk ≤ −2
∫ T
0 e−λt〈χ+ σ −A(v)− f(v), x− v〉dt

+λ
∫ T
0 e−λt|x− v|2dt.

(60)

In order to finish the proof, we only need to use hemicontinuity (8). Indeed, we notice that the
function f also satisfies a similar property and, in fact, it is easy to deduce from (45) that the
map θ ∈ R 7→

∫ T
0 (f(t, η + θξ), x)dt ∈ R is continuous for all η, ξ ∈ L2

V , x ∈ H and a.e.t ∈ [0, T ].
Now, setting v = x− θu for θ > 0 and u ∈ Lp(−h, T ; V ) ∩ L2(−h, T ; H) in (60), dividing by θ
and letting θ tend to 0, we then get ∀u ∈ Lp(−h, T ; V ) ∩ L2(−h, T ; H)

−2
∫ T

0
e−λt〈χ+ σ −A(x)− f(x), u〉dt ≥ 0.

Consequently, χ+ σ = A(x) + f(x) and the proof of the theorem is complete.
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4 STABILITY OF SOLUTIONS

In this section we shall show that under suitable conditions exponential stability can be trans-
ferred from equations without time lags to those with time lag ones. Since we are mainly
interested in exponential stability problems, we will assume there exists x ∈ L2(−h, T ;V ) ∩
C(−h, T ;H) , ∀T > 0 , which is the variational solution of the following problem:

dx(t)
dt

= A(t, x(t)) + f(t, xt) t > 0,

x(t) = ψ(t), t ∈ [−h, 0].
(61)

In other words, x(t) satisfies the following integral equation (in V ′):{
x(t) = ψ(0) +

∫ t
0 [A(s, x(s)) + f(s, xs)]ds, t ≥ 0,

x(t) = ψ(t), t ∈ [−h, 0].
(62)

In particular, we suppose in this section that all conditions in Section 3 hold so that there exists
a unique solution to the functional differential equation (61).

First of all, we investigate the case without hereditary characteristics. In other words,
consider Eq. (61) with h = 0 and thus k1 > 0 in (11) does not depend on h. Then Eq. (61)
reduces to 

dx(t)
dt

= A(t, x(t)) + f(t, x(t)), t ≥ 0,

x(0) = x0.

(63)

If it is possible to know the existence of a Lyapunov function, we could prove exponential stability
of solutions. Indeed, assume there exist v ∈ C2(H; R+) and positive constants ci, 1 ≤ i ≤ 4 ,
such that v′(x) ∈ V for all x ∈ V and

c1|x|2 ≤ v(x) ≤ c2|x|2, Lv(x) ≤ −c3v(x), |v′(x)| ≤ c4|x|,

for all x ∈ V , where L is the associated Lyapunov operator defined as

Lv(x) = 〈A(t, x) + f(t, x), v′(x)〉, ∀x ∈ V.

We can get for the function ec3tv(x), and x ∈ H

ec3tv(x(t)) = v(x(0)) + c3
∫ t
0 e

c3sv(x(s))ds

+
∫ t
0 e

c3s〈A(s, x(s)) + f(s, x(s)), v′(x(s))〉ds.

Observing that Lv(x) ≤ −c3v(x) , we have

v(x(t)) ≤ e−c3tv(x(0)) , ∀t ≥ 0,

and from the assumptions on v, we easily deduce that

|x(t)|2 ≤ c2
c1
e−c3t|x(0)|2 , ∀t ≥ 0.
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Consequently, what we have proved is that every solution to (61) converges exponentially to
zero, even if zero is not a stationary solution. In particular, if f(t, 0) = 0 for all t ≥ 0, our result
implies that the trivial solution to (61) is globally exponentially stable.

Although, as we have mentioned before, the construction of Lyapunov functions is not, in
general, a trivial problem, there exists a condition which makes v(x) = |x|2 become a natural
Lyapunov function. We are refering to the following hypothesis

(H): there exists a positive constant γ > 0 such that

2〈A(t, x) + f(t, x), x〉 ≤ −γ|x|2,∀x ∈ V

(observe that on this occasion Lv(x) = 2〈A(t, x) + f(t, x), x〉 ≤ −γ|x|2).

Remark 10 In what follows, we assume that f(t, 0) = 0, for all t ≥ 0 since we are interested
in analysing the stability of the trivial solution to our problem. To this respect, it is worth
mentioning that in a variety of practical situations, the following assumption (H)′ (which seems
easier to check) implies (H):
(H)′: There exists a positive constant α̂ > 0 such that

−2〈A(t, x), x〉 ≥ α̂|x|2 ,∀x ∈ V and − α̂+ 2k1 < 0,

where k1 is the nonnegative constant in (11).

