
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume 00, Number 0, Xxxx XXXX pp. 000–000

NON–AUTONOMOUS AND RANDOM ATTRACTORS FOR
DELAY RANDOM SEMILINEAR EQUATIONS WITHOUT

UNIQUENESS

T. Caraballo1, M.J. Garrido-Atienza1, B. Schmalfuß2, & J. Valero3

1 Departamento de Ecuaciones Diferenciales y Análisis Numérico,
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Abstract. We first prove the existence and uniqueness of pullback and ran-

dom attractors for abstract multi-valued non-autonomous and random dynam-
ical systems. The standard assumption of compactness of these systems can be

replaced by the assumption of asymptotic compactness. Then, we apply the

abstract theory to handle a random reaction-diffusion equation with memory
or delay terms which can be considered on the complete past defined by R−.

In particular, we do not assume the uniqueness of solutions of these equations.

1. Introduction. The intention of this article is to study the asymptotic behaviour
of multi-valued non–autonomous and random dynamical systems. The long-time
behaviour of these systems can be expressed by terms like pullback attractor and
random attractor. The theories of these attractors are now well established as
have been extensively developed over the last one and a half decades (see, e.g.
Caraballo et al. [13], Cheban [17], Chueshov [19], Crauel and Flandoli [20], Flan-
doli and Schmalfuß [21], Kloeden [24], Kloeden and Schmalfuß [25], Robinson [28],
Schmalfuß[30], amongst many others). Pullback and/or random attractors have
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proven to be appropriate concepts to describe the long–time behaviour of many
dynamical systems arising in science, especially those exhibiting non-autonomous
(see also Chepyzhov and Vishik [18]) and/or random features.

In this article we assume very weak assumptions on the dynamical systems under
study. We deal with multi–valued systems connected with the fact that the standard
assumption of compactness on this system is replaced by an asymptotic compactness
hypothesis. We would also like to stress that, within a random set-up, it is more
complicated to show that a multi–valued non–autonomous dynamical system is a
random dynamical system. In this sense our article is a generalization of the results
in Bates et al. [4] where asymptotically compact single valued systems are studied.

Therefore, we are interested in a general model which can cover several of the pre-
viously mentioned situations at the same time. In other words, our non-autonomous
or random partial differential equations will cover non–linearities with very weak
assumptions where non-uniqueness of solutions may happen as well as some hered-
itary (memory terms) properties, being the delay eventually infinite. Then one of
the main difficulties in the random case is due to the fact that the natural phase
space to be considered is not separable in general. On the other hand, solution
operators are only asymptotically compact.

We also include in our theory several variants as those containing some hereditary
characteristics as finite or bounded delays (see e.g. [14], [7], [6], [15], [26]) or others
with non-uniqueness of solutions or modelled by differential inclusions (Caraballo
et al. [10], [11], [12]).

Our first aim is to develop a joint theory for both multi-valued non-autonomous
and random dynamical systems, pointing out the main differences between both
frameworks. Needless to say that a partial differential equation coming from a
stochastic partial differential equation with additive white noise after having per-
formed a suitable transformation or change of variable, is non-autonomous. Thus,
the theory of pullback attractors for non-autonomous dynamical systems can be
applied to analyse the long–time behaviour. However, random or stochastic models
usually need additional measurability properties in order to be well-posed. This
introduces an additional and important difference into the analysis. However, deal-
ing with differential equations with white noise terms would go beyond the content
of this article. We refer to the forthcoming article [8] for more details.

Consequently, we have structured the content of the paper as follows. In Sec-
tion 2 we include some preliminaries concerning the definitions of multi-valued
non-autonomous dynamical systems (MNDS) and multi-valued random dynamical
systems (MRDS) which turns to be an MNDS with an additional measurability
property. We also prove a sufficient condition guaranteeing that an MNDS be-
comes an MRDS. Section 3 is devoted to prove a general result for the existence
and uniqueness of pullback and random attractors for abstract MNDS. The cru-
cial property ensuring this is the pullback asymptotic compactness. In Section 4,
a rather general semilinear non-autonomous/random partial differential equation
containing (eventually) infinite delays, and which may be related to a semilinear
reaction-diffusion equation with memory and with random coefficients, is consid-
ered. We prove the existence of globally defined solutions and that these generate
an MNDS which is to be studied in the next section. Indeed, in Section 5 we first
prove the existence of a pullback attractor for the MNDS, and when the parameter
space is a Polish space and has a probability structure, we are able to prove that the
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MNDS is in fact an MRDS which possesses a random attractor. Some illustrative
examples are finally included in Section 7.

2. Preliminaries. In what follows we give some basic definitions for set–valued
non–autonomous and random dynamical systems and formulate sufficient condi-
tions for the existence of a pullback attractor for these systems which is a random
set if the non–autonomous perturbation is a noise.

Non–autonomous dynamical systems are systems under influence of a non–auto-
nomous perturbation. If this non–autonomous perturbation is a noise term then
we have a random dynamical system. We are going to describe these systems in
the following.

A pair (Ω, θ) where θ = (θt)t∈R is a flow on Ω:

θ : R× Ω → Ω
θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R

is called a non–autonomous perturbation. As an example which describes typical
non–autonomous perturbations we consider Ω = R and θtτ = t + τ for τ = ω ∈
Ω, t ∈ R.

Let P := (Ω,F ,P) be a probability space. On this probability space we consider
a measurable non–autonomous flow θ :

θ : (R× Ω,B(R)⊗F) → (Ω,F).

In addition, P is supposed to be ergodic with respect to θ, which means that
every θt-invariant set has measure zero or one, t ∈ R. Hence P is invariant with
respect to θt. The quadruple (Ω,F ,P, θ) which is the model for a noise is called a
metric dynamical system.

If we replace in the definition of a metric dynamical system the probability space
P by its completion Pc := (Ω, F̄ , P̄) the above measurability property is not true in
general, see Arnold [1] Appendix A. But for fixed t ∈ R we have that the mapping

θt : (Ω, F̄) → (Ω, F̄)
is measurable.

We also mention the following well known ergodic theorem.

Theorem 2.1. Let Y be a real random variable in L1. Then

lim
t→±∞

1
t

∫ t

0

Y (θτω)dτ = EY

on a (θt)t∈R–invariant set of measure one.

Outside this set of measure one we will replace the values of Y by EY so that
this version of Y has the above limit for all ω ∈ Ω.

From now on, let X = (X, dX) be a Polish space.
Let D : ω → D(ω) ∈ 2X be a multi–valued mapping. The set of multi–functions

D : ω → D(ω) ∈ 2X with closed and non–empty images is denoted by C(X). Let
also denote by Pf (X) the set of all non-empty closed subsets of the space X. Thus,
it is equivalent to write that D is in C(X), or D : Ω → Pf (X) .



4 T. CARABALLO, M.J. GARRIDO-ATIENZA, B. SCHMALFUSS, & J. VALERO

Let D : ω → D(ω) be a multi–valued mapping in X over P. Such a mapping is
called a random set if

ω → inf
y∈D(ω)

dX(x, y)

is a random variable for every x ∈ X. It is well known that a mapping is a random
set if and only if for every open set O in X the inverse image {ω : D(ω)∩O 6= ∅} is
measurable, i.e., it belongs to F (see Hu and Papageorgiou [23, Proposition 2.1.4]).

Clearly, all this is also valid if we replace P by Pc and F by F . Further, along
the paper, if we do not specify which probability space we are using (P or Pc), it
will mean that the result is valid for both cases.

It is also evident that if D is a random set with respect to P, then it is also
random with respect to Pc.

We now formulate properties for random sets that will be needed in the following
(see Castaing and Valadier [16] Chapter III and Hu and Papageorgiou [23] Chapter
2.2).

Lemma 2.2. (i) Let (Dn)n∈N be a family of random sets in C(X). Then⋃
n∈N

Dn(ω)

is a random set in C(X). If in addition (Dn)n∈N is decreasing and every sequence
(xn) with xn ∈ Dn(ω) is pre–compact, then

C(ω) :=
⋂
n∈N

Dn(ω)

is non–empty and measurable.
(ii) Let D be a random set in C(X). Then, there exists a countable number of

random variables Yn, n ∈ N, such that Yn(ω) ∈ D(ω) for all ω ∈ Ω and

D(ω) =
⋃
n∈N

Yn(ω).

(iii) D is a random set with respect to Pc if and only if the graph of D

Gr(D) := {(ω, x) ∈ Ω×X : x ∈ D(ω)}

belongs to F ⊗ B(X).

We now introduce non–autonomous and random dynamical systems.

Definition 2.3. A multi–valued map U : R+ ×Ω×X → Pf (X) is called a multi–
valued non–autonomous dynamical system (MNDS) if

i) U(0, ω, ·) = idX ,
ii) U(t+τ, ω, x) ⊂ U(t, θτω,U(τ, ω, x)) (cocycle property) for all t, τ ∈ R+, x ∈

X,ω ∈ Ω.
It is called a strict MNDS if

iii) U(t+ τ, ω, x) = U(t, θτω,U(τ, ω, x)) for all t, τ ∈ R+, x ∈ X,ω ∈ Ω.
An MNDS is called a multi–valued random dynamical system (MRDS) if the

multi–valued mapping

(t, ω, x) → U(t, ω, x)
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is B(R+)⊗F ⊗B(X) measurable, i.e. {(t, ω, x) : U(t, ω, x)∩O 6= ∅} ∈ B(R+)⊗
F ⊗ B(X) for every open set O of the topological space X.

For the above composition of multi–valued mappings we use that for any non–
empty set V ⊂ X, U(t, ω, V ) is defined by

U(t, ω, V ) =
⋃

x0∈V

U(t, ω, x0).

