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Abstract. The aim of this paper is to prove the existence of Levitan/Bohr
almost periodic, almost automorphic, recurrent and Poisson stable solutions
of the second order differential equation

(1) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where Y is a complete metric space and (Y, R, σ) is a dynamical system (also
called a driving system). When the function f in (1) is increasing with respect
to its second variable, the existence of at least one quasi periodic (respectively,
Bohr almost periodic, almost automorphic, recurrent, pseudo recurrent, Levi-
tan almost periodic, almost recurrent, Poisson stable) solution of (1) is proved
under the condition that (1) admits at least one solution ϕ such that ϕ and
ϕ′ are bounded on the real axis.

1. Introduction

The aim of this paper is to analyze the existence of Levitan/Bohr almost periodic,
almost automorphic, recurrent and Poisson stable solutions of the second order
differential equation

(2) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where Y is a complete metric space, and (Y,R, σ) is a (driving) dynamical system.

The existence of Bohr almost periodic solutions of equation

(3) x′′ = f(t, x, x′)

with Bohr almost periodic right hand-side f with respect to time, uniformly with
respect to the variables x, x′ on every compact subset in R

2, was studied by C.

Corduneanu in [15] (see also [1]), where it was established that, if ∂f(t,x,u)
∂x

≥ k > 0

for all (t, x, u) ∈ R
3, equation (3) admits a unique Bohr almost periodic solution.

When the function f(t, x, u) is only increasing (in the large sense), the same problem
was studied by Z. Opial in [21], where the following result was established.

Theorem 1.1. (Z. Opial [21]) Suppose that the following conditions are fulfilled:
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(i) f ∈ C(R3,R) and is increasing in the large sense with respect to the vari-
able x, i.e., the inequality x1 ≤ x2 implies f(t, x1, u) ≤ f(t, x2, u) for all
u, t ∈ R;

(ii) for all r > 0, there exists a number L(r) > 0 such that |f(t, x1, u1) −
f(t, x2, u2)| ≤ L(r)(|x1 −x2|+ |u1 −u2|) for all |xi|, |ui| ≤ r (i = 1, 2) and
t ∈ R.

Then, the following statements hold:

(i) If equation (3) admits a solution u such that u and its first derivative u′ are
bounded on R, then this equation admits at least one Bohr almost periodic
solution.

(ii) If u(t) and v(t) are two Bohr almost periodic solutions of equation (3),
then there exists a constant c ∈ R such that u(t) − v(t) = c for all t ∈ R.

(iii) If the function f is strictly increasing with respect to the second variable
x ∈ R, then equation (3) admits at most one Bohr almost periodic solution.

Some generalization of Theorem 1.1 when (3) is a vectorial equation (i.e., f ∈
C(Y × R

n × R
n,Rn) (n ≥ 2) are established in [16] and [13].

In [12], P. Cieutat studied the existence of bounded and Bohr almost periodic
solutions of the following Liénard equation

(4) x′′ + f(x)x′ + g(x) = p(t),

where p : R → R is a Bohr almost periodic function, f(x) ≥ 0 and g is a strictly
decreasing function. Namely, it was proved in [12] that every solution, which is
bounded on R+, is asymptotically Bohr almost periodic, and there exists a unique
Bohr almost periodic solution of equation (4). A typical model for such equation
(4) is

x′′ + cx′ + 1/xα = p(t), (x ∈ (0,+∞)),

where c ≥ 0, α > 0 and p is Bohr almost periodic.

Recently, the existence of almost automorphic solutions of equation (4) with almost
automorphic forcing term p was studied by Cieutat et al. in [14], where they proved
the asymptotically almost automorphy of every solution which is bounded on R+,
and the existence of a unique almost automorphic solution of equation (4).

In the periodic case (i.e. when p is periodic), the dynamics of equation (5) was
intensively studied by P. Mart́ınez-Amores and P. J. Torres [20] and J. Campos
and P. J. Torres [4].

Desheng Li and Jinqiao Duan [19] analyzed the structure of the set of bounded
solutions for equation (2). In particular, they proved the existence of a unique
periodic (respectively, quasi-periodic, Bohr almost periodic) solution of equation
(2) if the point y ∈ Y is also periodic (respectively, quasi-periodic, Bohr almost
periodic), and the function f is strictly increasing with respect to its second variable.
Namely, the following theorem was proved in [19].

Theorem 1.2. [19] Suppose that the following conditions are fulfilled:

(i) (H, ρ) is a compact complete metric space and (H,R, θ) is a minimal dy-
namical system on H;
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(ii) f : H × I × R → R is a continuous map, where I := (a, b) ⊆ R;
(iii) For any compact subset V ⊂ (a, b) × R, there exists an L > 0 such that

|f(h, x, p) − f(h, y, q)| ≤ L(|x − y| + |p − q|) for all (x, p), (y, q) ∈ V and
h ∈ H;

(iv) f(h, x, p) is strictly increasing in x;
(v) For any compact interval I ⊂ I there exists c0 > 0 such that |f(h, x, p)| ≤

c0(1 + |p|2) for all (h, x, p) ∈ H × I × R.

Then:

(i) There exists a continuous map Γ : H 7→ R such that for each h ∈ H,
γh(t) := Γ(θ(t, h)) is the unique solution of equation

(5) x′′ = f(θ(t, h), x, x′)

which is bounded on R;
(ii) For each h ∈ H, there exists a continuous decreasing function Φh de-

fined on a maximal nonempty open interval D(Φh) ⊂ I, such that for any
x ∈ D(Φh), x(t) := ψh(t, x,Φh(x)) is the unique solution of (5), which
is bounded on R+, that satisfies x(0) = x, where ψ(t, x, x′) denotes the
unique solution of equation (5) passing through the point (x, x′) ∈ I×R at
the initial moment t = 0;

(iii) For any compact interval D ⊂ D(Φh)

lim
t→+∞

(|ψh(t, x,Φh(x)) − γh(t)| + |ψ′
h(t, x,Φh(x)) − γ′h(t)|) = 0

uniformly with respect to x ∈ D.