Indeed, note that

2〈A(t, x) + f(t, x), x〉 ≤ − α̂|x|2 + 2(f(t, x), x)

≤ (− α̂+ 2k1)|x|2

and denoting γ = α̂− 2k1, assumption (H) follows.

Now, we shall show that the same hypotheses as above (mainly (11) and (H)′) imply expo-
nential stability of the trivial solution to the functional differential equation (61). However, it
is particularly worth pointing out that on this occasion the constants k1 is generally dependent
on the time lag constant h > 0. This fact simply means that, in order to obtain exponential
stability, the time lag must be sufficiently small. However, as will be shown by the examples
in the final section (see also Theorem ??), on some occasions such as the time delay case, the
constant k1 could be independent on h > 0 so that the stability holds true for any h > 0. For
our ends, let us firstly study some stability criteria for the functional differential equation (61)
by using a Razumikhin type argument.

Theorem 11 Assume that operators A and f are continuous with respect to time t, and that
there exists a positive constant λ > 0 such that for all t ≥ 0,

2 〈A(t, φ(0)) + f(t, φ), φ(0)〉 < −λ|φ(0)|2 (64)
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provided φ = {φ(s) : −h ≤ s ≤ 0} ∈ C(−h, 0;V ) satisfying

‖φ‖2
CH

≤ eλh|φ(0)|2. (65)

Then, there exists a positive constant K ≥ 1 such that for all ψ ∈ C(−h, 0;V ) for which the
solution to (61) corresponding to the initial value ψ, denoted by x(t, ψ), belongs to C(−h, T ;V )
for all T > 0, satisfies

|x(t, ψ)|2 ≤ K||ψ||2CH
· e−λt, for all t ≥ 0. (66)

Proof. Suppose the assertion does not hold. Then, for any K ≥ 1 there exists an initial
data ψ such that (66) is not true. Let us fix a K ≥ 1 and take the corresponding ψ. Thus, we
can affirm that there exists a ρ ≥ 0 such that

eλt|x(t;ψ)|2 ≤ eλρ|x(ρ;ψ)|2 = K||ψ||2CH
, (67)

for all 0 ≤ t ≤ ρ, and there is a sequence {tk}k≥1 in R+ such that tk ↓ ρ, as k →∞, and

eλtk |x(tk;ψ)|2 > eλρ|x(ρ;ψ)|2. (68)

On the other hand, by virtue of (67) we deduce

|x(ρ+ θ;ψ)|2 ≤ eλ(ρ−t)|x(ρ;ψ)|2 ≤ eλh|x(ρ;ψ)|2,

for all −h ≤ θ ≤ 0, which, in view of the assumptions (64)-(65), immediately implies that

2 〈A(ρ, x(ρ)) + f(ρ, xρ), x(ρ;ψ)〉 < −λ|x(ρ)|2.

By the continuity of the solution and the functions A and f , we see that for some sufficiently
small h > 0,

2 〈A(t, x(t)) + f(t, xt), x(t;ψ)〉 < −λ|x(t)|2,

for all t ∈ [ρ, ρ+ h]. Thus, for all sufficiently small h > 0,

eλ(ρ+h)|x(ρ+ h;ψ)|2 − eλρ|x(ρ;ψ)|2

=
∫ ρ+h
ρ eλt

[
λ|x(t;ψ)|2 + 2 〈A(t, x(t;ψ)) + f(t, xt), x(t;ψ)〉 dt

]
≤ 0.

However, this contradicts (68), so the result (66) must be true.

Theorem 12 Suppose the assumptions in Section 3 for existence and uniqueness of solutions
to (13) hold. In addition to (11) and (H)′, assume that operators A and f are continuous with
respecto to time t. Then, there exist λ > 0 and K ≥ 1 such that for all ψ ∈ C(−h, 0;V ) for
which the solution to (13) belongs to C(−h, T ;V ) for all T > 0, i.e. x(·;ψ) ∈ C(−h, T ;V ), it
follows

|x(t;ψ)|2 ≤ K · ||ψ||2CH
· e−λt, for all t ≥ 0.
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Proof. As 0 < α̂−2k1, we can take a sufficiently small positive λ such that 0 < α̂−2k1e
λh.

Now if t ≥ 0 and φ = {φ(s) : −h ≤ s ≤ 0} ∈ C([−h, 0];V ) satisfies

‖φ‖CH
≤ eλh|φ(0)|,

then Assumption (11) and condition (H)′ imply

2 〈A(t, φ(0)) + f(t, φ), φ(0)〉 ≤
[
− α̂+ 2k1e

λh
]
|φ(0)|2. (69)

Therefore, in view of Theorem 11 the proof is complete.