We also note that the above measurability hypothesis is not standard at least for
single–valued random dynamical system. However, for MRDS it is more difficult
to derive measurability than for single valued systems.

We now introduce some topological properties of the MNDS U , but we first recall
the definition of Hausdorff semi-distance of two non-empty sets A, B:

distX(A,B) = sup
x∈A

inf
y∈B

dX(x, y).

Definition 2.4. U(t, ω, ·) is called upper–semicontinuous at x0 if for every neigh-
borhood U of the set U(t, ω, x0) there exists δ > 0 such that if dX(x0, y) < δ
then

U(t, ω, y) ∈ U .
U(t, ω, ·) is called upper–semicontinuous if it is upper–semicontinuous at every

x0 in X.

Remark 1. (i) Note that if a mapping U (t, ω, ·) is upper–semicontinuous at x0,
then for all ε > 0 there exists δ (ε) > 0 such that

distX(U (t, ω, y) , U (t, ω, x0)) ≤ ε,

for any y satisfying dX(y, x0) ≤ δ (ε).
(ii) The converse is true when U (t, ω, x0) is compact, see Aubin and Cellina [2].

It is not difficult to extend Definition 2.4 if we consider the upper–semicontinuity
with respect to all variables assuming that Ω is a Polish space.

We now formulate a general condition ensuring that an MNDS defines an MRDS.
We need the particular assumption that Ω is a Polish space and F the associated
Borel–σ–algebra.

Lemma 2.5. Let Ω be a Polish space and let F be the Borel–σ–algebra. Suppose
that (t, ω, x) 7→ U (t, ω, x) is upper–semicontinuous. Then this mapping is measur-
able in the sense of Definition 2.3.

Proof. Thanks to Proposition 1.2.5 in Hu and Papageorgiou [23], we have that for
each closed subset C ⊂ X, the set

U−1 (C) = {(t, ω, x) : U (t, ω, x) ∩ C 6= ∅}

is closed, and thus is a Borel set in B(R+) ⊗ F ⊗ B(X) = B(R+ × Ω × X). This
implies that the inverse of a closed set is measurable and then, by Theorem 2.2.4
in [23], the map is measurable.
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3. Non–autonomous and random attractors for MNDS. In this section we
generalize the concept of pullback and random attractors to the case of an MNDS
and prove a general result for the existence and uniqueness of attractors.

As a preparation we need the following definitions.
A multi–valued mapping D is said to be negatively, strictly, or positively invari-

ant for the MNDS U if

D(θtω)
⊂
=
⊃
U(t, ω,D(ω)) for ω ∈ Ω, t ∈ R+.

Let D be the family of multi–valued mappings with values in C(X). We say that
a family K ∈ D is pullback D-attracting if for every D ∈ D

lim
t→+∞

distX(U(t, θ−tω,D (θ−tω)),K(ω)) = 0, for all ω ∈ Ω.

B ∈ D is said to be pullback D-absorbing if for every D ∈ D there exists T =
T (ω,D) > 0 such that

U(t, θ−tω,D (θ−tω)) ⊂ B(ω), for all t ≥ T. (1)

The following definition provides the main objective of this article. We have to
introduce a particular set system (see Schmalfuß [31]): let D be a set of multi–
valued mappings in C(X) satisfying the inclusion closed property: suppose that
D ∈ D and let D′ be a multi–valued mapping in C(X) such that D′(ω) ⊂ D(ω) for
ω ∈ Ω, then D′ ∈ D.

Definition 3.1. A family A ∈ D is said to be a global pullback D-attractor for the
MNDS U if it satisfies:

1. A (ω) is compact for any ω ∈ Ω;
2. A is pullback D-attracting;
3. A is negatively invariant.
A is said to be a strict global pullback D-attractor if the invariance property in

the third item is strict.

A natural modification of this definition for MRDS is

Definition 3.2. Suppose U is an MRDS and suppose that the properties of Def-
inition 3.1 are satisfied. In particular, we consider D to be a system of random
sets. In addition, we suppose that A is a random set, with respect to Pc. Then A
is called a random global pullback D-attractor.

Remark 2. (i) In contrast to the theory of random attractors for single valued
random dynamical systems we have weaker assumptions on the measurability of A.
Of course, it is desirable to obtain that A is a random set with respect to P, but
usually we need stronger assumptions in the applications to obtain this property.

(ii) For the last Definition 3.2 we assume that the system D from Definition
3.1 consists of random sets. So the inclusion property has to be checked only for
random sets D′.

A consequence of the pullback convergence and invariance of P is that it reflexes
the forward convergence to the attractor

P− lim
t→+∞

distX(U(t, ω,D(ω)), A(θtω)) = 0
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for all sets D such that ω → U(t, ω,D(ω)) is measurable for t ≥ 0. Indeed, we
have to replace in the formula for the pullback convergence ω by θtω. However, this
is only true in the weaker convergence in probability. There exist counterexamples
which show that in general the forward convergence does not hold almost surely
(see [1] page 488).

The main tool to prove the existence of an attractor is the pullback-omega-limit
set for the MNDS U . For some multi–valued mappings D we define a pullback-
omega-limit set as an ω–dependent set Λ(D,ω) given by

Λ (D,ω) =
⋂
s≥0

⋃
t≥s

U (t, θ−tω,D (θ−tω)).

This set is obviously closed, but in general it can be empty. It is not diffi-
cult to prove that y ∈ Λ (D,ω) if and only if there exist tn → +∞ and yn ∈
U (tn, θ−tnω,D (θ−tnω)) such that

lim
n→+∞

yn = y.

We then have the following lemma, which is a generalization of Theorem 6 and
Lemma 8 in Caraballo et al. [10] to the case in which we consider the family D
instead of the bounded sets of X.

Lemma 3.3. Suppose that the MNDS U(t, ω, ·) is upper–semicontinuous for t ≥ 0
and ω ∈ Ω. Let B be a multi–valued mapping such that the MNDS is asymptotically
compact with respect to B i.e. for every sequence tn → +∞, ω ∈ Ω every sequence
yn ∈ U(tn, θ−tnω,B(θ−tnω)) is pre–compact.

Then for ω ∈ Ω the pullback–omega–limit set Λ (B,ω) is non–empty, compact,
and

lim
t→+∞

distX(U(t, θ−tω,B (θ−tω)),Λ (B,ω)) = 0, (2)

Λ (B, θtω) ⊂ U (t, ω,Λ (B,ω)) , for all t ≥ 0. (3)

Proof. Take an arbitrary sequence yn ∈ U (tn, θ−tn
ω,B(θ−tn

ω)) with tn → +∞.
Then, since U is pullback–asymptotically compact with respect to B, there exists
a converging subsequence and its limit y belongs to Λ (B,ω), so that Λ (B,ω) is
non–empty.

Let us prove the compactness of Λ (B,ω). For any sequence {yn} ⊂ Λ (B,ω)
there exist tn → +∞ and zn ∈ U (tn, θ−tn

ω,B(θ−tn
ω)) , such that dX(yn, zn) < 1

n .
Using again the pullback asymptotic compactness of U we obtain the existence of
a converging subsequence znk

→ z ∈ Λ (B,ω). It follows that ynk
→ z, so that

Λ (B,ω) is compact.
The attracting property (2) is proved by contradiction. If this is not the case,

then there exist ε > 0 and yn ∈ U (tn, θ−tnω,B (θ−tnω)), tn → +∞, for which

distX (yn,Λ (B,ω)) > ε.

Again, since U is pullback–asymptotically compact with respect to B, it follows
that (up to a subsequence) yn → y ∈ Λ (B,ω), which is not possible.

We prove now that (3) holds. If y ∈ Λ (B, θtω), then there exist sequences
yn ∈ U (tn, θ−tnθtω, xn), xn ∈ B(θ−tnθtω), tn → +∞, such that yn → y. For
tn ≥ t, the composition property implies

U (tn, θ−tn
θtω, xn) ⊂ U (t, ω, U (tn − t, θt−tn

ω, xn)) ,
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and then yn ∈ U (t, ω, zn), where zn ∈ U (tn − t, θt−tnω, xn). As before, accurate to
a subsequence, zn → z ∈ Λ (B,ω). Since x 7→ U (t, ω, x) is upper–semicontinuous
with closed values, we have

y ∈ U(t, ω, z) ⊂ U(t, ω,Λ (B,ω)).

This is the main theorem of this section:

Theorem 3.4. Assume the hypotheses in Lemma 3.3. In addition, suppose that
B ∈ D is pullback D–absorbing. Then, the set A given by

A (ω) := Λ (B,ω)

is a pullback D-attractor. Furthermore, A is the unique element from D with these
properties.

In addition, if U is a strict MNDS then A is strictly invariant.

Proof. We have to prove that

lim
t→+∞

distX(U(t, θ−tω,D (θ−tω)), A(ω)) = 0 for every D ∈ D. (4)

Indeed by (2) for every ε > 0, ω ∈ Ω there exists a T (ω, ε) such that for t ≥ T (ω, ε)

distX(U(t, θ−tω,B (θ−tω)), A(ω)) < ε.

But for every D ∈ D we have that

U(T (θ−tω,D), θ−t−T (θ−tω,D)ω,D(θ−t−T (θ−tω,D)ω)) ⊂ B (θ−tω)
so that, by Definition 2.3,

distX(U(t, θ−tω,D (θ−tω)), A(ω)) < ε

for t large.
The third property from Definition 3.1 follows from (3).
Since

U(t, θ−tω,B(θ−tω)) ⊂ B(ω) for t ≥ T (ω,B),
we have the relation A(ω) ⊂ B(ω) for each ω ∈ Ω, so that A ∈ D. But this

shows that A is unique. Indeed suppose we have another pullback D–attractor A′,
then as

A′(ω) ⊂ U(t, θ−tω,A
′(θ−tω))

and
lim

t→+∞
distX (U(t, θ−tω,A

′(θ−tω)), A(ω)) = 0,

we have that A′(ω) ⊂ A(ω). Exchanging A and A′ it follows that A = A′.
Finally, assume that U is a strict MNDS. Then A pullback attracts itself, so that

U (t, ω,A (ω)) ⊂ U (t, ω, U (τ, θ−τω,A (θ−τω)))

= U (t+ τ, θ−τω,A (θ−τω))

= U (t+ τ, θ−t−τθtω,A (θ−t−τθtω)) ,

for any τ ≥ 0, and then for each ε > 0 there is T (ε, ω, τ) such that

distX (U (t, ω,A (ω)) , A (θtω)) < ε, if t+ τ ≥ T.

