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Abstract: Stability investigation of hereditary systems often is connected with the con-
struction of Lyapunov functionals. The general method of Lyapunov functionals construc-
tion, that was proposed by V.Kolmanovskii and L.Shaikhet and successfully used already for
functional-differential equations, for difference equations with discrete time, for difference
equations with continuous time, is used here to investigate the stability of delay evolution
equations, in particular, partial differential equations.
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1. Introduction

The study of functional differential equations is motivated by the fact that when one
wants to model some evolution phenomena arising in physics, biology, engineering, etc.,
some hereditary characteristics such as aftereffect, time lag and time delay can appear in
the variables. Typical examples arise from the researches of materials with termal memory,
biochemical reactions, population models, etc. (see, for instance, [1-5,9,11-15,19,27-30,37-42]
and the references therein). On the other hand, one important and interesting problem in
the analysis of functional differential equations is the stability, the theory of which has been
greatly developed over the last years. There exist many works dealing with the construction
of Lyapunov functionals for a wide range of equations containing some kind of hereditary
properties.

As it is well known, in the case without any hereditary features, Lyapunov’s technique is
available to obtain sufficient conditions for the stability of solutions of (partial) differential
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equations. However, in the case of differential equations with hereditary properties, for
instance, even in the case of constant time delays, Lyapunov’s method becomes difficult to
apply effectively as N.N. Krasovskii [25] pointed out. The main reason is that it is much
more difficult (or even impossible in some cases) to construct proper Lyapunov functions
(or functionals) for functional differential equations than for those without any hereditary
characteristics.

Our interest in this paper is to investigate the stability of dynamical systems modelled
by delay evolution equations, in particular, by partial differential equations with delays,
using the general method of Lyapunov functionals construction that was proposed by V.
Kolmanovskii and L. Shaikhet and successfully used already for functional-differential equa-
tions, for difference equations with discrete time and for difference equations with continuous
time [16-18,20-24,31-36].

Taking into account that many interesting problems from applications have main operators
which satisfy some kind of coercivity assumption, we will exploit this idea here and will be
interested in this class of operators.

1.1. Notations and definitions. Let U and H be two real separable Hilbert spaces
such that U ⊂ H ≡ H∗ ⊂ U∗, where the injection are continuous and dense. Let ‖ · ‖, | · |
and ‖ · ‖∗ be the norms in U , H and U∗ respectively; ((·, ·)) and (·, ·) be the scalar products
in U and H respectively; 〈·, ·〉 the duality product between U and U∗. It is supposed that

|u| ≤ β‖u‖, u ∈ U. (1.1)

Let C(−h, 0,H) be the Banach space of all continuous functions from [−h, 0] to H, xt ∈
C(−h, 0,H) for each t ∈ [0,∞) be the function defined by xt(s) = x(t+ s) for all s ∈ [−h, 0].
The space C(−h, 0, U) is defined similar to C(−h, 0,H).

Let A(t, ·) : U → U∗, f1(t, ·) : C(−h, 0,H) → U∗ and f2(t, ·) : C(−h, 0, U) → U∗ be three
families of nonlinear operators defined for t > 0, A(t, 0) = 0, f1(t, 0) = 0, f2(t, 0) = 0.

Consider the equation

du(t)
dt

= A(t, u(t)) + f1(t, ut) + f2(t, ut), t > 0,

u(s) = ψ(s), s ∈ [−h, 0].
(1.2)

Let us denote by u(·; ψ) the solution of Eq. (1.2) corresponding to the initial condition ψ.

Definition 1.1. The trivial solution of Eq. (1.2) is said to be stable if for any ε > 0 there
exists δ > 0 such that |u(t;ψ)| < ε for all t ≥ 0 if |ψ|CH

= sups∈[−h,0] |ψ(s)| < δ.

