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Abstract. We show that infinite-dimensional integro-differential equations

which involve an integral of the solution over the time interval since start-
ing can be formulated as non-autonomous delay differential equations with an
infinite delay. Moreover, when conditions guaranteeing uniqueness of solutions
do not hold, they generate a non-autonomous (possibly) multi-valued dynami-
cal system (MNDS). The pullback attractors here are defined with respect to a
universe of subsets of the state space with sub-exponetial growth, rather than
restricted to bounded sets. The theory of non-autonomous pullback attractors
is extended to such MNDS in a general setting and then applied to the original
integro-differential equations. Examples based on the logistic equations with
and without a diffusion term are considered.

1. Introduction. The main aim of this paper is to show that a wide class of
integro-differential partial differential equations can be analyzed within the frame-
work of non-autonomous dynamical systems, and the long-time behaviour of their
solutions can be investigated with the help of the theory of pullback attractors.

This theory is now well established as has been extensively developed over the
last one and a half decades. Pullback attractors have proven to be appropriate
concepts to describe the long–time behaviour of many dynamical systems arising
in science, especially those exhibiting non-autonomity (see, e.g. Caraballo et al.
[15], Cheban et al. [20], Chepyzhov and Vishik [21]), Chueshov [22], Crauel and
Flandoli [23], Flandoli and Schmalfuß [25], Kloeden [28], Kloeden and Schmalfuß
[29], Robinson [33], Schmalfuß [34], amongst many others).

Integro-differential equations appear in various branches of science (e.g. in mod-
elling the growth of parasite population, in Lotka-Volterra predator-prey systems,
in reaction-diffusion models with memory, and their relevance is without doubt. In
general, the models containing in their equations some kind of delay terms are now
being studied extensively, since it is assumed that in many phenomena from reality,

2000 Mathematics Subject Classification. Primary: 34G25, 34K25, 35R10; Secondary: 34D45,
37C70, 47H20.

Key words and phrases. Integro-differential equation, differential equation with infinite delay,
set-valued process, set-valued non-autonomous dynamical system, pullback attractor.

Partially supported by Ministerio de Educación y Ciencia (Spain), FEDER (European Commu-
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the principle of causality does not seem appropriate, and it is assumed that the past
history of the phenomena have a decisive influence in the future evolution of the
systems.

There are now many papers dealing with the asymptotic behaviour of ordinary or
partial differential equations within the framework of the pullback theory for non-
autonomous dynamical systems. In principle, as soon as we have an equation with
a non-constant delay term, the problem becomes non-autonomous. However, we
have not found in the literature any papers concerning its applications to integro-
differential equations of the form

du

dt
= Au + F (u) +

∫ t

0

G(t, s, u(s))ds, (1)

where, for instance, A is a linear operator and F , G are nonlinear, in an infinite
dimensional Banach state space H . On the other hand, for a finite dimensional
state space, we are aware only of some indirectly related papers (see below).

The integral term, essentially a memory term, in equation (1) means that it is
in effect a differential equation with unbounded (infinite) delay. Caraballo et al.
[10, 16] used such a formulation when the space H is finite dimensional for logistic–
like equations involving an integral over the entire negative time axis of a function
of the solution. The following observation shows that equation (1) can also be
formulated as a differential equation with infinite delay. Considering only the last
term in the equation and denoting by ut the segment solution defined for s ≤ 0 as
ut(s) = u(t+ s), a change of variables gives

∫ t

0

G(t, s, u(s))ds =

∫ 0

−t

G(t, t+ s, u(t+ s))ds

=

∫ 0

−t

G(t, t+ s, ut(s))ds = G(t, ut),

where G is defined in a suitable phase space Cγ , a Banach subspace of C(−∞, 0;H)
satisfying appropriate additional assumptions (e.g. the limt→−∞ u(t)eγt exists for
a suitable weight γ). In other words, G : R × R × Cγ → H is defined as

G(t, φ) =

∫ 0

−t

G(t, t+ s, φ(s))ds.

Then, equation (1) can be written as

du

dt
= Au + F (u) + G(t, ut)

and even the term F (u) can be included in the delay term by setting

F(t, ut) = F (ut(0)) + G(t, ut)

and then our model becomes

du

dt
= Au+ F(t, ut). (2)

An analogous situation holds when the Banach space H is infinite dimensional, but
leads to an abstract functional partial differential equation.

Although we could carry out our investigation working directly with equation (1),
we prefer to develop a general abstract theory for equation (2), and then analyze
our motivating model as a particular case, since our results then also apply to many
other situations.
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We will assume very weak assumptions on the operators in our model so that
uniqueness of solutions will be not guaranteed from the very beginning. For this rea-
son we need the theory of multi-valued (or set-valued) non-autonomous dynamical
systems.

The structure of the paper is the following. We recall the definition of a non-
autonomous set-valued dynamical system in the next section and, then, in section 3
we present the definition and properties of pullback attractors of such systems along
with statements of theorems, which will be proved in the appendix, for their exis-
tence. The pullback attractors here are defined with respect to a universe of subsets
of the state space with sub-exponential growth, rather than restricted to bounded
sets. In section 4 we show that general class of infinite-dimensional non-autonomous
differential equations with infinite delay generate such a non-autonomous set-valued
dynamical system which establish the existence of a pullback attractor under cer-
tain structural conditions. Two examples are given in section 5, both with a logistic
structure with an integral term, one with and one without an additional diffusion
term. An appendix contains proofs of theorems presented earlier in the paper as
well as some results that were used earlier.

2. Non-autonomous set-valued dynamical systems. First we recall some ba-
sic definitions for set–valued non–autonomous dynamical systems and establish a
sufficient condition for the existence of a pullback attractor for these systems. For
a more general random context the reader is referred to [8]

Let X = (X, dX) denote a Polish space, let 2X be the set of all subsets of X and
let Pc (X) be the set of all non-empty closed subsets of the space X . A mapping D
: t ∈ R → D(t) ∈ 2X is called a multi–function or set-valued mapping. We denote
by C(X) the set of all multi–functions D : t ∈ R → D(t) ∈ 2X with closed and

non–empty images and use the notation D̂ = {D(t) : t ∈ R} for any element in
C(X).