As ε > 0 is arbitrary we obtain that U (t, ω,A (ω)) ⊂ A (θtω), as required.
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With respect to the measurability of Definition 3.2 and the applications in Sec-
tion 6 we suppose for the next lemma a complete probability space Pc. However,
the result is also valid for the space P.

Lemma 3.5. Under the assumptions in Theorem 3.4, let ω → U(t, ω,B(ω)) be a
random set for t ≥ 0. Assume also that U(t, ω,B(ω)) is closed for all t ≥ 0 and
ω ∈ Ω. Then the set A introduced in Theorem 3.4 is measurable.

Proof. We introduce

C(ω) =
⋂

τ∈Z+

⋃
t≥τ,t∈Z+

U(t, θ−tω,B(θ−tω))

which is a random set by Lemma 2.2 (i).
We show that A(ω) = C(ω). We just know from the construction in Theorem

3.4 that A(ω) ⊂ B(ω). On account of the properties of A we observe that

C(ω) ⊃
⋂

τ∈Z+

⋃
t≥τ,t∈Z+

U(t, θ−tω,A(θ−tω))︸ ︷︷ ︸
⊃A(ω)

⊃ A(ω).

On the other hand we have that C(ω) ⊂ A(ω) from⋃
t≥τ

U(t, θ−tω,B(θ−tω)) ⊃
⋃

t≥τ,t∈Z+

U(t, θ−tω,B(θ−tω))

and the fact that the family

τ ∈ R →
⋃
t≥τ

U(t, θ−tω,B(θ−tω))

is decreasing.

4. Mild solutions for abstract random evolution equations with non-
uniqueness. In this section we consider the following evolution equation

dy

dt
= Ay + f(θtω, yt). (5)

Here we suppose that A is the generator of a C0 contraction semigroup (S(t))t≥0

on a separable Banach space (H, ‖ · ‖):
‖S(t)x‖ ≤ ‖x‖e−αt, for some α > 0 and every t ≥ 0.

We need that the operators S(t) for t > 0 are compact. The non–linear term f
depends on ω and on a delay term

yt(s) =
{

y(t+ s) for s ∈ [−t, 0]
x0(s+ t) s < −t

where t ≥ 0. Here x0 is a given continuous function on R− with values in H.
According to the function x0 we can equip (5) with an initial condition

y(t) = x0(t), t ≤ 0.

Before describing the assumptions on f, we first introduce the function space

Cγ = {u ∈ C((−∞, 0];H) : lim
τ→−∞

u (τ) eγτ exists},

where γ > α, and set ‖u‖γ := supτ∈(−∞,0] e
γτ‖u(τ)‖ < ∞. This is a separable

Banach space [22, p.15].
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The main purpose of the article is to show the existence of a random attractor
for the dynamical system generated by (5). However, we interpret this system at
first as an MNDS which has a pullback attractor.

Suppose that x0 ∈ Cγ . In what follows we assume that

f : Ω× Cγ → H

satisfies:
a): the mapping

ω → f(ω, y)
is F measurable for an arbitrarily fixed y ∈ Cγ ,

b): the mapping
y → f(ω, y)

is continuous from Cγ into H for any fixed ω.

Assume that there exist two non–negative functions ci : Ω → R, i = 1, 2, which
are measurable with respect to F . Also, assume that

t→ c1(θtω)
is integrable with respect to every finite interval (a, b) and subexponentially growing
for t → ±∞ for ω ∈ Ω. This is the so called temperedness property if we have a
random variable c1. For c2 we suppose that Ec2 < ∞ (so that c2(θtω) is locally
integrable by the ergodic theorem) and also that

lim
t→±∞

1
t

∫ t

0

c2(θτω)dτ = c̄2.

By the ergodicity assumption and Theorem 2.1 we have that

lim
t→±∞

1
t

∫ t

0

c2(θτω)dτ = Ec2 =: c̄2

on a (θt)t∈R–invariant set of full measure. Let us replace outside this set (which
has measure zero) the values of c2(ω) by c̄2.

Suppose

‖f(ω, y)‖ ≤ c1(ω) + c2(ω)‖y‖γ for ω ∈ Ω and y ∈ Cγ . (6)

We emphasize that we do not assume that f is Lipschitz continuous in any sense.
We now prove that for every x0 (5) has at least one solution. However, we will

interpret the solution of (5) as a mild solution:

Definition 4.1. For ω ∈ Ω and x0 ∈ Cγ , a function [0, T ] 3 t→ yt ∈ Cγ is called
a mild solution of (5) with initial function x0 if

yt(s) =
{
S(t+ s)x0(0) +

∫ s+t

0
S(t+ s− τ)f(θτω, yτ )dτ : s ∈ [−t, 0]

x0(s+ t) : s < −t, (7)

for all t ∈ [0, T ].

Note that in the last definition we express that the mild solution has the state
space Cγ , not H. Alternatively, we can define a mild solution to (5) with state
space H setting s = 0

y(t) =
{
S(t)x0(0) +

∫ t

0
S(t− τ)f(θτω, yτ )dτ : t ≥ 0

x0(t) : t < 0.
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We now introduce the following notation. Let y ∈ C([0, T ];H) with y(0) = x0(0)
and x0 ∈ Cγ . Then, for τ ∈ [0, T ], we denote by y ∨τ x0 the mapping from R− to
H defined by

y ∨τ x0(s) :=
{

y(τ + s) : s ∈ (−τ, 0]
x0(τ + s) : s ≤ −τ.

We observe that for such function y the integral in (7) is well defined. Indeed, it
is well known (see [22, p.15]) that the map t → yt is continuous from [0, T ] into
Cγ . Thus it is measurable. Then, since f is measurable w.r.t. the first variable
and continuous w.r.t. the second variable, (τ, ω) → θτω is also measurable and
the spaces H, Cγ are separable, we obtain that the composition τ → f(θτω, yτ ) is
measurable (see [3, Lemma 8.2.3]). In a similar way we obtain then that τ → S(t−
τ)f(θτω, yτ ) is measurable. Therefore, by (6) and the properties of the semigroup
S, the integral in (7) exists.

Theorem 4.2. Suppose that the above assumptions on S and f are satisfied. Then
for every interval [0, T ] (5) possesses a solution in Cγ in the sense of Definition
4.1.

Proof. We show the local existence of solutions of (7). The global existence then
follows by Theorem 4.3 below. The proof follows Pazy [27] Theorem 6.2.1. Let us
fix some x0 ∈ Cγ , ω ∈ Ω.

Consider

B(R) = {y ∈ C([0, T ];H) : y(0) = x0(0), sup
s∈[0,T ]

‖x0(0)− y(s)‖ ≤ R}.

B(R) is a convex and bounded set in C([0, T ];H). For some sufficiently small T > 0
we introduce the mapping

TT : B(R) → C([0, T ];H),

TT (y)[t] := S(t)x0(0) +
∫ t

0

S(t− τ)f(θτω, y ∨τ x0)dτ, t ∈ [0, T ].

We note that TT (y) ∈ C([0, T ];H) because τ → ‖f(θτω, y ∨τ x0)‖ ∈ L1([0, T ]). To
see that the operator TT maps B(R) into itself, for appropriate R and T, we note
that

‖f(θrω,y ∨r x0)‖ ≤ c1(θrω) + c2(θrω) sup
%∈[0,r]

eγ(%−r)‖y(%)‖

+ c2(θrω) sup
%≤−r

eγ%‖x0(r + %)‖

≤c1(θrω) + c2(θrω) sup
%∈[0,T ]

‖y(%)‖

+ c2(θrω)e−γr sup
%≤−r

eγ(%+r)‖x0(r + %)‖

≤c1(θrω) + c2(θrω) sup
%∈[0,T ]

‖y(%)‖+ c2(θrω)‖x0‖γ .

(8)

The term sup%∈[0,T ] ‖y(%)‖ is bounded by ‖x0‖γ +R. In addition, ‖S(t− τ)x‖ ≤
e−α(t−τ)‖x‖ so that, for small T > 0 (depending on ω), we have TT (B(R)) ⊂ B(R).

On account of the continuity of Cγ 3 y → f(ω, y) and (6) we obtain by
Lebesgue’s majorant theorem that TT is continuous on B(R) with the topology
of C([0, T ];H).
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To see that TT is compact we first note that the sets

Zt := {z = TT (y)[t], y ∈ B(R)}, t ∈ [0, T ]

are pre–compact. This is trivially true for t = 0. For t > 0 we introduce for
sufficiently small ε > 0

T ε
T (y)[t] = S(t)x0(0) +

∫ t−ε

0

S(t− τ)f(θτω, y ∨τ x0)dτ

= S(t)x0(0) + S(ε)
∫ t−ε

0

S(t− τ − ε)f(θτω, y ∨τ x0)dτ.