Definition 1.2. The trivial solution of Eq. (1.2) is said to be exponentially stable if it is
stable and there exists a positive constant λ such that for any ψ ∈ C(−h, 0, U) there exists
C (which may depend on ψ) such that |u(t;ψ)| ≤ Ce−λt for t > 0.

1.2. Lyapunov type stability theorem. Let us now prove a theorem which will be
crucial in our stability investigation.
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Theorem 1.1. Assume that there exists a functional V (t, ut) such that the following
conditions hold for some positive numbers c1, c2 and λ:

V (t, ut) ≥ c1e
λt|u(t)|2, t ≥ 0, (1.3)

V (0, u0) ≤ c2|ψ|2CH
, (1.4)

d

dt
V (t, ut) ≤ 0, t ≥ 0. (1.5)

Then the trivial solution of Eq. (1.2) is exponentially stable.
Proof. Integrating (1.5) we obtain V (t, ut) ≤ V (0, u0). From here and (1.3), (1.4) it

follows
c1|u(t)|2 ≤ e−λtV (0, u0) ≤ c2|ψ|2CH

.

The inequality c1|u(t)|2 ≤ c2|ψ|2CH
means that the trivial solution of Eq. (1.2) is stable.

Besides, from the inequality c1|u(t)|2 ≤ e−λtV (0, u0), it follows that the trivial solution of
Eq. (1.2) is exponentially stable. ¤

From Theorem 1.1 it follows that the stability investigation of Eq. (1.2) can be reduced
to the construction of appropriate Lyapunov functionals. A formal procedure of Lyapunov
functionals construction is described below.

1.3. Procedure of Lyapunov functionals construction. The procedure consists of
four steps.

Step 1. To transform Eq. (1.2) into the form

dz(t, ut)
dt

= A1(t, u(t)) + A2(t, ut) (1.6)

where z(t, ·) and A2(t, ·) are families of nonlinear operators, z(t, 0) = 0, A2(t, 0) = 0, operator
A1(t, ·) depends on t and u(t) only and does not depend on the previous values u(t + s),
s < 0.

Step 2. Assume that the trivial solution of the auxiliary equation without memory

dy(t)
dt

= A1(t, y(t))dt. (1.7)

is exponentially stable and therefore there exists a Lyapunov function v(t, y(t)), which sa-
tisfies the conditions of Theorem 1.1.

Step 3. A Lyapunov functional V (t, ut) for Eq.(1.6) is constructed in the form V = V1+V2,
where V1(t, ut) = v(t, z(t, ut)). Here the argument y of the function v(t, y) is replaced on the
functional z(t, xt) from the left-hand part of Eq. (1.6).

Step 4. Usually, the functional V1(t, ut) almost satisfies the conditions of Theorem 1.1.
In order to satisfy these conditions completely it is necessary to calculate d

dtV1(t, ut) and
estimate it. Then the additional functional V2(t, ut) can be chosen in a standard way.
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Note that representation (1.6) is not unique. This fact allows, using different representa-
tions type of (1.6) or different ways of estimating d

dtV1(t, ut), to construct different Lyapunov
functionals and, as a result, to get different sufficient conditions of exponential stability.

2. Construction of Lyapunov functionals for equations with time-varying delay

Consider the following evolution equation

du(t)
dt

= A(t, u(t)) + F (u(t− h(t))), (2.1)

where A(t, ·), F : U → U∗ are appropriate partial differential operators (see conditions
below), which is a particular case of Eq. (1.2).

We will apply the method described above to construct Lyapunov functionals for Eq.
(2.1), and, as a consequence, to obtain sufficient conditions ensuring the stability of the
trivial solution.

We will use two different constructions which will yield different stability regions for the
parameters involved in the problem.

2.1. The first way of Lyapunov functionals construction. First we consider a quite
general situation for the operators involved in Eq. (2.1).