A multi–valued map U : R2
d ×X → Pc(X), where R2

d := {(t, s) ∈ R2 : t ≥ s}, is
called a multi–valued non–autonomous dynamical system (MNDS) [12, 13, 14] if

i) U(s, s, ·) = idX(·) for all s ∈ R,
ii) U(t, τ, x) ⊂ U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t, x ∈ X (process property),

where U(t, τ, V ) := ∪x0∈V U(t, τ, x0) for any non–empty set V ⊂ X .
Moreover, an MNDS is said to be strict if

iii) U(t, τ, x) = U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t and x ∈ X,

and to be upper–semicontinuous at x0 if

iv) for every neighborhood U in X of the set U(t, τ, x0) there exists δ > 0 such
that U(t, τ, y) ∈ U whenever dX(x0, y) < δ.

Finally, U(t, τ, ·) is said to be upper–semicontinuous, if it is upper–semicontinuous
at every x0 in X .

We note that, if the mapping U (t, τ, ·) is upper–semicontinuous at x0, then for
all ε > 0 there exists δ (ε) > 0 such that

distX(U (t, τ, y) , U (t, τ, x0)) ≤ ε,

for any y satisfying dX(y, x0) ≤ δ (ε), where distX denotes the Hausdorff semi-
distance which is defined for two non-empty sets A, B as

distX(A,B) = sup
x∈A

inf
y∈B

dX(x, y).
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The converse is true when U (t, τ, x0) is compact, see Aubin and Cellina [2].

3. Pullback attractors for MNDS. We will now establish a sufficient condition
ensuring the existence of pullback attractors with respect to a universe of sets (as
in [15]). When this universe consists of bounded sets, the results have already been
proved in [12].

A multi–valued mapping D̂ = {D(t) : t ∈ R} is said to be negatively, strictly, or
positively invariant (resp.) for the MNDS U if

D(t) ⊂, =, ⊃ (resp.)U(t, τ,D(τ)) for (t, τ) ∈ R
2
d.

Let D be the family of multi–valued mappings with values in C(X). We say that a

family K̂ ∈ D is pullback D-attracting if for every D̂ ∈ D

lim
τ→+∞

distX(U(t, t− τ,D (t− τ)),K(t)) = 0, for all t ∈ R.

B̂ ∈ D is said to be pullback D-absorbing if for every D̂ ∈ D and every t ∈ R, there

exists T := T (t, D̂) > 0 such that

U(t, t− τ,D (t− τ)) ⊂ B(t) for all τ ≥ T. (3)

The following definition provides the main objective of this article. For this we
need a particular set system called a universe (see Schmalfuß [34]): Let D be a set
of multi–valued mappings in C(X) satisfying the inclusion closure property: suppose

that D̂ ∈ D and let D̂′ be a multi–valued mapping in C(X) such that D′(t) ⊂ D(t)

for t ∈ R, then D̂′ ∈ D.

Definition 3.1. A family Â ∈ D is said to be a global pullback D-attractor for the
MNDS U if it satisfies:

i): A (t) is compact for any t ∈ R;

ii): Â is pullback D-attracting;

iii): Â is negatively invariant.

Â is said to be a strict global pullback D-attractor if the invariance property in
the third item is strict.

As usual, the main tool to prove the existence of an attractor is the concept of

pullback-omega-limit set. For a multi–valued mappings D̂ we define the pullback-

omega-limit set as the t–dependent set Λ(D̂, t) given by

Λ(D̂, t) =
⋂

τ≥0

⋃

s≥τ

U (t, t− s,D (t− s)).

This set is closed, but it may be empty. It can be proved that y ∈ Λ(D̂, t) if and
only if there exist tn → +∞ and yn ∈ U (t, t− tn, D (t− tn)) such that

lim
n→+∞

yn = y.

We then have the following lemma, which is a generalization of Theorem 6 and
Lemma 8 in Caraballo et al. [12] to the case in which we consider a general universe
D instead of just the bounded sets of X. The proof is given in the appendix.
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Lemma 3.2. Assume the MNDS U(t, τ, ·) is upper–semicontinuous for (t, τ) ∈ R2
d,.

Let B̂ be a multi–valued mapping such that the MNDS is asymptotically compact

with respect to B̂, i.e., for every sequence tn → +∞, t ∈ R, every sequence yn ∈
U(t, t− tn, B(t− tn)) is pre–compact.

Then, for t ∈ R, the pullback–omega–limit set Λ
(
B̂, t

)
is non–empty, compact,

and

lim
τ→+∞

distX(U(t, t− τ, B (t− τ)),Λ
(
B̂, t

)
) = 0, (4)

Λ
(
B̂, t

)
⊂ U

(
t, τ,Λ

(
B̂, τ

))
, for all (t, τ) ∈ R

2
d. (5)

We can now present a sufficient condition ensuring the existence of pullback
attractor. The proof of this theorem is also given in the appendix.

Theorem 3.3. Assume the hypotheses in Lemma 3.2. In addition, suppose that

B̂ ∈ D is pullback D–absorbing. Then, the set Â given by

A (t) := Λ
(
B̂, t

)

is a pullback D-attractor. Moreover, Â is the unique element from D with these
properties.

In addition, if U is a strict MNDS then Â is strictly invariant.

4. MNDS generated by infinite-delay partial differential equations. In
this section we consider the following evolution equation

dy

dt
= Ay + f(t, yt), (6)

which includes, in particular, our integro-differential model (1).
Here we suppose that A is the generator of a C0 contraction semigroup (eAt)t≥0

on a separable Banach space (H, ‖ · ‖) such that

‖eAtx‖ ≤ ‖x‖e−αt, for some α > 0 and every t ≥ 0,

and assume the operators eAt are compact for t > 0. The non–linear term f depends
on t and on a delay term yt, which is defined as follows:

For a function y(·) : R →H, and any t ∈ R, we define yt : (−∞, 0] → H as

yt(s) = y(t+ s), s ∈ (−∞, 0].

When we equip (6) with an initial value in order to have a an initial value problem,
we need to set

y(t) = φ(t), for t ≤ 0, (7)

where φ : (−∞, 0] → H is a suitable function. Thus, if y(·) denotes a solution to
(6) such that (7) holds, then yt denotes

yt(s) =

{
y(t+ s) for s ∈ [−t, 0]
φ(s+ t) s < −t

where t ≥ 0.
Before describing the assumptions on f, we first introduce the function space

Cγ = {u ∈ C((−∞, 0];H) : lim
τ→−∞

u (τ) eγτ exists},

where γ > α, and set ‖u‖γ := supτ∈(−∞,0] e
γτ‖u(τ)‖ < ∞. This is a separable

Banach space [26, p.15].
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Our objective now is to show the existence of a pullback attractor for the dy-
namical system generated by (6).

In what follows we assume that there exist two non–negative functions ci : R →
R, i = 1, 2, such that t → ci(t) is integrable with respect to every finite interval
(a, b) and sub–exponentially growing for t→ ±∞. We also suppose that c2 satisfies

lim
t→±∞

1

t

∫ t

0

c2(τ + s)dτ = c̄2(s) ∈ R, for all s ∈ R.