By (8) and the integrability conditions on c1, c2

sup
y∈B(R)

‖
∫ t−ε

0

S(t− τ − ε)f(θτ , y ∨τ x0)dτ‖

is finite for appropriate ε > 0 so that T ε
T (B(R))[t] is pre-compact by the compact-

ness of S(ε). Then for every ε′ > 0 we have an ε > 0 such that

‖T ε
T (y)[t]− TT (y)[t]‖ ≤

∫ t

t−ε

e−α(t−τ)‖f(θτω, y ∨τ x0)‖dτ ≤ ε′

uniformly for y ∈ B(R) so that Zt is totally bounded, hence pre–compact.

To apply the Arzelà–Ascoli theorem we show that TT (y), y ∈ B(R), is equicon-
tinuous. Notice that, for t2 > t1 > 0,

‖TT (y)[t2]− TT (y)[t1]‖ ≤‖(S(t2)− S(t1))x0(0)‖

+
∫ t1

0

‖S(t2 − τ)− S(t1 − τ)‖‖f(θτω, y ∨τ x0)‖dτ

+
∫ t2

t1

‖S(t2 − τ)‖‖f(θτω, y ∨τ x0)‖dτ.

Since S(t) is a compact operator for t > 0 we have that the mapping t → S(t) is
norm-continuous for t > 0. Lebesgue’s majorant theorem together with (8) imply
the equicontinuity for t > 0. Similar arguments hold for t1 = t = 0. Indeed, in the
above formula the second term on the right hand side disappears for t1 = 0.

The Schauder theorem gives the existence of a fixed point of TT which is a local
solution for (5).

To see that (7) has a solution for every T > 0 we refer to the following The-
orem 4.3 and Remark 3. One consequence of this theorem is that explosions are
impossible.

The following theorem is needed to derive particular a priori estimates for the
solution of (5).

Theorem 4.3. Let yt be any mild solution of (7) on [0, T ), T ∈ R+ ∪{+∞}with a
initial function x0 ∈ Cγ . Then yt satisfies the inequality

‖yt‖γ ≤ e−αt+
∫ t
0 c2(θτ ω)dτ‖x0‖γ +

∫ t

0

e−α(t−τ)+
∫ t

τ
c2(θqω)dqc1(θτω)dτ. (9)
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Proof. We have

‖yt‖γ ≤max
(

sup
s≤−t

‖x0(s+ t)‖eγs, sup
s∈[−t,0]

‖S(t+ s)x0(0)‖eγs

+ sup
s∈[−t,0]

‖
∫ s+t

0

S(s+ t− τ)f(θτω, yτ )dτ‖eγs

)
.

The first term on the right hand side of the last inequality is equal to

sup
s≤0

‖x0(s)‖eγ(s−t) = e−γt‖x0‖γ .

For the second term we have the estimate

sup
s∈[−t,0]

‖S(s+ t)x0(0)‖eγs ≤ sup
s∈[−t,0]

e−α(s+t)‖x0(0)‖eγs

≤ e−αt sup
s∈[−t,0]

e(−α+γ)s‖x0(0)‖ ≤ e−αt‖x0(0)‖.

The third term can be estimated as follows

sup
s∈[−t,0]

‖
∫ s+t

0

S(t+ s− τ)f(θτω, yτ )dτ‖eγs

≤ sup
s∈[−t,0]

∫ s+t

0

eα(−t−s+τ)(c1(θτω) + c2(θτω)‖yτ‖γ)dτeγs

≤
∫ t

0

e−α(t−τ)c1(θτω)dτ +
∫ t

0

e−α(t−τ)c2(θτω)‖yτ‖γdτ.

Collecting all these estimates we have that

‖yt‖γ ≤max
(
e−γt‖x0‖γ , e

−αt‖x0(0)‖+
∫ t

0

e−α(t−τ)c1(θτω)dτ

+
∫ t

0

e−α(t−τ)c2(θτω)‖yτ‖γdτ

)
≤e−αt‖x0‖γ +

∫ t

0

e−α(t−τ)(c1(θτω) + c2(θτω)‖yτ‖γ)dτ.

We obtain the desired inequality by the Gronwall lemma.

Remark 3. A consequence of this theorem is that, in case of a finite maximal
interval of existence [0, tmax) of a solution, there are no explosions:

lim sup
t↑tmax

‖yt‖γ <∞.

But the case of such a finite interval carrying a bounded solution can be excluded
similar to Pazy [27] Theorem 6.2.2 applying (6). Hence for every x0 ∈ Cγ , ω ∈ Ω
every solution of (5) is global.

5. Pullback attractors for the equation with infinite delay. Along this sec-
tion we assume the same conditions on S and f given at the beginning of Section
4.

We define the multi–valued mapping U(t, ω, x0) to be the set of mild solutions
(7) in the sense of Definition 4.1 at time t ≥ 0, that is, U(t, ω, x0) = ∪ yt, where
the union is taken within the set of mild solutions [0,+∞) 3 t → yt ∈ Cγ such
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that y0 = x0. We stress here that we know from the last section that every local
solution can be extended to a global solution.

Lemma 5.1. The map U is a strict MNDS. In particular, for any fixed t ≥ 0 we
have U(t, ω,D (ω)) ∈ C(Cγ) if D ∈ C(Cγ).

Proof. Let z ∈ U(t + τ, ω, x0). Then there exists a solution y of (7) such that
z = yt+τ . Define the function u as ut = yt+τ for t ≥ 0. Hence u0 = yτ . The
function u solves (7) with ω replaced by θτω, and x0 = yτ . Indeed, for s ∈ [−t, 0]
we have

ut (s) =yt+τ (s) = S(t+ τ + s)x0(0) +
∫ s+t+τ

0

S(t+ τ + s− r)f(θrω, yr)dr

=S (t+ s)
(
S (τ)x0(0) +

∫ τ

0

S(τ − r)f(θrω, yr)dr
)

+
∫ s+t+τ

τ

S(t+ τ + s− r)f(θrω, yr)dr

=S (t+ s) yτ (0) +
∫ s+t

0

S(t+ s− v)f(θv+τω, uv)dv.

It is clear that ut (s) = yτ (s+ t) for s < −t. Thus

z ∈ U (t, θτω, yτ ) ⊂ U (t, θτω,U (τ, ω, x0)) .

Since z is arbitrary we obtain U(t+ τ, ω, x0) ⊂ U (t, θτω,U (τ, ω, x0)).
Now let z ∈ U (t, θτω,U (τ, ω, x0)). Then there exist y1 solving (7) and y2 solving

(7) (with ω replaced by θτω) and y1
τ such that y2

0 = y1
τ and y2

t = z. Define the
function

yt =
{
y1

t , if 0 ≤ t ≤ τ
y2

t−τ , if τ ≤ t,

which is a solution of (7). Indeed, for t ≤ τ the equality yt = y1
t implies immediately

that y (·) is a mild solution. If t ≥ τ , then for s ∈ [−t+ τ, 0] we have

yt (s) = y2
t−τ (s) = S(t− τ + s)y1

τ (0) +
∫ s+t−τ

0

S(t− τ + s− r)f(θr+τω, y
2
r)dr

= S (t− τ + s)
(
S (τ)x0 (0) +

∫ τ

0

S (τ − r) f
(
θrω, y

1
r

)
dr

)
+

∫ s+t

τ

S(t+ s− r)f(θrω, y
2
r−τ )dr

= S (t+ s)x0 (0) +
∫ s+t

0

S (t+ s− r) f (θrω, yr) dr.

Also, for s ∈ [−t,−t+ τ ] we get

yt (s) = y2
t−τ (s) = y1

τ (s+ t− τ) = S (s+ t)x0 (0) +
∫ s+t

0

S (s+ t− r) f
(
θrω, y

1
r

)
dr

= S (s+ t)x0 (0) +
∫ s+t

0

S (s+ t− r) f (θrω, yr) dr.

Finally, for s < −t it is clear that yt (s) = y2
t−τ (s) = y1

τ (s+ t− τ) = x0 (s+ t) .
Hence, z = y2

t = yt+τ ∈ U (t+ τ, ω, x0) . Since z is arbitrary, U (t, θτω,U (τ, ω, x0)) ⊂
U (t+ τ, ω, x0) .
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We also note that U(t, ω,D) belongs to C(Cγ) if D ∈ C(Cγ) where the proof
follows by the continuity of Cγ 3 y → f(ω, y), (6) and Lebesgue’s majorant theo-
rem.

In the sequel let us consider the system D given by the multi–valued mapping
D in C(Cγ) with D(ω) ⊂ BCγ (0, %(ω)), the closed ball with center zero and radius
%, which is supposed to have a subexponential growth:

lim
t→±∞

log+ %(θtω)
t

= 0 for ω ∈ Ω.

D is called the family of subexponentially growing multi–functions in C(Cγ).
Of course, the property on D given in Definition 3.1 holds.

Lemma 5.2. For the function c2 defined at the beginning of Section 4 suppose that

Ec2 = c̄2 < α. (10)
Then the ball B(ω) in Cγ with center zero and random (w.r.t. F) radius

R(ω) = 2
∫ 0

−∞
eατ+

∫ 0
τ

c2(θsω)dsc1(θτω)dτ (11)

is contained in D. In addition, B is pullback D–absorbing in the sense of (1) and
we have that

U(t, ω,B(ω)) ⊂ B(θtω)
for t ≥ 0 and ω ∈ Ω.

Proof. We note that R is well defined and t→ R(θtω) is subexponentially growing
what follows for instance by Caraballo et al. [9]. To see the pullback absorption we
replace in the formula in Theorem 4.3 for all t ≥ 0 the parameter ω by θ−tω. We
then note that

e−αt+
∫ 0
−t

c2(θτ ω)dτ

tends to zero exponentially fast for t → +∞ thanks to our assumption on c2 and
the ergodic Theorem 2.1 with the modification of c2 on a set of measure zero if c2 is
a random variable. In addition, we can write the second integral in (9) with θ−tω
instead of ω as ∫ 0

−t

eατ+
∫ 0

τ
c2(θsω)dsc1(θτω)dτ.