Remark 13 In the finite dimensional case, that is, when V = H = Rn, Theorem 12 guarantees
exponential stability for the solutions to (61) if (H)′ is fulfilled, where (H)′ can be rewritten now
as
(H)′′ There exists a positive constant α̂ such that

−2xTA(t, x) ≥ α̂|x|2 , ∀x ∈ Rn and − α̂+ 2k1 < 0,

where xT denotes the transpose of x. Notice that this is the same condition deduced by Hale
and Lunel [8], so our assumption becomes a natural extension of the finite-dimensional results.
Futhermore, under this condition the results in Mao [14] only ensure exponential stability if the
delay function there is t− h with h sufficiently small.

Remark 14 Observe that the stability result just proved requires some regularity conditions on
the problem and some additional continuity assumptions on the operators. Nevertheless, for
some particular cases, better results could be obtained. As an example, we shall prove below an
exponential stability result for the case of a partial differential equation with variable delay.

To this respect, let us consider F : H → H globally Lipschitz with constant k̂1 and F (0) = 0,
ω : R+ → [0, h] continuously differentiable with ω′(t) ≤ 0 for all t ≥ 0, and define f(t, φ) =
F (φ(−ω(t)), for φ ∈ C(−h, 0;H). This situation corresponds to the problem{

dx(t)
dt = A(t, x(t)) + F (x(t− ω(t)), t > 0,
x(t) = ψ(t), t ∈ [−h, 0].

(70)

Theorem 15 In the preceding situation, assume that

−2〈A(t, x), x〉 ≥ α̂|x|2 ,∀x ∈ V with − α̂+ 2k̂1 < 0.

Then, there exist λ > 0,K ≥ 1 such that for every ψ ∈ CH , the solution to (70), denoted again
x(t, ψ), satisfies

|x(t;ψ)|2 ≤ K · ||ψ||2CH
· e−λt, for all t ≥ 0.
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Proof. Let us denote ρ(t) = t−ω(t), t ≥ 0. Then, ρ is a continuously differentiable function
with ρ′(t) ≥ 1. This immediately implies that ρ−1(t) ≤ t+ ρ−1(0) = t+ k. Now, we can choose
λ > 0 such that λ− α̂+ k̂1(1 + eλk) < 0, and, by setting x(t) = x(t;ψ), it follows that

eλt |x(t)|2 ≤ |ψ(0)|2 +
∫ t

0
eλs |x(s)|2 ds+ 2

∫ t

0
eλs 〈A(s, x(s)), x(s)〉 ds

+ 2
∫ t

0
eλs (F (x(ρ(s)), x(s)) ds

≤ ||ψ||2CH
+ (λ− α̂)

∫ t

0
eλs |x(s)|2 ds

+ 2k̂1

∫ t

0
eλs |x(ρ(s))| |x(s)| ds

≤ ||ψ||2CH
+ (λ− α̂+ k̂1)

∫ t

0
eλs |x(s)|2 ds

+ k̂1

∫ t

0
eλs |x(ρ(s))|2 ds,

and evaluating the last term by using the change of variables u = ρ(s) in the integral, it holds∫ t

0
eλs |x(ρ(s))|2 ds ≤

∫ t

−h
eλu+λk |x(u)|2 du

≤
∫ 0

−h
eλu+λk |ψ(u)|2 du+

∫ t

0
eλu+λk |x(u)|2 du

≤ heλk||ψ||2CH
+ eλk

∫ t

0
eλu |x(u)|2 du.

Thus, we have

eλt |x(t)|2 ≤ (1 + k̂1he
λk)||ψ||2CH

+ (λ− α̂+ k̂1 + k̂1e
λk)
∫ t

0
eλs |x(s)|2 ds,

and therefore the proof is complete.

5 Examples

Now, we are going to apply the results proved in the previous sections to obtain stability of
some functional differential equations. First of all, we consider a general situation concerning
the semilinear case previously studied by several authors (see Travis and Webb [18],[19], Martin
and Smith [15], Wu [23], among others).

Example 1. In our variational setting, consider a linear operator A ∈ L(V, V ′) satisfying
the coercivity condition (5) with ν = 0. If we set D(A) := {v ∈ V : Av ∈ H} , then the operator
A restricted to this set D(A) becomes a closed and densely defined operator. Moreover, (see
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Dautray and Lions [6] for the details) A is the generator of a strongly continuous semigroup of
linear operators in H, denoted by S(t), which satisfies:

|S(t)| ≤ eλt/2,∀t ≥ 0.

Conversely, if S(t) is a strongly continuous semigroup satisfying, for some ω ∈ R,

|S(t)| ≤ eωt,∀t ≥ 0,

then, it is not difficult to prove that its generator A satisfies

〈Ax, x〉 ≤ ω|x|2,∀x ∈ D(A).