Finally, we suppose that φ ∈ Cγ and that

f : R × Cγ → H

is a continuous function for which

‖f(t, φ)‖ ≤ c1(t) + c2(t)‖φ‖γ for t ∈ R and φ ∈ Cγ . (8)

Notice that we do not assume that f is Lipschitz continuous.

We now prove that for every φ ∈ Cγ (6) possesses at least one mild solution.

Definition 4.1. For a given φ ∈ Cγ , a function [t0, T ] ∋ t → yt(·) := yt(·; t0, φ) ∈
Cγ is said to be a mild solution of (6) with initial function φ at time t0 (< T ), if

yt(s) =

{
eA(t−t0+s)φ(0) +

∫ s+t

t0
eA(t+s−τ)f(τ, yτ )dτ : s ∈ [−(t− t0), 0]

φ(s+ t− t0) : s < −(t− t0),
(9)

for all t ∈ [t0, T ].

Note that in the last definition we express that the mild solution has the state
space Cγ , not H . Alternatively, we can define a mild solution to (6) with state
space H , setting s = 0, by

y(t) =

{
eA(t−t0)φ(0) +

∫ t

t0
eA(t−τ)f(τ, yτ )dτ : t ≥ t0

φ(t − t0) : t < t0.

Briefly we can write that y(·; t0, φ) is a mild solution to the IVP

(IVP)t0,φ

{
dy

dt
= Ay + f(t, yt), for t ≥ t0,

yt0 = φ.

We now introduce the following notation. Let y ∈ C([t0, T ];H) with y(t0) = φ(0)
and φ ∈ Cγ . Then, for τ ∈ [t0, T ], we denote by y ∨t0,τ φ the mapping from R− to
H defined by

y ∨t0,τ φ(s) :=

{
y(t0 + τ + s) : s ∈ (−τ, 0]
φ(τ + s) : s ≤ −τ.

We observe that for such function y the integral in (9) is well defined.

Theorem 4.2. Suppose that the above assumptions on eAt and f are satisfied.
Then, for every interval [t0, T ], and any φ ∈ Cγ , the initial value problem (IVP)t0,φ

possesses a mild solution in Cγ .

The global existence follows by the a priori estimates established in Theorem 4.3
below, assuming that one has the local existence of solutions. The proof of local
existence, given in the Appendix, follows Pazy [32] Theorem 6.2.1.
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Theorem 4.3. Let yt be any mild solution of (6) on [t0, T ), T ∈ R+ ∪ {+∞}with
a initial function φ ∈ Cγ . Then yt satisfies the inequality

‖yt‖γ ≤ e
−α(t−t0)+

∫
t

t0
c2(τ)dτ

‖φ‖γ +

∫ t

t0

e−α(t−τ)+
∫

t

τ
c2(q)dqc1(τ)dτ. (10)

Proof. We have

‖yt‖γ ≤max

(
sup

s≤−(t−t0)

‖φ(s+ t− t0)‖e
γs, sup

s∈[−(t−t0),0]

‖eA(t−t0+s)φ(0)‖eγs

+ sup
s∈[−(t−t0),0]

‖

∫ s+t

t0

eA(t+s−τ)f(τ, yτ )dτ‖eγs

)
.

The first term on the right hand side of the last inequality is equal to

sup
s≤0

‖φ(s)‖eγ(s−t+t0) = e−γ(t−t0)‖φ‖γ .

For the second term we have the estimate

sup
s∈[−(t−t0),0]

‖eA(t−t0+s)φ(0)‖eγs ≤ sup
s∈[−(t−t0),0]

e−α(s+t−t0)‖φ(0)‖eγs

≤ e−α(t−t0) sup
s∈[−(t−t0),0]

e(−α+γ)s‖φ(0)‖

≤ e−α(t−t0)‖φ(0)‖.

The third term can be estimated as follows

sup
s∈[−(t−t0),0]

‖

∫ s+t

t0

eA(t+s−τ)f(τ, yτ )dτ‖eγs

≤ sup
s∈[−(t−t0),0]

∫ s+t

t0

eα(−t−s+τ)(c1(τ) + c2(τ)‖yτ‖γ)dτeγs

≤

∫ t

t0

e−α(t−τ)c1(τ)dτ +

∫ t

t0

e−α(t−τ)c2(τ)‖yτ‖γdτ.

Collecting all these estimates we have that

‖yt‖γ ≤max

(
e−γ(t−t0)‖φ‖γ , e

−α(t−t0)‖φ(0)‖ +

∫ t

t0

e−α(t−τ)c1(τ)dτ

+

∫ t

t0

e−α(t−τ)c2(τ)‖yτ‖γdτ

)

≤e−α(t−t0)‖φ‖γ +

∫ t

t0

e−α(t−τ)(c1(τ) + c2(τ)‖yτ‖γ)dτ.

We obtain the desired inequality by the Gronwall lemma.

Remark 1. A consequence of this theorem is that, in case of a finite maximal
interval of existence [t0, tmax) of a solution, no explosions are allowed, i.e.

lim sup
t↑tmax

‖yt‖γ <∞.

But the case of such a finite interval carrying a bounded solution can be excluded
similar to Pazy [32] Theorem 6.2.2 applying (8). Hence for every φ ∈ Cγ , t0 ∈ R

every mild solution of (6) is global.
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4.1. Pullback attractors for the equation with infinite delay. Throughout
this subsection we assume the same conditions on A and f given at the beginning
of Section 4.

We define the multi–valued mapping U(t, τ, φ) to be the set of mild solutions (9)
in the sense of Definition 4.1 at time t ∈ R, that is, U(t, τ, φ) = ∪ yt, where the union
is taken within the set of entire mild solutions (−∞,+∞) ∋ t → yt(·; τ, φ) ∈ Cγ

such that yτ (·; τ, φ) = φ. We stress here that we know from above that every local
solution can be extended to a global solution.

Lemma 4.4. The map U is a strict MNDS. In particular, for any fixed t ∈ R we
have U(t, τ,D (τ)) ∈ C(Cγ) if D̂ ∈ C(Cγ).

Proof. Let us first prove that U(t, τ, φ) ⊂ U(t, s, U(s, τ, φ)) for all t ≥ s ≥ τ, and
all φ ∈ Cγ . Let z ∈ U(t, τ, φ). Then there exists a solution y of (9) such that
z = yt (= yt(·; τ, φ)). Denote, for short, ut = yt(·; τ, φ). Hence us = ys(·; τ, φ) (for
τ ≤ s ≤ t), and therefore u solves Eq. (9) with the initial value ys(·; τ, φ) at t0 = s.