The conclusion then follows for t→ +∞.
The forward invariance follows then easily if we replace ‖x0‖γ by R(ω) in (9).

Remark 4. We note that R 3 t 7→ R(θtω) is continuous because this function
solves the differential equation

dr

dt
= (−α+ c2(θtω))r + 2c1(θtω), r(0) = R(ω).

We now study qualitative properties of U . For that we apply the results from
the last section by setting X = Cγ .

Lemma 5.3. For fixed t ≥ 0 and ω ∈ Ω, the mapping x0 → U(t, ω, x0) is upper–
semicontinuous.
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Proof. In the case that U(t, ω, ·) is not upper–semicontinuous then there exist a
neighborhood Mt,ω of U(t, ω, x0), a sequence {xn

0 : n ∈ N}, xn
0 → x0 with conver-

gence in Cγ and elements yn
t ∈ U(t, ω, xn) 6∈Mt,ω. We show that limn′→+∞ yn′

t =:
y0 for some subsequence (n′) in N, which is an element in U(t, ω, x0). This is a
contradiction. To see that yn

t is relatively compact we apply the Arzelà–Ascoli
theorem. By the properties of the sequence xn

0 (which is pre–compact in Cγ) it
is sufficiently to show that yn

t (s), s ∈ [−t, 0] is pre–compact. We note that by
Theorem 4.3 the set

{yn
t : n ∈ N}

is bounded in Cγ because {xn
0 : n ∈ N} is bounded in Cγ . Hence

sup
n∈N,s∈[−t,0]

‖yn
t (s)‖ <∞ (12)

The same argument as in the proof of Theorem 4.2 yields the relative compactness
of Z(s) := {yn

t (s) : n ∈ N}. In particular, {S(t+ s)xn
0 (0) : n ∈ N} is pre–compact.

Similarly, we can apply the equicontinuity argument of Theorem 4.2. Indeed, to see
the equicontinuity of {yn

t : n ∈ N} at s ∈ (−t, 0] we still use the fact that r → S(r)
is continuous in norm for r > 0.
Following the idea of the proof of Theorem 4.2 to see equicontinuity at s = −t we
have to study the following equation with r := s+ t > 0

yn
t (s) = yn(r) = S(r)xn

0 (0) +
∫ r

0

S(r − τ)f(θτω, y
n
τ )dτ.

Note that the norm of the integral on the right hand side is small uniformly with
respect to n if r is small applying (6) and (12).

To see the equicontinuity of the functions formed by the first expression on the
right hand side we have to show that for every ε > 0 there exists a δ > 0 such that
for n ∈ N and r ≤ δ we have that ‖S(r)xn

0 (0)−xn
0 (0)‖ ≤ ε. If not, there would exist

ε > 0, sequences n → +∞, rn → 0 such that ‖S(rn)xn
0 (0)− xn

0 (0)‖ ≥ ε. Choosing
n sufficiently large such that for r in [0, t] the estimate

‖S(r)(xn
0 (0)− x0(0))‖ ≤ ε

4
holds, we then have that

‖S(rn)xn
0 (0)− xn

0 (0)‖ ≤‖S(rn)(xn
0 (0)− x0(0))‖+ ‖S(rn)x0(0)− x0(0)‖

+ ‖xn
0 (0)− x0(0)‖ ≤ ε

4
+
ε

4
+
ε

4
< ε

for large n. This is a contradiction.

Now we prove the following compactness conclusion for the MNDS U .

Lemma 5.4. Assume that (10) holds. The multi–valued dynamical system U is
pullback asymptotically compact with respect to B defined in Lemma 5.2.

Proof. Let zt be the unique (mild) solution of

dz

dt
= Az, z0 = x0 ∈ Cγ (13)

given by

zt(s) =
{
S(t+ s)x0(0) : s ∈ [−t, 0]
x0(s+ t) : s ≤ −t
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so that
‖zt‖γ ≤ max(e−αt‖x0(0)‖, e−γt‖x0‖γ) ≤ e−αt‖x0‖γ . (14)

Let yτ be a solution of (5) with initial function x0 so that yτ ∈ U(τ, θ−tω, x0). Then
there exists uτ ∈ Cγ such that yτ = zτ + uτ where uτ is a mild solution of

du

dτ
= Au+ f(θτ−tω, yτ ), u0(s) = 0 for s ≤ 0. (15)

Let tn → ∞ and xn
0 ∈ B(θ−tnω). The solution to this initial function of (5), with

θ−tn
ω instead of ω, is denoted by yn

τ . According to Lemma 5.2, yn
τ ∈ B(θ−tn+τω),

hence ‖yn
τ ‖γ ≤ R(θ−tn+τω). Let un be the solution of (15) with t = tn which can

be written as

un(tn + s) =
∫ tn+s

0

S(tn + s− τ)f(θ−tn+τω, y
n
τ )dτ, s ∈ [−tn, 0].

Similar to the proof of Theorem 4.2 and the above calculations we can find an
estimate of ‖un(tn + s1) − un(tn + s2)‖, −T ≤ s1 < s2 ≤ 0 for an arbitrary
T > 0 which gives us the equicontinuity of {un(tn + ·) : n ∈ N} on [−T, 0]. In
addition, we are also able to prove the pre–compactness of {un(tn + s) : n ∈ N}
for s ∈ [−T, 0]. By the Arzelà–Ascoli theorem there exist a subsequence {n′} and
a function ψ : R− → H which is the uniform limit of un′(tn′ + ·) on every interval
[−T, 0].
The following a priori estimate holds

‖un(tn + s)‖ ≤
∫ 0

−∞
e−α(s−τ)(2c1(θτω) + c2(θτω)R(θτω))dτ

= e−αsR(ω), s ∈ R−. (16)

The last inequality follows from Remark 4 including the existence of the integral
where the properties of c1, c2 and the continuity of t → R(θtω) are needed. From
this inequality we can derive

‖un(tn + s)‖eγs ≤
∫ 0

−∞
eατ (2c1(θτω) + c2(θτω)R(θτω))dτ, s ∈ R−. (17)

From (17),

sup
s∈[−T,0]

‖un′

tn′
(s)‖eγs ≤ R(ω)

and then
lim

n′→∞
sup

s∈[−T,0]

‖un′

tn′
(s)‖eγs = sup

s∈[−T,0]

‖ψ(s)‖eγs ≤ R(ω)

for every T > 0. Hence

sup
T>0

sup
s∈[−T,0]

‖ψ(s)‖eγs ≤ R(ω)

that is, not only does ψ belong to Cγ but also ‖ψ‖γ ≤ R(ω).
In addition un′

tn′
(·) converges to ψ in Cγ . To prove that we have to check that for

every ε > 0 there exists N(ε) such that

sup
s≤0

‖un′

tn′
(s)− ψ(s)‖eγs ≤ ε for all n′ ≥ N(ε). (18)

Let us now consider γ > α. For every ε > 0 there exists Tε > 0 such that

e−(γ−α)TεR(ω) ≤ ε

2
.
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Since the convergence of un′

tn′
(·) to ψ holds in compact intervals, in order to prove

(18) we only need to check that

sup
s≤−Tε

‖un′

tn′
(s)− ψ(s)‖eγs ≤ ε for all n′ ≥ N(ε).

But thanks to (16)

‖un′

tn′
(s)‖eγs ≤ e(γ−α)sR(ω) for s ≤ 0,

which together with the choice of Tε implies

sup
s≤−Tε

‖un′

tn′
(s)‖eγs ≤ ε

2
.

Moreover,

sup
s∈(−T,−Tε]

‖ψ(s)‖eγs ≤ lim
n′→∞

sup
s∈[−T,−Tε]

‖un′

tn′
(s)‖eγs ≤ ε

2

for every T > Tε. Hence the convergence of {un′

tn′
(·)} to ψ is in Cγ .

We then have

yn
t = un

t + zn
t

where zn
t is the solution of (13) with initial function xn

0 . Since xn
0 ∈ B(θ−tnω) it

follows by (14)

lim
tn→+∞

‖zn
tn
‖γ = 0

so that we have found the convergence of yn′

tn′
to ψ in Cγ which is the conclusion

of the lemma.

According to Theorem 3.4 summarizing Lemmas 5.3, 5.2, 5.4 we have

Theorem 5.5. Suppose (10). Then the MNDS generated by (5) has a pullback
D–attractor A in C(Cγ).

Corollary 1. Suppose that γ′ > α such that the assumptions on f given at the
beginning of Section 4 are satisfied with respect to γ′. Then there exists a pull-
back Dγ′–attractor Aγ′ where Dγ′ consists of the subexponentially growing multi–
functions in C(Cγ′). By the embedding

‖u‖γ′ ≤ ‖u‖γ , for u ∈ Cγ ,

for γ′ > γ > α there exists a Dγ–pullback attractor Aγ such that Aγ(ω) ⊂ Aγ′(ω).

Remark 5. It is really interesting to stress out the relationship that there exists
between the uniqueness of pullback attractors Aγ and the systems of attracted sets
Dγ . Observe that from the Definition 3.1 every pullback Dγ-attractor is an invariant
set. According to the Corollary 1, the Dγ′ -attractor Aγ′ attracts the infinite number
of Dγ-attractors Aγ , for γ′ > γ > α, since Aγ ∈ Dγ ⊂ Dγ′ . However, for γ′ there
exists a unique attractor Aγ′ . Indeed, Aγ does not have to attract the elements
from Dγ′ .
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6. Random attractors for equations with infinite delay. As before, along
this section we assume the same conditions on S and f given at the beginning of
Section 4.

We now apply the results proved in the previous sections to show the existence
of a random attractor for (5).