Theorem 2.1. Suppose that operators in Eq. (2.1) satisfy the conditions

〈A(t, u), u〉 ≤ −γ‖u‖2, γ > 0,

F : U → U∗, ‖F (u)‖∗ ≤ α‖u‖, u ∈ U,
(2.2)

and
h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1. (2.3)

If
γ >

α√
1− h1

, (2.4)

then the trivial solution of Eq. (2.1) is exponentially stable.
Proof. Owing to the procedure of Lyapunov functionals constructio, let us consider the

auxiliary equation without memory

d

dt
y(t) = A(t, y(t)). (2.5)

The function v(t, y) = eλt|y|2, λ > 0, is Lyapunov function for Eq. (2.5), i.e. it satisfies
the conditions of Theorem 1.1. Actually, it is easy to see that for the function v(t, y(t))
conditions (1.3), (1.4) hold. Besides, since γ > 0, there exists λ > 0 such that 2γ > λβ2.
Using (2.5), (1.1), (2.2), we obtain

d

dt
v(t, y(t)) = λeλt|y(t)|2 + 2eλt〈A(t, y(t)), y(t)〉 ≤ −eλt(2γ − λβ2)‖y(t)‖2 ≤ 0.
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According to the procedure of Lyapunov functionals construction, we now construct a
Lyapunov functional V for Eq. (2.1) in the form V = V1 + V2, where V1(t, ut) = eλt|u(t)|2.
For Eq. (2.1) we obtain

d

dt
V1(t, ut) = λV1(t, ut) + 2eλt 〈A(t, u(t)) + F (u(t− h(t))), u(t)〉
≤ eλt

[
λ|u(t)|2 + 2

(−γ‖u(t)‖2 + α‖u(t− h(t))‖‖u(t)‖)]

≤ eλt

[
λβ2‖u(t)‖2 − 2γ‖u(t)‖2 + α

(
ε‖u(t− h(t))‖2 +

1
ε
‖u(t)‖2

)]

= eλt
[(

λβ2 − 2γ +
α

ε

)
‖u(t)‖2 + εα‖u(t− h(t))‖2

]
.

Set now

V2(t, ut) =
εα

1− h1

∫ t

t−h(t)

eλ(s+h0)‖u(s)‖2ds.

Then

d

dt
V2(t, ut) =

εα

1− h1

(
eλ(t+h0)‖u(t)‖2 − (1− ḣ(t))eλ(t−h(t)+h0)‖u(t− h(t))‖2

)

≤ εαeλt

1− h1

(
eλh0‖u(t)‖2 − (1− h1)eλ(h0−h(t))‖u(t− h(t))‖2

)

≤ εαeλt

(
eλh0

1− h1
‖u(t)‖2 − ‖u(t− h(t))‖2

)
.

Thus, for V = V1 + V2 we have

d

dt
V (t, ut) ≤

[
λβ2 − 2γ + α

(
1
ε

+
εeλh0

1− h1

)]
eλt‖u(t)‖2.

Rewrite the expression in square brackets as

−2γ + α

(
1
ε

+
ε

1− h1

)
+ λβ2 + εα

eλh0 − 1
1− h1

.

To minimize this expression in the brackets, choose ε =
√

1− h1. As a consequence we obtain

d

dt
V (t, ut) ≤ −

[
2

(
γ − α√

1− h1

)
− ρ(λ)

]
eλt‖u(t)‖2 (2.6)

with

ρ(λ) = λβ2 + α
eλh0 − 1√

1− h1

.

Since ρ(0) = 0 then by condition (2.4) there exists small enough λ > 0 such that

2
(

γ − α√
1− h1

)
≥ ρ(λ).
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From here and (2.6) it follows that d
dtV (t, ut) ≤ 0. So, the functional V (t, ut) constructed

above satisfies the conditions in Theorem 1.1. It means that the trivial solution of Eq. (2.1)
is exponentially stable. ¤

Note, in particular, if h(t) ≡ h0 then h1 = 0 and condition (2.4) takes the form γ > α.