Indeed, for θ ∈ [−(t− s), 0] we have

ut (θ) = yt(θ; τ, φ)) = eA(t−τ+θ)φ(0) +

∫ t+θ

τ

eA(t+θ−σ)f(σ, yσ)dσ

= eA(t−s+θ)eA(s−τ)φ(0) +

∫ s

τ

eA(t−s+θ)eA(s−σ)f(σ, yσ)dσ

+

∫ t+θ

s

eA(t+θ−σ)f(σ, yσ)dσ

= eA(t−s+θ)

{
eA(s−τ)φ(0) +

∫ s

τ

eA(s−σ)f(σ, yσ)dσ

}

+

∫ t+θ

s

eA(t+θ−σ)f(σ, yσ)dσ

= eA(t−s+θ)ys(0; τ, φ) +

∫ t+θ

s

eA(t+θ−σ)f(σ, yσ(·; τ, φ))dσ,

and hence
ut(θ) = yt(θ; s, ys(·; τ, φ)) for θ ∈ [−(t− s), 0].

On the other hand, if θ ∈ (−∞,−(t−s)), then ut(θ) = ys(t+θ−s; τ, φ) = yt(θ; τ, φ)
and hence ut(·) = yt(·; s, ys(·; τ, φ)). This implies that

z = ut ∈ U(t, s, ys(·; τ, φ)) ⊂ U(t, s, U(s, τ, φ)),

and, consequently, U(t, τ, φ) ⊂ U (t, s, U (s, τ, φ)).
As for the other inclusion, let us consider z ∈ U(t, s, U(s, τ, φ)). Then, there exist

z1 ∈ U(s, τ, φ) (i.e. z1 = y1
s(·; τ, φ)) and z2 ∈ U(t, s, z1) = U(t, s, y1

s(·; τ, φ)) (i.e.
z2 = y2

t (·; s, y1
s(·; τ, φ))) such that z = y2

t (·; s, y1
s(·; τ, φ)).

Now, by concatenating these solutions, we construct

uσ =

{
y1

σ(·; τ, φ) if σ < s,

y2
σ(·; s, y1

s(·; τ, φ)) if s ≤ σ.

It is not difficult to check that ut is a mild solution of (6), so z = ut = yt(·; τ, φ)
and, therefore, z ∈ U(t, τ, φ).

We also note that U(t, τ,D(τ)) belongs to C(Cγ) if D̂ ∈ C(Cγ) where the proof
follows by the continuity of Cγ ∋ φ → f(τ, φ), (8) and the Lebesgue domination
theorem.
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For our analysis below, we will consider the system D given by the multi–valued
mapping D in C(Cγ) with D(t) ⊂ BCγ

(0, ̺(t)), the closed ball with center zero and
radius ̺, with sub–exponential growth:

lim
t→±∞

log+ ̺(t)

t
= 0.

This universe D is called the family of sub–exponentially growing multi–functions
in C(Cγ).

Of course, the properties of D given in Definition 3.1 hold.

Lemma 4.5. In addition to the previous assumptions, suppose that c2(t) < α for
all t ∈ R. Then, the balls B(t) = BCγ

(0, R(t)) with

R(t) := 2

∫ 0

−∞

eατ+
∫

0

τ
c2(t+s)dsc1(t+ τ)dτ = 2

∫ t

−∞

eα(τ−t)+
∫

t

τ
c2(s)dsc1(τ)dτ (11)

form a family B̂ ∈ D. In addition, B̂ is pullback D–absorbing in the sense of (3)
which is forward invariant, i.e.,

U(t, τ, B(τ)) ⊂ B(t)

for (t, τ) ∈ R
2
d.

Remark 2. We note that R ∋ t 7→ R(t) is continuous because this function solves
the linear ordinary differential equation initial value problem

dr

dt
= (−α+ c2(t))r + 2c1(t), r(0) = R(0) = 2

∫ 0

−∞

eατ+
∫

0

τ
c2(s)dsc1(τ)dτ.

Moreover, by a similar analysis to the one in Caraballo et al. [11] for a random
situation, it follows that t→ R(t) is sub–exponentially growing.

Proof. The first part of the Lemma holds thanks to the previous remark. Let us

now prove that B(t) is pullback D-absorbing. Consider D̂ ∈ D, and pick φ ∈ D̂.

Then, if we replace in the formula in Theorem 4.3 the parameter t0 by t − s, we
obtain an estimate for yt := yt(·; t− s, φ) ∈ U(t, t− s,D(t− s)),

||yt||γ ≤ e−αs+
∫

t

t−s
c2(τ)dτ ||φ||γ +

∫ t

t−s

e−α(t−τ)+
∫

t

τ
c2(q)dqc1(τ)dτ. (12)

We prove now that the right-hand side of Eq. (12) tends to R(t) as s goes to +∞,

what means that there exists T (D̂, t) > 0 such that U(t, t− s,D(t− s)) ⊂ B(t) for

all s > T (D̂, t).
First, since

1

s

∫ t

t−s

c2(τ)dτ → c2(t) < α,

then there exists s0(t) > 0 such that

α−
1

s

∫ t

t−s

c2(τ)dτ ≥ ε > 0, for all s ≥ s0, for a certain ε > 0,

and, hence

e−αs+
∫

t

t−s
c2(τ)dτ → 0 as s→ +∞.

Therefore, for the first term on the right-hand side of Eq. (12) we have

e−αs+
∫

t

t−s
c2(τ)dτ ||φ||γ ≤

1

2
R(t).
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On the other hand,
∫ t

t−s

e−α(t−τ)+
∫

t

τ
c2(q)dqc1(τ)dτ →

1

2
R(t) as s→ +∞,

and because the integrand is positive we have
∫ t

t−s

e−α(t−τ)+
∫

t

τ
c2(q)dqc1(τ)dτ ≤

1

2
R(t) for all s ≥ 0.

Consequently,

||yt||γ ≤ R(t), for all s ≥ s0(t, D̂).

Finally, the forward invariance follows by replacing ‖φ‖γ by R(τ) in (10). Indeed,
if we take φ ∈ B(τ), then

||yt(·; τ, φ)||γ ≤ e−α(t−τ)+
∫

t

τ
c2(q)dqR(τ) +

∫ t

τ

e−α(t−s)+
∫

t

s
c2(q)dqc1(s)ds

≤ e−α(t−τ)+
∫

t

τ
c2(q)dq2

∫ τ

−∞

eα(s−τ)+
∫

τ

s
c2(q)dqc1(s)ds

+

∫ t

τ

e−α(t−s)+
∫

t

s
c2(q)dqc1(s)ds

≤ 2

∫ τ

−∞

e−α(t−s)+
∫

t

s
c2(q)dqc1(s)ds

+ 2

∫ t

τ

e−α(t−s)+
∫

t

s
c2(q)dqc1(s)ds

= R(t).