From now on in this section we suppose that Ω can be equipped with a metric
providing a Polish space. F is defined to be the Borel–σ–algebra of Ω. Finally θt

is supposed to be continuous on Ω for t ∈ R. We assume also that the map

Ω× Cγ 3 (ω, y) 7→ f (ω, y) ∈ H (19)

is continuous.
We have to prove that the MNDS generated by (5) is an MRDS.

Theorem 6.1. Assume condition (19) and also that for every ω0 ∈ Ω and t0 ∈ R
there exists a neighborhood V = V (ω0, t0) such that for some µ > 1∫ t

0

(c1 (θτω)µ + c2 (θτω)µ) dτ ≤ C (ω0, t0) <∞, for all (ω, t) ∈ V. (20)

Then the mapping

(t, ω, x0) → U(t, ω, x0)

is B(R+)⊗F ⊗ B(Cγ) measurable.

Proof. According to Lemma 2.5 we show that the above mapping is upper–semicont-
inuous. We could follow exactly the proof of Lemma 5.3 except that we do not have
fixed ω, t. However, condition (20) gives us some uniformity with respect to ω. Let
tn → t0, xn → x0 in Cγ and xn, x0 ∈ Cγ , ωn → ω0 and ξn ∈ U (tn, ωn, xn). Choose
T with tn ≤ T . We consider yn to be

yn (t) = S(t)xn(0) +
∫ t

0

S(t− τ)f(θτωn, y
n ∨τ xn)dτ , t ≤ T, (21)

for t ≥ 0 and yn(t) = xn(t) for t < 0. This is a mild solution of (5) which satisfies
yn

tn
= yn ∨tn

xn = ξn. Using condition (20) and the Arzelà–Ascoli theorem we
obtain, in a similar way as in Lemma 5.3, that yn is pre–compact in C([0, T ],H) for
every T > 0. Then there exist a subsequence (n′) and a limit point y0 ∈ C([0, T ];H)
with yn′ → y0 uniformly on [0, T ]. We extend y0 by x0 for t ≤ 0. This new function
is continuous at zero which follows from (21) for t = 0. Hence, on account of the
uniform convergence of xn and yn, we have that for a given ε > 0

sup
t∈[−T,0]

‖yn′ ∨tn′ xn′(t)− y0 ∨t0 x0(t)‖eγt <
ε

4
.

On the other hand we have

sup
t≤−T

‖xn′(t+ tn′)− x0(t+ t0)‖eγt ≤ sup
t≤−T

‖xn′(t+ tn′)− x0(t+ tn′)‖eγt

+ sup
t≤−T

‖x0(t+ tn′)− x0(t+ t0)‖eγt.

Since the first term on the right hand side is bounded by ‖xn′ − x0‖Cγ , we can
make this term be less than ε/4 for large n′. Since x0 ∈ Cγ , we know that there
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exists limτ→−∞ x0 (τ) eγτ = x ∈ H. Then we can choose a T0 > T such that

sup
t≤−T0

‖x0(t+ tn′)− x0(t+ t0)‖eγt

≤ sup
t≤−T0

(
‖x0(t+ tn′)− x‖eγt + ‖x− x0(t+ t0)‖eγt

)
<
ε

4
.

But on the compact interval [−T0,−T ] we have that

sup
t∈[−T0,−T ]

‖x0(t+ tn′)− x0(t+ t0)‖eγt <
ε

4

for n′ large. This gives the convergence of ξn′ in Cγ to ξ0. Then ξ0 = y0∨t0x0 ∈ Cγ .
Condition (19) gives for every τ

f(θτωn′ , y
n′ ∨τ xn′) → f(θτω0, y

0 ∨τ x0).

To see that y0 satisfies

y0 (t) = S(t)x0(0) +
∫ t

0

S(t− τ)f(θτω0, y
0 ∨τ x0)dτ , 0 ≤ t ≤ t0,

we mention that the integrands of (21) are bounded by the function

eατ (c1(θτωn′) + c2(θτωn′)M), M := sup
n′

sup
τ∈[0,T ]

‖yn′

τ ‖γ <∞.

The uniform integrability condition (20) together with Vitali’s convergence theorem
for finite measures give us the convergence of the above integrals. Hence ξ0 ∈
U(t, ω0, x0) so that U is upper–semicontinuous.

The following lemma is needed to prove the measurability of the pullback at-
tractor.

Lemma 6.2. In addition to (19), (10) and (20), assume that the mapping ω 7→
R(ω) defined in (11) is the radius of a ball in Cγ such that

lim sup
ω→ω0

R(ω) ≤ R(ω0) for ω0 ∈ Ω. (22)

Then the multi–function ω → U(t, ω,B(ω)) ⊂ Cγ is F̄ measurable for t ≥ 0. In
addition U(t, ω,B(ω)) ∈ C(Cγ).

Proof. According to Lemma 2.2(iii) we show that for fixed t the graph
Gr(U(t, ω,B(ω))) is closed. Suppose that

lim
n→∞

(ωn, y
n) = (ω0, y

0) in Ω× Cγ where yn ∈ U(t, ωn, B(ωn)).

We have
yn(s) = xn

0 (s+ t) for s ≤ −t, xn
0 ∈ B(ωn).

Then xn
0 → x0

0 in Cγ . On account of the properties of R for every ε > 0 there
exists n0(ε) such that for n ≥ n0 we have ‖xn

0‖γ ≤ R(ω0) + ε and then x0
0 ∈

BCγ
(0, R(ω0) + ε). This holds for every ε > 0 so that x0

0 ∈ B(ω0). Now we have

lim
n→∞

‖xn
0 (0)− x0

0(0)‖ = 0,

lim
n→∞

‖
∫ t

0

S(t− τ)(f(θτωn, y
n
τ )− f(θτω0, y

0
τ ))dτ‖ = 0, for t ≥ 0,
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so that y0 is a mild solution of (5) in Cγ . For the convergence we use a similar
argument as in the proof of Theorem 6.1. Since x0

0 ∈ B(ω0) we conclude that
y0 ∈ U(t, ω0, B(ω0)). Thus the graph of U(t, ω,B(ω)) is closed in Ω × Cγ . Then
Gr(U(t, ·, B(·))) ∈ F̄ ⊗B(Cγ), so that U(t, ω,B(ω)) is F̄ measurable. We need here
that Cγ is separable.

The second statement follows similarly setting ωn = ω0.

This is the main theorem of the section.

Theorem 6.3. Suppose that the assumptions of Lemma 6.2 hold. Then the pullback
attractor A introduced in Theorem 5.5 is F̄ measurable with respect to images in
the space Cγ , that is, A is a random attractor.

Proof. It is a consequence of Lemmas 6.2, 3.5 and 5.1.

In the following we formulate conditions ensuring the assumptions in Lemma 6.2
on R(ω).

Lemma 6.4. Let (10) hold. Suppose that there exists µ > 1 such that for every
ω0 ∈ Ω ∫ 0

τ

c2(θsω)µds ≤ c(τ, ω0) for every τ < 0, (23)∫ 0

−∞
eµ(α−ρ)τ+µ

∫ 0
τ

c2(θsω)dsc1(θτω)µdτ ≤ c(ω0), (24)

for ω in some neighborhood V of ω0 and for some ρ > 0 such that α− ρ > c̄2. The
mappings ω → c1(ω), ω → c2(ω) are assumed to be continuous. Then ω → R(ω) is
continuous.

Proof. We rewrite (11) as

2
∫ 0

−∞
e(α−ρ)τ+

∫ 0
τ

c2(θsω)dsc1(θτω)eρτdτ

so that eρτdτ is a finite measure on B(R−). Then the second inequality in the
assumptions ensures that the integrand is uniformly integrable for ω ∈ V . The first
inequality ensures

lim
n→∞

∫ 0

τ

c2(θsωn)ds =
∫ 0

τ

c2(θsω0)ds for τ < 0.

Vitali’s convergence theorem about uniformly integrable functions for finite mea-
sures gives the conclusion.

For Lemma 6.2 and Theorem 6.3 we need that the underlying probability space
is complete. In the following we would like to avoid this assumption. The price we
have to pay are stronger conditions on c1, c2.

Theorem 6.5. Suppose that conditions (19), (10) hold, so that there exists a D–
pullback attractor A in Cγ . Assume that for some µ > 1∫ t

0

(c1 (θτω)µ + c2 (θτω)µ) dτ ≤ C (t) <∞, for all ω ∈ Ω, (25)

and also that the radius of the absorbing set R (ω) is uniformly bounded on ω ∈ Ω.
Then:
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1. ∪ω∈ΩA (ω) is pre–compact in Cγ .
2. The map ω → A (ω) is upper–semicontinuous.
3. The map ω → A (ω) is F measurable in Cγ .

Proof. Let {ξn : n ∈ N} be a sequence in ∪ω∈ΩA (ω). We know from the negative
invariance ofA andA ⊂ B that there exists xn

0 ∈ A(θ−tn
ωn) ⊂ B (θ−tn

ωn) and ξn =
yn

tn
∈ U (tn, θ−tn

ωn, x
n
0 ), where yn

τ is the corresponding mild solution. According to
Lemma 5.2 and the assumption on R (ω) we have that ‖yn

τ ‖γ ≤ R (θ−tn+τωn) ≤ R.
Now put yn

τ = zn
τ + un

τ , where

un (tn + s) =
∫ tn+s

0

S (tn + s− τ) f (θ−tn+τωn, y
n
τ ) dτ, s ∈ [−tn, 0].

With this ansatz, repeating the same arguments of Theorem 6.1 (but using (25)
instead of (20)) and Lemma 5.4 we obtain that {ξn : n ∈ N} contains a convergent
subsequence.

Denote K = ∪ω∈ΩA (ω)
Cγ . Further, for ωn → ω we have

distCγ (A (ωn) , A (ω)) ≤ distCγ (U (t, θ−tωn, A (ωn)) , A (ω))

≤ distCγ
(U (t, θ−tωn,K) , U (t, θ−tω,K)) + distCγ

(U (t, θ−tω,K) , A (ω)) .