2.2. The second way of Lyapunov functionals construction. We now establish a
second result which implies that the operator F must be less general than in Theorem 2.1.
However, as we will show later in the applications section, the stability regions provided by
this theorem will be better than the ones given by Theorem 2.1.

Theorem 2.2. Suppose that operators in Eq. (2.1) satisfy the following conditions

〈A(t, u) + F (u), u〉 ≤ −γ‖u‖2, γ > 0,

‖A(t, u) + F (u)‖∗ ≤ α1‖u‖,
F : U → U, ‖F (u)‖ ≤ α2‖u‖, u ∈ U,

(2.7)

and
h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1, |ḣ(t)| ≤ h2. (2.8)

If
γ > α1α2h0 + (1 + α2h0)

α2h2√
1− h1

, (2.9)

then the trivial solution of Eq. (2.1) is exponentially stable.

Proof. To use the procedure of Lyapunov functionals construction, let us first transform
Eq. (2.1) as

d

dt
z(t, ut) = A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))), (2.10)

where

z(t, ut) = u(t) +
∫ t

t−h(t)

F (u(s))ds. (2.11)

Consider the auxiliary equation without memory in the form

d

dt
y(t) = A(t, y(t)) + F (y(t)). (2.12)

The function v(t, y) = eλt|y|2 is a Lyapunov function for Eq. (2.12). Actually, since γ > 0
then there exists λ > 0 such that 2γ > λβ2. Using (2.12), (1.1), (2.7), we obtain

d

dt
v(t, y(t)) = λeλt|y(t)|2 + 2eλt〈A(t, y(t)) + F (y(t)), y(t)〉

≤ −eλt(2γ − λβ2)‖y(t)‖2.

Next, we construct a Lyapunov functional V for Eq. (2.10), (2.11) in the form V = V1 + V2,
where

V1(t, ut) = eλt|z(t, ut)|2, (2.13)
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and z(t, ut) is defined by (2.11). Using (2.7), for Eq. (2.10), (2.11) we have

d

dt
V1(t, ut) = λV1(t, ut) + 2eλt

〈
A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))), z(t, ut)

〉

= λV1(t, ut) + 2eλt

〈
A(t, u(t)) + F (u(t)) + ḣ(t)F (u(t− h(t))), u(t) +

∫ t

t−h(t)

F (u(s))ds

〉

= λV1(t, ut) + 2eλt

〈
A(t, u(t)) + F (u(t)), u(t) +

∫ t

t−h(t)

F (u(s))ds

〉

+2eλtḣ(t)

(
F (u(t− h(t))), u(t) +

∫ t

t−h(t)

F (u(s))ds

)

≤ λV1(t, ut) + 2eλt

[
−γ‖u(t)‖2 + α1α2

∫ t

t−h(t)

‖u(t)‖‖u(s)‖ds

]

+2eλt|ḣ(t)|
(

α2‖u(t− h(t))‖‖u(t)‖+ α2
2

∫ t

t−h(t)

‖u(t− h(t))‖‖u(s)‖ds

)

≤ λV1(t, ut) + eλt

[
−2γ‖u(t)‖2 + α1α2

∫ t

t−h(t)

(
1
ε1
‖u(t)‖2 + ε1‖u(s)‖2

)
ds

]

+eλt|ḣ(t)|
[
α2

(
ε2‖u(t− h(t))‖2 +

1
ε2
‖u(t)‖2

)

+ α2
2

∫ t

t−h(t)

(
ε3‖u(t− h(t))‖2 +

1
ε3
‖u(s)‖2

)
ds

]

= λV1(t, ut) + eλt

[(
−2γ +

1
ε1

α1α2h(t) +
1
ε2

α2|ḣ(t)|
)
‖u(t)‖2

+ α2(ε2 + ε3α2h(t))|ḣ(t)|‖u(t− h(t))‖2 + α2

(
ε1α1 +

1
ε3

α2|ḣ(t)|
) ∫ t

t−h(t)

‖u(s)‖2ds

]
.