The proof is therefore complete.

Let us now prove that U is upper-semicontinuous.

Lemma 4.6. The mapping φ ∈ Cγ → U(t, τ, φ) is upper–semicontinuous for fixed
t ≥ τ .

Proof. We argue by contradiction. If we suppose that U(t, τ, ·) is not upper–
semicontinuous, then there exist a neighborhood Mt,τ of U(t, τ, φ), a sequence
{φn : n ∈ N}, φn → φ in Cγ , and elements yn

t := yn
t (·; τ, φn) ∈ U(t, τ, φn) such that

yn
t 6∈ Mt,τ . If we prove that limn′→+∞ yn′

t =: φ0 for some subsequence (n′) in N,
which is an element in U(t, τ, φ0), then we will have obtained a contradiction. To
prove that yn

t is relatively compact we apply the Ascoli–Arzelà theorem. By the
properties of the sequence φn (which is pre–compact in Cγ), it is sufficient to show
that yn

t (s), s ∈ [−(t− τ), 0] is pre–compact. We note that by Theorem 4.3 the set
{yn

t : n ∈ N} is bounded in Cγ because {φn : n ∈ N} is bounded in Cγ . Hence

sup
n∈N,s∈[−(t−τ),0]

‖yn
t (s)‖ <∞. (13)

A similar argument as that in the proof of Theorem 4.2 provides the relative com-
pactness of Z(s) := {yn

t (s) : n ∈ N}. In particular, {eA(t+s)φn(0) : n ∈ N} is
pre–compact. As for the equicontinuity of {yn

t : n ∈ N} at s ∈ (− (t− τ) , 0] we use
the fact that r 7−→ eAr is continuous in norm for r > 0.
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Following the idea of the proof of Theorem 4.2 to see equicontinuity at s = − (t− τ)
we have to study the following equation with r := s+ t− τ > 0

yn
t (s) = yn(r) = eArφn(0) +

∫ r

0

eA(r−σ)f(σ + τ, yn
σ+τ )dσ.

Thanks to applying (8) and (13), the norm of the integral on the right-hand side is
small uniformly with respect to n if r is small enough.

To obtain the equicontinuity of the functions formed by the first expression on
the right-hand side we have to show that for every ε > 0 there exists a δ > 0 such
that for n ∈ N and r ≤ δ we have that ‖eArφn(0) − φn(0)‖ ≤ ε. If not, there
would exist ε > 0, sequences n→ +∞, rn → 0 such that ‖eArnφn(0) − φn(0)‖ ≥ ε.
Choosing n sufficiently large such that for r in [0, t− τ ] the estimate

‖eAr(φn(0) − φ(0))‖ ≤
ε

4

holds, and we then have that

‖eArnφn(0) − φn(0)‖ ≤‖eArn(φn(0) − φ(0))‖ + ‖eArnφ(0) − φ(0)‖

+ ‖φn(0) − φ(0)‖

≤
ε

4
+
ε

4
+
ε

4
< ε

for large n. This contradiction finishes the proof.

Lemma 4.7. Assume the hypotheses in Lemma 4.5. The multi–valued dynamical

system U is pullback D–asymptotically compact with respect to B̂ defined in Lemma
4.5.

Proof. Let zt = zt(·; s, φ) be the unique (mild) solution of





dz

dt
= Az, t ≥ s,

zs = φ ∈ Cγ

(14)

which is given by

zt(θ) =

{
eA(t+θ)φ(0) : θ ∈ [− (t− s) , 0],

φ(θ + t− s) : θ ∈ (−∞,−(t− s)),

so that (since γ > α)

sup
θ≤0

eγθ||zt(θ)|| ≤ sup
−(t−s)≤θ≤0

eγθ||eA(t+θ)φ(0)|| + sup
θ≤−(t−s)

eγθ||φ(θ + t− s)||

≤ sup
−(t−s)≤θ≤0

eγθe−α(t+θ)||φ(0)|| + sup
θ≤−(t−s)

eγθ||φ(θ + t− s)||

≤ e−αt||φ(0)|| + e−γ(t−s)||φ||γ

≤ e−αt||φ(0)|| + e−α(t−s)||φ||γ ,

and

‖zt‖γ ≤ e−αt||φ(0)|| + e−α(t−s)||φ||γ . (15)

Recall that we have to prove that for every sequence tn → +∞, and every sequence
yn ∈ U(t, t− tn, B(t− tn)), it follows that {yn}n≥1 is pre-compact.
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Let yτ denote a solution of (6) with initial value φ so that yτ ∈ U(τ, t − s, φ)
(for s ≥ 0). Then there exists uτ ∈ Cγ such that yτ = zτ + uτ , where uτ is a mild
solution of

du

dτ
= Au+ f(t, yτ ), ut−s(θ) = 0 for θ ≤ 0. (16)

Let tn → ∞ and φn ∈ B(t − tn). The solution of (6) associated to this initial
function, with t − tn as initial time, is denoted by yn

τ (in other words, yn
τ :=

yn
τ (·; t − tn, φ

n)). Thanks to Lemma 4.5, yn
τ ∈ B(τ) and, in particular, yn

t ∈ B(t),
whence ‖yn

τ ‖γ ≤ R(t). Let un be the solution of (16) with s = tn which can be
written as

un(t+ θ) =

∫ t+θ

t−tn

eA(t+θ−τ)f(τ, yn
τ )dτ, θ ∈ [−tn, 0].