Let ε > 0. By the pullback attraction property there exists T (ε,K, ω) such that

distCγ
(U (t, θ−tω,K) , A (ω)) < ε, if t ≥ T.

Fix such a t. Then distCγ
(U (t, θ−tωn,K) , U (t, θ−tω,K)) → 0 as n→∞. In other

case there would exist δ > 0 and xn ∈ K, such that

distCγ (U (t, θ−tωn, xn) , U (t, θ−tω,K)) > δ for all n.

Noting that xn → x0 ∈ K (up to a subsequence), the upper semicontinuity of
(ω, x) → U (t, ω, x) (see the proof of Theorem 6.1 and (25)) implies that

distCγ
(U (t, θ−tωn, xn) , U (t, θ−tω,K))

≤ distCγ (U (t, θ−tωn, xn) , U (t, θ−tω, x0)) → 0 as n→∞,

which is a contradiction.
Hence, distCγ

(A (ωn) , A (ω)) → 0 as n → ∞. Since ω → A (ω) has compact
values, the upper semicontinuity follows by Remark 1. The measurability then
follows from Lemma 2.5.

7. Examples. To illustrate our theory we consider the following situation.
Assume O ⊂ Rn is a bounded open set with smooth boundary. Let us set

H = L2(O), denote by || · || the norm in H , and let −A be the Laplace operator ∆
with homogeneous Dirichlet conditions. It is worth remembering that

D(A) = {u ∈ H1
0 (O) : Au ∈ L2(O)},

α = inf{||∇u||L2(O) : u ∈ H1
0 (O), ||u|| = 1}.

Here H1
0 (O) is the Sobolev space of functions in H with generalized derivatives in

H which are zero on the boundary ∂O. Then A is the generator of a C0 contraction
semigroup (S(t))t≥0 on H that actually satisfies

||S(t)ψ|| ≤ e−αt||ψ||, for every t ≥ 0 and ψ ∈ H,
being α > 0 the first eigenvalue of A in H1

0 (O). Moreover, S(t), t > 0, are compact
operators on H.
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Assume that Ω is a Polish space on which the mappings θt are continuous and
let F be the Borel–σ–algebra of Ω.

7.1. Example 1. Let l : Ω×R → R be such that for a fixed real number a ∈ R the
mapping l(·, a) is measurable, and for fixed ω ∈ Ω, the mapping a ∈ R 7−→l(ω, a) ∈
R is continuous. Suppose also that there exist two non-negative tempered random
variables c̃1, c̃2 (w.r.t. F) and that c̃1 is such that t 7−→ c̃1(θtω) is integrable with
respect to every finite interval (t1, t2) and ω ∈ Ω. In addition suppose that

|l(ω, a)| ≤ c̃1(ω) + c̃2(ω)|a|, ω ∈ Ω, a ∈ R,

where | · | denotes the absolute value in R.
Let % : Ω → R− be a random variable (w.r.t. F) in general unbounded, γ > α

and consider f : Ω× Cγ → H given by

f(ω, ξ)(x) = l(ω, ξ(%(ω))(x)), for ω ∈ Ω, ξ ∈ Cγ and x ∈ O.

It is easy to see that the function f is well-defined. Moreover,

||f(ω, ξ)|| =
(∫

O
|f(ω, ξ)(x)|2dx

)1/2

≤
(∫

O

(
(1 + δ)c̃1(ω)2 + (1 + δ−1)c̃2(ω)2|ξ(%(ω))(x)|2

)
dx

)1/2

≤ (1 + δ)1/2c̃1(ω)|O|1/2 + (1 + δ−1)1/2c̃2(ω)e−γ%(ω)eγ%(ω)||ξ(%(ω))||

≤ (1 + δ)1/2c̃1(ω)|O|1/2 + (1 + δ−1)1/2c̃2(ω)e−γ%(ω)||ξ||γ ,

where δ > 0 and |O| denotes the Lebesgue measure of O.
Let us define the Nemitskii operator J : Ω×H → H by J (ω, y) (x) = l (ω, y (x)),

for x ∈ O.

Lemma 7.1. ω → J (ω, y) is measurable for all y ∈ H and y → J (ω, y) is contin-
uous for all ω ∈ Ω.

Proof. Take first a constant function y (x) ≡ u ∈ R. The map ω 7→ l (ω, u) is
measurable by assumption. Define the map G : Ω → H by G (ω) (x) = l (ω, u), for
all x ∈ O. We claim that G (ω) is measurable. Indeed, for any v ∈ H we have

(G (ω) , v) =
∫
O
l (ω, u) v (x) dx = l (ω, u)

∫
O
v (x) dx = l (ω, u) v0.

Since the last map is measurable and the spaceH is separable, G (ω) is a measurable
map by Pettis’ theorem (see [32, p.131]). The equality G (ω) = J (ω, y) is obvious.

Further, let y be a step function, that is,

y (x) =


u1, if x ∈ O1,

...
um, if x ∈ Om,

where O = ∪m
i=1Oi and Oi ∩ Oj = ∅ for i 6= j. For each ui we can take the

measurable map ω → l (ω, ui). Define the map G : Ω → H by

G (ω) (x) =


l (ω, u1) , if x ∈ O1,

...
l (ω, um) , if x ∈ Om.
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We claim that G (ω) is measurable. Indeed, for any v ∈ H we have

(G (ω) , v) =
m∑

i=1

∫
Oi

l (ω, ui) v (x) dx =
m∑

i=1

l (ω, ui) vi,

so that G (ω) is measurable and again the equality G (ω) = J (ω, y) is obvious.
Finally, take a sequence of step functions yn converging to y in H. Passing to a

subsequence it holds:

yn (x) → y (x) for a.e. x ∈ O, (26)

there exists h ∈ H such that |yn (x) | ≤ h(x) for a.e. x ∈ O, (27)

(see Brezis [5], Th. IV.9). We know that the maps Gn (ω) = J (ω, yn) are measur-
able. It is clear from (26)-(27) that (passing to a subsequence) for all ω ∈ Ω

J (ω, yn) (x) = l (ω, yn (x)) → l (ω, y (x)) = J (ω, y) (x) , for a.e. x ∈ O,
and

|l (ω, yn (x))| ≤ c̃1(ω) + c̃2(ω)|h (x) |, for a.e. x ∈ O.
Thus, it follows by Lebesgue’s theorem that J (ω, yn) → J (ω, y) in H, for every
ω ∈ Ω. Then ω → J (ω, y) is measurable.

In a similar way as in the previous lines one can prove that if yn → y in H,
then J (ω, yn) → J (ω, y) in H. From this property the continuity of y → J (ω, y)
follows.

Further, the map ξ → f (ω, ξ) is continuous. Indeed, suppose that ξn → ξ in
Cγ . Note then that ξn (% (ω)) → ξ(%(ω)) in H, so that arguing as in the proof of
Lemma 7.1 we obtain f(ω, ξn) → f(ω, ξ), and then the continuity follows.

Since J is a Caratheodory map and f (ω, ξ) = J (ω, ξ (% (ω))), it follows from [3,
Lemma 8.2.3] that ω → f (ω, ξ) is measurable.

Let us define

c1(ω) := (1 + δ)1/2|O|1/2c̃1(ω),

c2(ω) := (1 + δ−1)1/2e−γ%(ω)c̃2(ω),

and assume that
Ee−γ%(ω)c̃2(ω) <

α

(1 + δ−1)1/2
.

Then, it is straightforward to check that all the assumptions on f in Sections 4 and
5 are fulfilled. The only condition we need to check is the temperedness of c2 :

lim
t→±∞

log+
(
e−γ%(θtω)c̃2(θtω)

)
|t|

≤ γ lim
t→±∞

−%(θtω)
|t|

+ lim
t→±∞

log+(c̃2(θtω))
|t|

= γ lim
t→±∞

−%(θtω)
|t|

.

The last term is equal to zero if −% has a sublinear growth θ–almost surely, for
which, as a consequence of the Birkhoff ergodic theorem, a sufficient condition is
that

E sup
t∈[0,1]

(−%(θtω)) <∞

(see Arnold [1], Page 165).
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As a particular case, we can choose for % the negative absolute value of a one–
dimensional stationary Ornstein-Uhlenbeck process, that is, the unique stationary
solution z∗ of the stochastic differential equation

dz = −zdt+ dW,

since z∗ has continuous trajectories and satisfies

lim
t→±∞

|z∗(θtω)|
|t|

= 0,

which follows by the Burkholder inequality (see Caraballo et al. [9]).
Notice that the analysis we have just done ensures the existence of a pullback

attractor A for the corresponding equation (5). We are now interested in checking
that A is also a random attractor. Let then the maps (ω, a) → l (ω, a), ω → % (ω)
be continuous and let the maps c̃1, c̃2 be locally bounded. We can prove that the
map Ω × Cγ 3 (ω, ξ) 7→ f (ω, ξ) ∈ H is continuous. Suppose ωn → ω, ξn → ξ in
Cγ . Note then that ξn (% (ωn)) → ξ(%(ω)) in H, so that arguing as in the proof of
Lemma 7.1 we obtain that (up to a subsequence)

f(ωn, ξn)(x) = l(ωn, ξn(%(ωn))(x)) → l(ω, ξ(%(ω))(x)) = f(ω, ξ)(x), for a.e. x ∈ O,
and

|f(ωn, ξn)(x)| ≤ c̃1(ωn) + c̃2(ωn)|h(x)| ≤ C̃1 (ω) + C̃2 (ω) |h(x)|,
for some h ∈ H, which is a majorant for f(ωn, ξn). Thanks to Lebesgue’s majorant
theorem we obtain f(ωn, ξn) → f(ω, ξ), and then we obtain the required continuity,
so that condition (19).