From (2.13), (2.10) it follows

e−λtV1(t, ut) = |u(t)|2 + 2
∫ t

t−h(t)

(u(t), F (u(s)))ds +

∣∣∣∣∣
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣

2

≤ |u(t)|2 + 2
∫ t

t−h(t)

|u(t)||F (u(s))|ds + h(t)
∫ t

t−h(t)

|F (u(s))|2ds

≤ |u(t)|2 + α2β
2

∫ t

t−h(t)

(
ε4‖u(t)‖2 +

1
ε4
‖u(s)‖2

)
ds + α2

2h(t)β2

∫ t

t−h(t)

‖u(s)‖2ds

≤ (1 + ε4α2h(t))β2‖u(t)‖2 + α2β
2

(
1
ε4

+ α2h(t)
) ∫ t

t−h(t)

‖u(s)‖2ds.
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Therefore

d

dt
V1(t, ut) ≤ eλt

[
λβ2(1 + ε4α2h(t))− 2γ +

1
ε1

α1α2h(t) +
1
ε2

α2|ḣ(t)|
]
‖u(t)‖2

+eλtα2(ε2 + ε3α2h(t))|ḣ(t)|‖u(t− h(t))‖2

+eλtα2

[
ε1α1 +

α2

ε3
|ḣ(t)|+ λβ2

(
1
ε4

+ α2h(t)
)] ∫ t

t−h(t)

‖u(s)‖2ds

≤ eλt

[
λβ2(1 + ε4α2h0)− 2γ +

1
ε1

α1α2h0 +
1
ε2

α2h2

]
‖u(t)‖2

+eλt(ε2 + ε3α2h0)α2h2‖u(t− h(t))‖2

+eλtα2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)] ∫ t

t−h0

‖u(s)‖2ds.

Put now

V2(t, ut) =
(ε2 + ε3α2h0)α2h2

1− h1

∫ t

t−h(t)

eλ(s+h0)‖u(s)‖2ds

+α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)] ∫ t

t−h0

eλ(s+h0)(s− t + h0)‖u(s)‖2ds.

Then

d

dt
V2(t, ut) = (ε2 + ε3α2h0)α2h2

[
eλ(t+h0)

1− h1
‖u(t)‖2 − eλ(t−h(t)+h0)‖u(t− h(t))‖2

]

+α2

[
ε1α1 +

α2

ε3
h2 + λβ2

(
1
ε4

+ α2h0

)][
eλ(t+h0)h0‖u(t)‖2 −

∫ t

t−h0

eλ(s+h0)‖u(s)‖2ds

]
.

Since eλt ≤ eλ(s+h0) for s ≥ t− h0 then for V = V1 + V2 we obtain

d

dt
V (t, ut) ≤ eλt

[
λβ2(1 + ε4α2h0)− 2γ +

1
ε1

α1α2h0

+
1
ε2

α2h2 + α2h2(ε2 + ε3α2h0)
eλh0

1− h1

]
‖u(t)‖2

+eλ(t+h0)α2h0

[
ε1α1 +

1
ε3

α2h2 + λβ2

(
1
ε4

+ α2h0

)]
‖u(t)‖2

= eλt

[
λβ2(1 + ε4α2h0)− 2γ +

1
ε1

α1α2h0 +
1
ε2

α2h2 + α2h2(ε2 + ε3α2h0)
eλh0

1− h1

+eλh0α2h0

[
ε1α1 +

1
ε3

α2h2 + λβ2

(
1
ε4

+ α2h0

)]]
‖u(t)‖2

=
[
−2γ + α1α2h0

(
1
ε1

+ ε1

)
+ α2h2

(
1
ε2

+
ε2

1− h1

)

+α2
2h0h2

(
1
ε3

+
ε3

1− h1

)
+ ρ(λ)

]
eλt‖u(t)‖2,

(2.14)
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where

ρ(λ) = λ

[
β2(1 + ε4α2h0) + eλh0α2h0β

2

(
1
ε4

+ α2h0

)]

+(eλh0 − 1)
[
α2h0(ε1α1 +

α2h2

ε3
) +

(ε2 + ε3α2h0)α2h2

1− h1

]
.