In a similar way as we did in the proof of Theorem 4.2 and taking into account the
previous calculations, it is not difficult to obtain an estimate of

‖un(t+ s1) − un(t+ s2)‖, −T ≤ s1 < s2 ≤ 0,

for an arbitrary T > 0, which gives us the equicontinuity of {un(t + ·) : n ∈ N}
on [−T, 0]. Furthermore, we can prove the pre–compactness of {un(t+ s) : n ∈ N}
for s ∈ [−T, 0]. Then, by the Ascoli–Arzelà theorem there exist a subsequence {n′}

and a function ψ : R− → H which is the uniform limit of un′

(t+ ·) on every interval
[−T, 0].
Remark 2, the properties of c1, c2, and the continuity of t→ R(t) allow us to obtain
an a priori estimate:

‖un(t+ θ)‖ ≤

∫ t+θ

t−tn

e−α(t+θ−τ)||f(τ, yn
τ )||dτ

=

∫ θ

−tn

e−α(θ−σ)||f(σ + t, yn
σ+t)||dσ

≤

∫ θ

−tn

e−α(θ−σ)
(
c1(σ + t) + c2(σ + t)||yn

σ+t||γ
)
dσ

≤

∫ 0

−∞

e−α(θ−σ) (c1(σ + t) + c2(σ + t)R(σ + t)) dσ

≤ e−αθR(t), for θ ≤ 0. (17)

From this inequality we can derive

‖un(t+θ)‖eγθ ≤

∫ 0

−∞

eατ (2c1(t+ τ)+ c2(t+ τ)R(t+ τ))dτ = R(t), θ ∈ R
−. (18)

It follows from (18) that

sup
θ∈[−T,0]

‖un′

t (θ)‖eγθ ≤ R(t),

and then

lim
n′→∞

sup
θ∈[−T,0]

‖un′

(θ)‖eγθ = sup
θ∈[−T,0]

‖ψ(θ)‖eγθ ≤ R(t), for all T > 0.

Hence
sup
T>0

sup
θ∈[−T,0]

‖ψ(θ)‖eγθ ≤ R(t)

and this not only implies that ψ belongs to Cγ , but also that ‖ψ‖γ ≤ R(t).
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In addition un′

t (·) converges to ψ in Cγ . Indeed, to prove this statement we have
to check that for every ε > 0 there exists N(ε) such that

sup
θ≤0

‖un′

t (θ) − ψ(θ)‖eγθ ≤ ε for all n′ ≥ N(ε). (19)

Since we are assuming that γ > α, then, for every ε > 0 there exists Tε(t) > 0 such
that

e−(γ−α)TεR(t) ≤
ε

2
.

Since the convergence of un′

t (·) to ψ holds in compact intervals, in order to prove
(19) we only need to check that

sup
s≤−Tε

‖un′

t (s) − ψ(s)‖eγs ≤ ε for all n′ ≥ N(ε).

But, thanks to (17),

‖un′

t (θ)‖eγθ ≤ e(γ−α)θR(t) for all θ ≤ 0.

This fact and the choice of Tε(t) implies

sup
θ≤−Tε

‖un′

t (θ)‖eγθ ≤
ε

2
.

Moreover,

sup
θ∈(−T,−Tε]

‖ψ(θ)‖eγθ ≤ lim
n′→∞

sup
θ∈[−T,−Tε]

‖un′

t (θ)‖eγθ ≤
ε

2

for every T > Tε(t). Hence the convergence of {un′

t (·)} to ψ takes place in Cγ .
We then have yn

t = un
t + zn

t , where zn
t is the solution of (14) with initial function

φn. Since φn ∈ B(t− tn) it follows from (15)

lim
tn→+∞

‖zn
t ‖γ = 0,

so we can ensure the convergence of yn′

t to ψ in Cγ , which is the conclusion of the
lemma.

According to Theorem 3.3 and taking into account Lemmata 4.5, 4.6, 4.7, we
have already proved the following Theorem.

Theorem 4.8. Under the assumptions in Lemma 4.5, the MNDS generated by (6)
has a pullback D–attractor A in C(Cγ).

Corollary 1. Suppose that γ′ > α such that the assumptions on f given at the be-
ginning of Section 4 are satisfied with respect to γ′. Then there exists a pullback Dγ′–
attractor Aγ′ where Dγ′ consists of the sub–exponentially growing multi–functions
in C(Cγ′). By the embedding

‖u‖γ′ ≤ ‖u‖γ, for u ∈ Cγ ,

for γ′ > γ > α there exists a Dγ–pullback attractor Aγ such that Aγ ⊂ Aγ′ .

Remark 3. It is really interesting to stress the relationship that there exists be-
tween the uniqueness of pullback attractors Aγ and the systems of attracted sets
Dγ . Observe that from the Definition 3.1 every pullback Dγ-attractor is an invariant
set. According to the Corollary 1, the Dγ′-attractor Aγ′ attracts the infinite number
of Dγ-attractors Aγ , for γ′ > γ > α, since Aγ ∈ Dγ ⊂ Dγ′ . However, for γ′ there
exists a unique attractor Aγ′ . Indeed, Aγ does not have to attract the elements from
Dγ′ .
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5. Absorbing sets for some logistic-type delay equations. In this section
we will analyse some logistic-type equations with an additional integral term rep-
resenting the accumulative history of the solution since starting. We will prove the
existence of absorbing sets for the models and relegate the existence of pullback
attractors to a future investigation.

5.1. An ordinary integro-differential equation. We consider a logistic like
equation with memory term of the form

dx

dt
(t) = rx(t)

(
1 −K−1x(t) − γ

∫ t

0

w(τ − t)P (x(τ)) dτ

)
. (20)

where r, K, γ > 0 and w : R− → R+ is continuous and satisfies

∫ 0

−∞

w(s)e−ηs ds < +∞

for some η > 0 and P ∈ C(R,R) with P (x) ≥ 0 when x ≥ 0 with

L|x| ≤ |P (x)| ≤ C1|x|
m + C2

for certain constants C1, C2, L > 0 and m ≥ 1.
Let us denote C+

γ := Cγ(R−,R+) the non-negative cone. We can rewrite equation
(20) as a differential equation with infinite delay

dx

dt
(t) = f(t, xt) := rx(t)

(
1 −K−1x(t) − γ

∫ 0

−t

w(s)P (xt(s)) ds

)
, (21)

which we can analyze using the methods in the paper [16] for the infinite delay
equation

dx

dt
(t) = rx(t)

(
1 −K−1

∫ 0

−∞

w(s)P (x(t + s)) ds

)
(22)

with an initial condition being any function φ ∈ C+
γ , the non-negative cone in Cγ ,

since only non-negative solutions are relevant and C+
γ is positive invariant for an

appropriate γ > 0. An appropriate initial condition for equation (21) is a φ ∈ C+
γ

with φ(0) = x0 ∈ R+.

Following [16], we note that the mapping (t, φ) 7→ f(t, φ) : R
+ × Cγ → R is

continuous and bounded (i.e. maps bounded sets onto bounded sets) for any γ >
0. The key step is to show these properties for the mapping

M(t, φ) :=

∫ 0

−t

w(s)P (φ(s)) ds.