Now, consider the semilinear problem
dx(t)
dt

= Ax(t) + f(xt), t ≥ 0,

x(t) = ψ(t), t ∈ [−h, 0].
(71)

where we assume that f is continuous, satisfies the Lipschitz condition (11) and f(0) = 0.
Then, by applying the results in [18], we obtain that there exists a unique mild solution to (71)
which, in addition, is a strong solution (whose existence is also ensured by our theory). On
the other hand, if ω < 0 and k1 < −ω, the results in [18] guarantee that the null solution to
(71) is exponentially asymptotically stable. As we can easily see, the same result follows from
our theory, since on this occasion, (H)′ holds with α̂ = −2ω, and therefore, − α̂ + 2k1 < 0 is
equivalent to ω + k1 < 0.
In conclusion, our theory gives a natural extension of the results previously obtained in the
semilinear case.

Example 2. Consider the following semilinear heat equation with finite time lags r1, r2
(r > r1, r2 ≥ 0) and with µ > 0, α1 ≥ 0

d

dt
X(t, x) = µ

∂2

∂x2
X(t, x) + α1

∫ 0

−r1

X(t+ u, x)h(u)du+ α(X(t))X(t− r2, x), t ≥ 0,

X(t, 0) = X(t, π) = 0, t ≥ 0, X(s, x) = φ(s, x), φ(·, x) ∈ C := C(−r, 0; R),

φ(s, ·) ∈ L2(0, π), s ∈ [−r, 0], x ∈ [0, π], ‖φ‖C <∞,

where α : R → R, h : [−r1, 0] → R are two bounded, Lipschitz continuous function with
|α(x)| ≤ K, |h(u)| ≤ M , x ∈ R, u ∈ [−r1, 0], M, K > 0. Define V = H1

0 [0, π], H = L2[0, π]
with the corresponding boundary conditions above. Let A = ∂2

∂x2 with the domain

D(A) =
{
u ∈ L2(0, π),

∂u

∂x
,
∂2u

∂x2
∈ L2(0, π), u(0) = u(π) = 0

}
,

so it is easy to deduce
2 〈Au, u〉 ≤ −2µ‖u‖2, u ∈ V.

21



On the other hand, it is clear that∣∣∣∣α1

∫ 0

−r1

X(t+ u, ·)h(u)du
∣∣∣∣2 ≤ 2

[
(α1r1M)2 +K2

]
‖Xt‖2

C .

By a straightforward computation and applying Theorems 11, 12 to the above equation, if
µ > 2

[
(α1r1M)2 +K2

]
and r2 > 0 is arbitrary, then the null solution is exponentially stable.

Example 3. Let us now exhibit a final nonlinear example. Let D = [0, 1], 2 < p < +∞, r >

0 and consider the following nonlinear partial functional differential equation
d

dt
u(t, x) =

∂

∂x

(∣∣∣∣∂u(t, x)∂x

∣∣∣∣p−2 ∂u(t, x)
∂x

)
− a(x)u(t, x) + f(t, ut(x)), t > 0, x ∈ D,

x(t, x) = ψ(t, x), t ∈ [−r, 0], x ∈ D,
x(t, 0) = x(t, 1) = 0, t > 0,

(72)

where a ∈ L∞(D), a(x) ≥ ã > 0, for all x ∈ D, and f(t, φ) = g(φ(−ω(t))), where ω : R →[0, r] is
a measurable function and g : R → R is a Lipschitz function with constant L > 0 and satisfying
g(0) = 0. If we set H = L2(D), V = W 1,p

0 (D) and consider the operator A defined as

〈Au, v〉 = −
∫

D

[∣∣∣∣∂u(x)∂x

∣∣∣∣p−2 ∂u(x)
∂x

∂v(x)
∂x

+ a(x)u(x)v(x)

]
dx, ∀u, v ∈ V.

Then it is not difficult to check that assumptions (5)-(9) hold with λ = −2ã, α = 2. Consequently,
condition (H)′ holds provided −ã+ L < 0. So, we get exponential stability.

6 Conclusions and final remarks

We have proved some results on the existence and uniqueness of solutions to a nonlinear partial
functional differential equation with finite delay by using a variational approach. Then, by
means of a Razumikhin type argument, we have established a stability result in the case of
additional regularity of the problem.

However, nothing has been said in this context concerning the existence of solutions in the
case of infinite delays. Also, a study of the multivalued version of our problem could be analyzed
and some more stability results should be obtained. Finally, a comparison of these results and
the ones previously proved by the evolution operator approach seems to be an interesting task
which should be done.

We plan to investigate these questions in some subsequent papers.
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