(2.15)

To minimize the right hand part of inequality (2.14) we choose ε1 = 1, ε2 = ε3 =
√

1− h1.
Then, inequality (2.14) takes the form

d

dt
V (t, ut) ≤ −

[
2
(

γ − α1α2h0 − (1 + α2h0)
α2h2√
1− h1

)
− ρ(λ)

]
eλt‖u(t)‖2, (2.16)

From (2.15) it follows that ρ(0) = 0. So, there exists λ > 0 small enough such that from
condition (2.7) we deduce that

2
(

γ − α1α2h0 − (1 + α2h0)
α2h2√
1− h1

)
≥ ρ(λ). (2.17)

From here and (2.16) it follows that d
dtV (t, ut) ≤ 0. So, the functional V (t, ut) constructed

above satisfies conditions (1.4), (1.5) of Theorem 1.1. But we cannot ensure that Theorem 1.1
holds true since the functional V (t, ut) does not satisfy condition (1.3). So, we will proceed
in a different way.

From (2.16), (2.17) it follows that there exists c > 0 such that

V (t, ut)− V (0, u0) ≤ −c

∫ t

0

eλs‖u(s)‖2ds.

Therefore, ∫ ∞

0

eλs‖u(s)‖2ds ≤ V (0, u0)
c

, V (t, ut) ≤ V (0, u0). (2.18)

Note also that

|z(t, ut)|2 =

∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣

2

≥ |u(t)|2 − 2
∫ t

t−h(t)

|u(t)||F (u(s))|ds

≥ |u(t)|2 − 2α2β

∫ t

t−h(t)

|u(t)|‖u(s)‖ds

≥ |u(t)|2 − α2

(
|u(t)|2h(t) + β2

∫ t

t−h(t)

‖u(s)‖2ds

)

≥ (1− α2h0)|u(t)|2 − α2β
2

∫ t

t−h0

‖u(s)‖2ds.

(2.19)
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From (2.7) it follows that

γ‖u‖2 ≤ −〈A(t, u) + F (u), u〉 ≤ ‖A(t, u) + F (u)‖∗‖u‖ ≤ α1‖u‖2,

i.e. γ ≤ α1. Using (2.9) we have α2h0 < γα−1
1 ≤ 1. So, from (2.19) we obtain

|u(t)|2 ≤

∣∣∣u(t) +
∫ t

t−h(t)
F (u(s))ds

∣∣∣
2

+ α2β
2
∫ t

t−h0
‖u(s)‖2ds

1− α2h0
. (2.20)

Since

V (0, u0) ≥ V (t, ut) ≥ V1(t, ut) = eλt

∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣

2

then ∣∣∣∣∣u(t) +
∫ t

t−h(t)

F (u(s))ds

∣∣∣∣∣

2

≤ e−λtV (0, u0). (2.21)

It is easy to see that there exists C > 0 that V (0, u0) ≤ C‖u0‖2. So, from (2.19)-(2.21) it
follows that

|u(t)|2 ≤ K‖u0‖2, K =
C + α2

(
h0 + C

c

)

1− α2h0
.

Therefore, the trivial solution of Eq. (2.1) is stable.
From (2.18) it follows that there exists C1 > 0 such that

eλ(t−h0)

∫ t

t−h0

‖u(s)‖2ds ≤
∫ t

t−h0

eλs‖u(s)‖2ds ≤
∫ ∞

−h0

eλs‖u(s)‖2ds ≤ C1.

So, ∫ t

t−h0

‖u(s)‖2ds ≤ C1e
λh0e−λt (2.22)

and from (2.20)-(2.22) it follows that by conditions (2.7)-(2.9) the trivial solution of Eq. (2.1)
is exponentially stable. ¤

Note that if, in particular, h(t) = h0, then h1 = h2 = 0 and condition (2.9) takes the form
γ > α1α2h0.