Indeed,

M(t+ δt, ψ) −M(t, φ) =

∫ 0

−t

w(s) [P (ψ(s)) − P (φ(s))] ds+

∫ −t

−t−δt

w(s)P (ψ(s)) ds

→ 0 as δ → 0 and ‖ψ − φ‖γ → 0,
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since
∫ −t

−t−δt

w(s)|P (ψ(s))| ds ≤ max
s∈[−t−1,−t]

w(s)

∫ −t

−t−δt

(C1|ψ(s)|m + C2) ds

≤ max
s∈[−t−1,−t]

w(s)

(
C1 max

s∈[−t−1,−t]
|ψ(s)eγs|m + C2

)
×

× emγ(t+1) · δt

≤ max
s∈[−t−1,−t]

w(s)
(
C1‖ψ‖

m
γ + C2

)
emγ(t+1) · δt

≤ max
s∈[−t−1,−t]

w(s) (C1(‖φ‖γ + 1)m + C2) e
mγ(t+1) · δt

for all ψ ∈ Cγ with ‖ψ − φ‖γ ≤ 1 and

max
s∈[−t,0]

|P (ψ(s)) − P (φ(s))| → 0 as max
s∈[−t,0]

|ψ(s) − φ(s)| → 0,

where

max
s∈[−t,0]

|ψ(s) − φ(s)| ≤ max
s∈[−t,0]

|(ψ(s) − φ(s))eγs|eγt

≤ ‖ψ − φ‖γ e
γt → 0 as ‖ψ − φ‖γ → 0

for each fixed t > 0.

We can then apply Lemmas 22 and 25 in [16] to equation (21) to conclude that
it has at least one positive solution and that the positive cone C+

γ is positively
invariant under the solution mapping in a weak sense, because what we can ensure
is that at least one solution remains therein but, in general, some other solutions
can leave it.

We restrict attention to the non-negative cone C+
γ and consider the set-valued

dynamical system generated by the solutions which intersect the positive cone. To
show the existence of an absorbing set we use the properties of P in the differential
relationship

d

dt
x(t)2 = 2rx(t)2

(
1 −K−1x(t) − γ

∫ 0

−t

w(s)P (xt(s)) ds

)
, t ≥ 0,

to obtain the differential inequality

d

dt
x(t)2 ≤ 2rx(t)2

(
1 −

1

K
x(t)

)
, t ≥ 0, (23)

for xt ∈ C+
γ . From this we conclude that x(t) ∈ [0,K + 1] after a finite time and,

by an argument similar to the one in Lemma 26 from [16], it follows the existence
of an absorbing set B.

5.2. An integro-differential reaction-diffusion equation. In this subsection
we consider a reaction–diffusion version of the integro–differential equation (20),
namely

∂u

∂t
(x, t) = ∆u(x, t) + ru(x, t)

(
1 −K−1u(x, t) − γ

∫ t

0

w(τ − t)P (u(x, τ)) dτ

)

(24)
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on a bounded domain Ω in Rd with smooth boundary ∂Ω and the Dirichlet boundary
condition u|∂Ω = 0 and the non-negative initial condition u(x, 0) = u0(x) ≥ 0.

The crucial step here is to show there exists an absorbing set in L2(Ω). For this
we use the following estimates for any existing positive solution.

d

dt
|u(t)|22 = −2|∇u(t)| + 2r

∫

Ω

u(x, t)2 dx−
2r

K

∫

Ω

u(x, t)3 dx

≤ −2λ1|u(t)|
2
2 + 2r|u(t)|22 −

2r

K
|u(t)|33

= −2(λ1 − r)|u(t)|22 −
2r

K
|u(t)|33

by the Poincaré inequality, where λ1 > 0 is the first eigenvalue of the Laplace
operator on Ω with the Dirichlet boundary condition. Then we use the inequality

|u(t)|22 =

∫

Ω

u(x, t)2 dx ≤

(∫

Ω

u(x, t)3 dx

)2/3

|Ω|1/3 = |u(t)|
2/3
3 |Ω|1/3

to obtain

|Ω|−3/2|u(t)|92 ≤ |u(t)|33.

Finally, this leads to the inequality

d

dt
|u(t)|22 ≤ −2(λ1 − r)|u(t)|22 −

2r

K|Ω|3/2
|u(t)|92

or
d

dt
|u(t)|2 ≤ −(λ1 − r)|u(t)|2 −

r

K|Ω|3/2
|u(t)|82

If r ≤ λ1 the zero solution is globally asymptotically stable, but if r > λ1 then it
follows that

|u|72 ≤ 1 +
K|Ω|3/2(r − λ1)

r
.

Again, by a similar argument as the one in Lemma 26 from [16], we can obtain the
existence of an absorbing set.

6. Appendix. Proof of Lemma 3.2 Consider a sequence
yn ∈ U (t, t− tn, B(t− tn)) with tn → +∞. As U is pullback–asymptotically com-

pact with respect to B̂, there exists a converging subsequence and its limit y belongs

to Λ
(
B̂, t

)
, so that Λ

(
B̂, t

)
is non–empty.

We now prove that Λ
(
B̂, t

)
is compact. For any sequence {yn} ⊂ Λ

(
B̂, t

)

there exist tn → +∞ and zn ∈ U (t, t− tn, B(t− tn)), such that dX(yn, zn) < 1
n .

Using again the pullback asymptotic compactness of U the existence of a converging

subsequence znk
→ z ∈ Λ

(
B̂, t

)
follows. Then, ynk

→ z, so that Λ
(
B̂, t

)
is

compact.
We prove (4) by contradiction. If (4) does not hold, then there exist ε > 0 and

yn ∈ U (t, t− tn, B (t− tn)) with tn → +∞, such that

distX

(
yn,Λ

(
B̂, t

))
> ε.
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As U is pullback–asymptotically compact with respect to B̂, it follows that there

exists a subsequence (relabelled again the same) yn → y ∈ Λ
(
B̂, t

)
, which is not

possible.

Let us now prove that (5) holds. Fix (t, τ) ∈ R
2
d. Then, if y ∈ Λ

(
B̂, t

)
, there

exist sequences yn ∈ U (t, t− (tn − τ), xn), xn ∈ B(t − (tn − τ)) with tn → +∞,
such that yn → y. For tn ≥ t, the process property implies

U (t, t− tn + τ, xn) ⊂ U (t, τ, U (τ, t− tn + τ, xn)) ,

and then yn ∈ U (t, τ, zn), where zn ∈ U (τ, t− tn + τ, xn). As before, up to a

subsequence, zn → z ∈ Λ
(
B̂, τ

)
. Since x 7→ U (t, τ, x) is upper–semicontinuous

with closed values, we have

y ∈ U(t, τ, z) ⊂ U(t, τ,Λ
(
B̂, τ

)
).