Next we will prove that under suitable assumptions we can apply Theorem 6.1 to
have an MRDS. Assume that c̃i (ω) are uniformly bounded in the following sense:
c̃1(ω) ≤ C1, c̃2(ω)e−γ%(ω) ≤ C2, for all ω ∈ Ω, with

C2 <
α

(1 + δ−1)1/2
.

Then, it follows immediately that c̃1(ω), c̃2(ω) satisfy (20). Thus for any t0 ∈ R
and ω0 ∈ Ω there exists a neighborhood V (t0, ω0) such that∫ t

0

(c1 (θτω))µ + (c2 (θτω))µ)dτ

=
∫ t

0

((1 + δ)1/2|O|1/2c̃1 (θτω))µ + ((1 + δ−1)1/2e−γ%(θτ ω)c̃2 (θτω))µ)dτ ≤ C(t0, ω0),

for any (t, ω) ∈ V . Therefore, we have an MRDS.
To prove the measurability of the pullback attractor we apply Theorem 6.5.

Indeed, thanks to our assumptions on c̃i (ω), condition (25) holds and

R(ω) = 2(1 + δ)1/2|O|1/2

∫ 0

−∞
eατ+(1+δ−1)1/2 ∫ 0

τ
e−γ%(θrω)c̃2(θrω)dr c̃1(θτω)dτ

≤ 2(1 + δ)1/2|O|1/2C1

∫ 0

−∞
e(α−(1+δ−1)1/2C2)τdτ

=
2(1 + δ)1/2|O|1/2C1

α− (1 + δ−1)1/2C2
, (28)

so that the radius R (ω) is uniformly bounded.
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Hence, these assumptions ensure that Theorem 6.5 holds, so that the attractor is
measurable with respect to F and we do not need to consider a complete probability
space.

Finally, we note that using additional continuity assumptions on the maps ω 7→
c̃i (ω), i = 1, 2, we could prove that the radius R (ω) is continuous, which in turn
would imply condition (22). Hence, we could apply Theorem 6.3. However, this is
not necessary, since we have obtained that the attractor is measurable with respect
to F with weaker assumptions, but with more restrictive assumptions on c̃i (ω).

We would like to say that trivially we can set % ≡ 0, situation in which we have
a standard, non–delay non–linearity.

7.2. Example 2. In this second example we consider the same O, H, A and γ > α
as in the previous example.

Let g : H → H be a continuous function such that

||g(u)|| ≤ d1 + d2||u||, for all x ∈ H,

where d1, d2 are positive real constants. Let us consider σ : Ω × R− → R+ such
that for fixed real number a ∈ R− the mapping σ(·, a) is measurable, and that for
fixed ω ∈ Ω, (ω, s)7−→σ(ω, s) is regular enough so that the integral

c̃2(ω) :=
∫ 0

−∞
σ(ω, s)e−γsds

is finite for ω ∈ Ω, being c̃2 a tempered random variable (w.r.t. F) with Ec̃2 < α
d2

.
Hence the function f : Ω× Cγ → H given by

f(ω, ξ) =
∫ 0

−∞
σ(ω, s)g(ξ(s))ds,

is well-defined, for ω ∈ Ω, ξ ∈ Cγ . Moreover, defining c̃1(ω) :=
∫ 0

−∞ σ(ω, s)ds we
have

||f(ω, ξ)|| ≤ d1

∫ 0

−∞
σ(ω, s)ds+ d2

∫ 0

−∞
σ(ω, s)e−γseγs||ξ(s)||ds

= d1c̃1(ω) + d2c̃2(ω)||ξ||γ =: c1(ω) + c2(ω)||ξ||γ .

It is clear that the map ω → f(ω, ξ) is measurable for any fixed ξ ∈ Cγ .
We shall prove now that for any fixed ω the map ξ → f (ω, ξ) is continuous from

Cγ into H. Suppose ξn → ξ in Cγ . Note that

σ(ω, s)g(ξn(s)) → σ(ω, s)g(ξ(s)), for all s ≤ 0,

and for any M ≥ 0

‖σ(ω, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ≤ σ (ω, s)C (M) , for any s ∈ [−M, 0] .

Then using Lebesgue’s majorant theorem we obtain∫ 0

−M

‖σ(ω, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ds→ 0, for any M > 0.
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Also, for any ε > 0 there exists an M = M (ε) such that∫ −M

−∞
‖σ(ω, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ds

≤
∫ −M

−∞
(σ(ω, s)(d1 + d2||ξn(s)||) + σ(ω, s)(d1 + d2||ξ(s)||)) ds

≤ 2d1

∫ −M

−∞
σ(ω, s)ds+ d2

(
sup

n
‖ξn‖Cγ

+ ‖ξ‖Cγ

) ∫ −M

−∞
e−γsσ(ω, s)ds ≤ ε.

Hence, for any ε > 0 there exists an N (ε) such that

‖f (ωn, ξn)− f (ω, ξ)‖ ≤ 2ε, if n ≥ N,

and the continuity follows.
Since c̃1(ω) ≤ c̃2(ω) for all ω ∈ Ω, thanks to the hypothesis on c̃2, we know that

both ci are well-defined and are positive tempered random variables. Moreover, f
satisfies condition (6). We assume also that t 7→ c̃1(θtω) are integrable with respect
to every finite interval (t1, t2) and ω ∈ Ω. By the ergodic theorem the same is true
for c̃2. It is clear that (10) is satisfied.

Up to now, we have guaranteed that the following delayed random evolution
equation

dy

dt
= −∆y + f(θtω, yt)

generates an MNDS which has a pullback attractor A. Now, in order to prove that
this MNDS is also an MRDS which has as random attractor A, we want to apply the
results in the last section. For that, we assume that Ω×R− 3 (ω, s) 7→ σ(ω, s) ≥ 0
is continuous and satisfies

σ(ω, s) ≤ D (ω) eδs,

where δ > γ and ω 7→ D (ω) is a bounded function. In particular, we suppose

D (ω) ≤ C :=
α(δ − γ)

2d2
, for all ω ∈ Ω. (29)

We start proving condition (19): the map Ω × Cγ 3 (ω, ξ) 7→ f (ω, ξ) ∈ H is
continuous. Suppose then ωn → ω, ξn → ξ in Cγ . Note that

σ(ωn, s)g(ξn(s)) → σ(ω, s)g(ξ(s)), for all s ≤ 0,

and for any M ≥ 0

‖σ(ωn, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ≤ C (M) , for any s ∈ [−M, 0] .

Then using Lebesgue’s majorant theorem we obtain∫ 0

−M

‖σ(ωn, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ds→ 0, for any M > 0.
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Also, for any ε > 0 there exists an M = M (ε) such that∫ −M

−∞
‖σ(ωn, s)g(ξn(s))− σ(ω, s)g(ξ(s))‖ ds

≤
∫ −M

−∞
(σ(ωn, s)(d1 + d2||ξn(s)||) + σ(ω, s)(d1 + d2||ξ(s)||)) ds

≤ d1

∫ −M

−∞
(D (ωn) +D (ω))eδsds

+ d2

∫ −M

−∞

(
D (ωn) e(δ−γ)seγs ‖ξn(s)‖+D (ω) e(δ−γ)seγs ‖ξ(s)‖

)
ds

≤ C1

∫ −M

−∞
eδsds+ C2

(
‖ξn‖γ + ‖ξ‖γ

) ∫ −M

−∞
e(δ−γ)sds ≤ ε.

Hence, for any ε > 0 there exists an N (ε) such that

‖f (ωn, ξn)− f (ω, ξ)‖ ≤ 2ε, if n ≥ N.

We now aim to prove condition (20). Consider µ > 1. Taking into account that
δ > γ and the definitions of c1(ω) and c2(ω), we obtain∫ t

0

(c1 (θτω)µ + c2 (θτω)µ)dτ ≤
∫ t

0

∫ 0

−∞
D(θτω)µeµδs(dµ

1 + dµ
2e
−µγs)dsdτ

=: C(t, µ, δ, γ) <∞, for all ω ∈ Ω,

so the condition for Theorem 6.1 holds, and therefore we have an MRDS. We note
that the stronger condition (25) also holds.

In order to prove that A is also a random attractor for this MRDS we first notice
that R(ω) is defined by

R(ω) = 2
∫ 0

−∞
eατ+

∫ 0
τ (d2

∫ 0
−∞ σ(θsω,r)e−γrdr)ds

(
d1

∫ 0

−∞
σ(θτω, s)ds

)
dτ.

Moreover

R(ω) ≤ 2
∫ 0

−∞
eατ+Cd2

∫ 0
τ (

∫ 0
−∞ e(δ−γ)rdr)dsCd1

(∫ 0

−∞
eδsds

)
dτ

≤ 2Cd1

δ

∫ 0

−∞
e(α−Cd2

δ−γ )τdτ =
2Cd1

δ
(
α− Cd2

δ−γ

) =
4Cd1

δα
,

so that R(ω) is uniformly bounded on ω ∈ Ω, and thus the conditions for Theorem
6.5 hold. We have obtained that A is measurable with respect to F .

As in the previous example, with additional continuity conditions on c̃1, c̃2 we
could prove the continuity of the radius.

It is worth mentioning that the case of distributed finite delay can be considered
in the present example, that is, we could have considered a function f : Ω×Cγ → H
defined by

f(ω, ξ) =
∫ 0

−h

σ1(ω, s)g(ξ(s))ds+
∫ 0

−∞
σ2(ω, s)g(ξ(s))ds,

with σ1, σ2 satisfying similar conditions that σ at the beginning of this example.
However, the finite delay term would not contribute significantly to this example,
since it can be embedded into the infinite delay term.
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