3. Some applications

In this section we will show some interesting applications to illustrate how our results
work.

3.1. Application to a 2D Navier-Stokes model. We first consider a 2D Navier-
Stokes model with delays. Although this model has already been analysed in details in
[6,7,8], there are some situations which still have not been considered in those works. We
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aim to provide some additional results on this model as well as to improve some sufficient
conditions established in [7] by applying Theorem 2.1.

Let Ω ⊂ R2 be an open and bounded set with regular boundary Γ, T > 0 given, and
consider the following functional Navier-Stokes problem:

∂u

∂t
− ν∆u +

2∑

i=1

ui
∂u

∂xi
= −∇p + g(t, ut) in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ψ(t, x), t ∈ (−h, 0), x ∈ Ω,

(3.1)

where we assume that ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p
the pressure, u0 the initial velocity field, g is an external force containing some hereditary
characteristic and ψ the initial datum in the interval of time (−h, 0), where h is a positive
fixed number.

To begin with we consider the following usual abstract spaces (see [10,26] for more details):

U =
{

u ∈ (C∞0 (Ω))2 : div u = 0
}

,

H = the closure of U in (L2(Ω))2 with the norm |·| , and inner product (·, ·) where for
u, v ∈ (L2(Ω))2,

(u, v) =
2∑

j=1

∫

Ω

uj(x)vj(x)dx,

U = the closure of U in (H1
0 (Ω))2 with the norm ‖·‖ , and associated scalar product ((·, ·)),

where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that U ⊂ H ≡ H∗ ⊂ U∗, where the injections are dense and compact. Now we
denote a(u, v) = ((u, v)), and define the trilinear form b on U × U × U by

b(u, v, w) =
2∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx ∀u, v, w ∈ U.

Assume that the delay term is given by

g(t, ut) = Gu(t− h(t)),
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where G ∈ L(U,U∗) is a self-adjoint linear operator, and the delay function h(t) satisfies the
assumptions in Theorem 2.1. Then problem (3.1) can be set in the abstract formulation (see
[6-8,10,26] for a detailed description)

To find u ∈ L2(−h, T ; U) ∩ L∞(0, T ; H) such that for all v ∈ U

d

dt
(u(t), v) + νa(u(t), v) + b(u(t), u(t), v) = (Gu(t− h(t)), v) ,

u(0) = u0, u(t) = ψ(t), t ∈ (−h, 0),

(3.2)

where the equation in (3.2) must be understood in the sense of D′(0, T ).
Observe that Eq. (3.2) can be rewritten as Eq. (2.1) by denoting A(t, ·), F : U → U∗ the

operators defined as

A(t, u) = −νa(u, ·)− b(u, u, ·), F (u) = Gu, u ∈ U.

By arguing as in Case (3) from [6] (page 2448), it is not difficult to check that conditions
in Theorem 2.1 hold provided ν > ||G||L(U,U∗), and we can therefore ensure that there exists
a unique solution to this problem (3.2) which, in addition, satisfies u ∈ C0(0, T ; H) for any
T > 0. As G is linear, then we have that 0 is a stationary solution to our model and we can
analyse its stability. In the case in which G maps U or H into H (in other words, G is a
first or zero order linear partial differential operator), Theorems 3.3 and 3.5 in [7] guarantee
the exponential stability of the trivial solution provided the viscosity parameter ν is large
enough. For instance, in the case that G maps H into H, the null solution of Eq. (3.2) is
exponentially stable if

2νλ1 >
(2− h1)||G||L(H,H)

1− h1
, (3.3)

where λ1 is the first eigenvalue of the Stokes operator (see also Corollary 3.7 in [7] for another
sufficient condition when G maps U into H). However, the results obtained in [7] do not
cover the more general situation in which G may contain second order partial derivatives.
This is why we consider this situation.