�

Proof of Theorem 3.3 First we need to prove that

lim
τ→+∞

distX(U(t, t− τ,D (t− τ)), A(t)) = 0 for every D̂ ∈ D. (25)

Indeed, thanks to (4), for every ε > 0 and t ∈ R, there exists T (t, ε) such that for
τ ≥ T (t, ε)

distX(U(t, t− τ, B (t− τ)), A(t) < ε.

But, for every D̂ ∈ D,

U(t− τ, t− τ − T (t− τ, D̂), D(t− τ − T (t− τ, D̂))) ⊂ B (t− τ)

so that
distX(U(t, t− τ,D (t− τ)), A(t)) < ε

for τ large.
The third property in Definition 3.1 follows from (5). Since

U(t, t− τ, B(t− τ)) ⊂ B(t) for τ ≥ T (t, B̂),

we have the relation A(t) ⊂ B(t) for each t ∈ R, so that Â ∈ D. But this shows

that A is unique. Indeed suppose we have another pullback D–attractor Â′, then
as

A′(t) ⊂ U(t, t− τ, A′(t− τ))

and
lim

τ→+∞
distX (U(t, t− τ, A′(t− τ)), A(t)) = 0,

we have that A′(t) ⊂ A(t). Exchanging Â and Â′ it follows that Â = Â′.

Finally, assume that U is a strict MNDS. Then,

U (t, r, A (r)) ⊂ U (t, τ, U (τ, r − τ, A(r − τ)))

= U (t, r − τ, A (r − τ)) , for all τ ≥ 0.

As Â pullback attracts itself, it follows that

lim
τ→+∞

distX(U(t, r − τ, A(r − τ)), A(t)) = 0,

and, consequently, given ε > 0, there exists T (ε, t, r) > 0 such that, for τ ≥ T (ε, t, r)

distX(U(t, r − τ, A(r − τ)), A(t)) < ε,
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and as U (t, r, A (r)) ⊂ U (t, r − τ, A (r − τ)) , we have

distX(U(t, r, A(r)), A(t)) < ε, for all ε > 0,

so U(t, r, A(r)) ⊂ A(t), as required. �

Proof of local existence in Theorem 4.2 The proof follows Pazy [32] Theorem 6.2.1.
Let us fix some φ ∈ Cγ and t, t0 ∈ R.

Consider

B(R) = {y ∈ C([t0, T ];H) : y(t0) = φ(0), sup
s∈[t0,T ]

‖φ(0) − y(s)‖ ≤ R}.

B(R) is a convex and bounded set in C([t0, T ];H). For any T > t0 (with T − t0
small enough) we define the mapping TT : B(R) → C([t0, T ];H) by

TT (y)[t] := eA(t−t0)φ(0) +

∫ t

t0

eA(t−t0−τ)f(τ, y ∨t0,τ x0)dτ, t ∈ [t0, T ].

We note that TT (y) ∈ 4C([t0, T ];H) because τ → ‖f(τ, y∨t0,τ φ)‖ ∈ L1([t0, T ]). To
see that the operator TT maps B(R) into itself, for appropriate R and T, we note
that

‖f(r, y ∨t0,r φ)‖ ≤ c1(r) + c2(r) sup
̺∈[0,r]

eγ(̺−r)‖y(t0 + ̺)‖

+ c2(r) sup
̺≤−r

eγ̺‖φ(r + ̺)‖

≤ c1(r) + c2(r) sup
̺∈[t0,T ]

‖y(̺)‖

+ c2(r)e
−γr sup

̺≤−r
eγ(̺+r)‖φ(r + ̺)‖,

so

‖f(r, y ∨t0,r φ)‖ ≤ c1(r) + c2(r) sup
̺∈[t0,T ]

‖y(̺)‖ + c2(r)‖φ‖γ . (26)

The term sup̺∈[t0,T ] ‖y(̺)‖ is bounded by ‖φ‖γ +R. In addition, ‖eA(t−t0−τ)x‖ ≤

e−α(t−t0−τ)‖x‖ so that, for small T − t0 > 0 (depending on r), we have TT (B(R))
⊂ B(R).

In view of the continuity of Cγ ∋ ξ → f(t, ξ) and (8) we obtain by the Lebesgue
domination theorem that TT is continuous onB(R) with the topology of C([t0, T ];H).

To see that TT is compact we first note that the sets

Zt := {z = TT (y)[t], y ∈ B(R)}, t ∈ [t0, T ]

are pre–compact. This is trivially true for t = t0. For t > t0 we introduce for
sufficiently small ε > 0

T ε
T (y)[t] = eA(t−t0)φ(0) +

∫ t−ε

t0

eA(t−t0−τ)f(τ, y ∨t0,τ φ)dτ

= eA(t−t0)φ(0) + eAε

∫ t−ε

t0

eA(t−t0−τ−ε)f(τ, y ∨t0,τ φ)dτ.

By (26) and the integrability conditions on c1 and c2

sup
y∈B(R)

‖

∫ t−ε

t0

S(t− t0 − τ − ε)f(τ, y ∨t0,τ φ)dτ‖
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is finite for appropriate ε > 0 so that T ε
T (B(R))[t] is pre-compact by the compactness

of eAε. Then for every ε′ > 0 we have an ε > 0 such that

‖T ε
T (y)[t] − TT (y)[t]‖ ≤

∫ t

t−ε

e−α(t−t0−τ)‖f(τ, y ∨t0,τ φ)‖dτ ≤ ε′

uniformly for y ∈ B(R) so that Zt is totally bounded, hence pre–compact.

To apply the Arzelà–Ascoli theorem we show that TT (y) with y ∈ B(R), is
equicontinuous. Notice that, for t2 > t1 > t0,

‖TT (y)[t2] − TT (y)[t1]‖ ≤‖(eAt2 − eAt1)φ(0)‖

+

∫ t1

0

‖eA(t2−τ) − eA(t1−τ)‖‖f(τ, y ∨t0,τ φ)‖dτ

+

∫ t2

t1

‖eA(t2−τ)‖‖f(τ, y ∨t0,τ φ)‖dτ.

Since S(t) = eAt is a compact operator for t > 0 we know that the mapping t →
S(t) is norm-continuous for t > 0. The Lebesgue domination theorem together with
(26) imply the equicontinuity for t > t0. Similar arguments hold for t1 = t = t0.
Indeed, in the above formula the second term on the right hand side disappears for
t1 = t0.

The Schauder theorem gives the existence of a fixed point of TT which is a local
solution for (6). �
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