Thus, in the present situation, i.e. for the operator G ∈ L(U,U∗) and the function
g(t, ut) = Gu(t − h(t)) defined above, we have that γ = ν, α = ||G||L(U,U∗), β = λ

−1/2
1 and

assumptions in Theorem 2.1 hold assuming that

ν >
||G||L(U,U∗)√

1− h1

.

Remark 3.1. Observe that if G ∈ L(H,H) then G ∈ L(U,U∗) and, in addition, we have
that

||G||L(U,U∗) ≤ λ−1
1 ||G||L(H,H),

so, if we assume that

νλ1 >
||G||L(H,H)√

1− h1

(3.4)
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it also follows that

ν >
||G||L(U,U∗)√

1− h1

and, consequently, we have the exponential stability of the trivial solution. It is worth
pointing out that condition (3.4) improves the condition established in [7], which is (3.3).

3.2. Application to some reaction-diffusion equations. In this subsection we will
consider three different reaction-diffusion equations to show how we can obtain different
stability regions for the parameters involved in the equation.

Let us then consider the following three problems:

∂u(t, x)
∂t

= ν
∂2u(t, x)

∂x2
+ µ

∂2u(t− h(t), x)
∂x2

, (3.5)

∂u(t, x)
∂t

= ν
∂2u(t, x)

∂x2
+ µ

∂u(t− h(t), x)
∂x

, (3.6)

∂u(t, x)
∂t

= ν
∂2u(t, x)

∂x2
+ µ u(t− h(t), x) (3.7)

with conditions
t ≥ 0, x ∈ [a, b], u(t, a) = u(t, b) = 0,

h(t) ∈ [0, h0], ḣ(t) ≤ h1 < 1, |ḣ(t)| ≤ h2,

where ν > 0 and µ is an arbitrary constant. Note that in all of these situations we can
consider U = H1

0 ([a, b]) and H = L2([a, b]). The constant β for the injection U ⊂ H equals
β = λ

−1/2
1 , where λ1 = π(b− a)−1 is the first eigenvalue of the operator − ∂2

∂x2 with Dirichlet
boundary conditions. We can therefore apply Theorem 2.1 to all these examples yielding the
following sufficient stability conditions.

For equation (3.5)

ν >
|µ|√

1− h1

,

for equation (3.6)

ν >
|µ|√

λ1(1− h1)
,

for equation (3.7)

ν >
|µ|

λ1

√
1− h1

. (3.8)

Note that in the particular case [a, b] = [0, π] it holds λ1 = 1 and these three conditions
given by Theorem 2.1 are the same.



 
Fig.3.1. 

 
Fig.3.2 
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Observe that Theorem 2.2 can be applied only to Eq. (3.7). For this equation the
parameters of Theorem 2.2 are γ = α1 = ν − µλ−1

1 , α2 = |µ|λ−1/2
1 . It gives the following

sufficient stability condition:

ν >
µ

λ1
+

|µ|h2√
λ1(1− h1)

(√
λ1 + |µ|h0√
λ1 − |µ|h0

)
, |µ| <

√
λ1

h0
. (3.9)

On Fig.3.1 stability regions for equation (3.7) given by conditions (3.8) (the bound (1))
and (3.9) (the bound (2)) are shown for the following values of the parameters h0 = 1,
h1 = h2 = 0, 1, λ1 = 1. One can see that for some negative µ condition (3.9) gives an
additional part of stability region, i.e. for some negative µ condition (3.9) is better than
(3.8). It is easy to show also that if

√
1− h1 +h2

√
λ1 < 1 then condition (3.9) is better than

(3.8) and for some positive µ. For example, on Fig.3.2 stability regions are shown for h0 = 1,
h1 = h2 = 0, 95, λ1 = 0, 25. If µ = 0, 06 then right-hand part of inequality (3.8) equals 1, 073
but right-hand part of inequality (3.9) equals 0, 889, i.e. is less than 1, 073.
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