We note that, in all of the previously cited works (with the exception of [21]),
an assumption of strict monotony is imposed. In the present paper, we consider
equation (2) when the function f is increasing with respect to its second variable
in the large sense. All of our results will be formulated and proved for this case
which includes, of course, the strictly increasing one.

The paper is organized as follows.

In Section 2, we collect some notions (quasi periodicity, Levitan/Bohr almost peri-
odicity, almost automorphy, recurrence, pseudo recurrence, Poisson stability) facts
and constructions (Bebutov dynamical systems, skew-product dynamical systems,
cocycles etc) from the theory of dynamical systems which will be necessary in this
paper.

Section 3 is dedicated to the study of a special class of non-autonomous dynamical
systems (NDS): the so-called NDS with convergence. The main result in this section
is Theorem 3.9 which provides sufficient conditions for the convergence of a NDS.

An application of Theorem 3.9 to study the dynamics of the scalar one-dimensional
equation x′ = f(σ(t, y), x) (y ∈ Y ) with pseudo recurrent base (Y,R, σ) (driving
system) is carried out in Section 4. The main result of this section is Theorem 4.2.

Levitan almost periodic and almost automorphic solutions of a second order equa-
tion of the form x′′ = f(σ(t, y), x, x′) and with increasing f (in the large sense)
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are analyzed in Section 5. The main results of this section are Theorem 5.4 and
Corollary 5.5.

Section 6 is devoted to the existence of quasi-periodic, Bohr almost periodic and
recurrent solutions (in the sense of Birkhoff) of the equation x′′ = f(σ(t, y), x, x′)
with increasing f (in the large sense). The main results proved in this section are
Theorem 6.1 and Corollary 6.2.

Finally, in Section 7, we discuss some generalizations of our main results (theorems
5.4 and 6.1). One of this type of results is established in Theorem 7.1 (see also
corollaries 7.2 and 7.3).

2. Bohr/Levitan Almost Periodic and Almost Automorphic Motions
of Dynamical Systems

We recall now some notions, facts and constructions from the theory of dynamical
systems.

Although we could refer the readers to other publications for these preliminaries
(see, for instance, Caraballo and Cheban [5, 6]), in order to keep our paper as much
self-contained as possible, we prefer to include the results here.

2.1. Recurrent, Bohr Almost Periodic and Almost Automorphic Mo-
tions. Let (X, ρ) be a complete metric space, S be one of the two sets R or
Z, and T ⊆ S (S+ ⊆ T) be a sub-semigroup of the additive group S, where
S+ := {s ∈ S : s ≥ 0}.

Let (X,T, π) be a dynamical system on X, i.e., let π : T×X→X be a continuous
function such that π(0, x) = x for all x ∈ X, and π(t1 + t2, x) = π(t2, π(t1, x)), for
all x ∈ X, and t1, t2 ∈ T.

Given ε > 0, a number τ ∈ T is called an ε−shift (respectively, an ε−almost period)
of x, if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for all t ∈ T).

A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic), if
for any ε > 0 there exists a positive number l such that in any segment of length l
there is an ε−shift (respectively, an ε−almost period) of the point x ∈ X .

If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T} is
compact, then x is called recurrent, where the bar denotes the closure in X .

Denote by Nx := {{tn} ⊂ T : such that {π(tn, x)} → x and {tn} → ∞} and
Mx := {{tn} ⊂ T : such that {π(tn, x)} is convergent and {tn} → ∞}.

A point x ∈ X is called Poisson stable in the positive direction if there exists a
sequence {tn} ∈ Nx such that tn → +∞ as n→ ∞.

Let (X,T, π) be a two-sided dynamical system (i.e., T = S). A point x ∈ X is
called Poisson stable in the negative direction if there exists a sequence {tn} ∈ Nx

such that tn → −∞ as n → ∞. The point x ∈ X is called Poisson stable if it is
Poisson stable in both directions.
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A dynamical system (X,T, π) is said to be

(i) transitive, if there exists a point x0 ∈ X such that H(x0) = X , where

H(x0) := {π(t, x0) : t ∈ T};
(ii) pseudo recurrent if X is compact, the dynamical system (X,T, π) is tran-

sitive, and every point x ∈ X is Poisson stable.

A point x ∈ X is called [26, 28] pseudo recurrent if the dynamical system (H(x),T, π)
is pseudo recurrent.

Remark 2.1. Every recurrent point is pseudo recurrent, but there exist pseudo
recurrent points which are not recurrent [26, 28].

An m-dimensional torus is denoted by T m := R
m/2πZ. Let (T m,T, σ) be an irra-

tional winding of T m, i.e., σ(t, ν) := (ν1t, ν2t, . . . , νmt) for all t ∈ S and ν ∈ T m.

A point x ∈ X is called quasi-periodic with the frequency ν := (ν1, ν2, . . . , νm) ∈
T m, if there exists a continuous function Φ : T m → X such that π(t, x) :=
Φ(σ(t, ω)) for all t ∈ T, where (T m,T, σ) is an irrational winding of the torus
T m and ω ∈ T m.

A point x ∈ X of the dynamical system (X,T, π) is called Levitan almost periodic
[18], if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point
y ∈ Y such that Ny ⊆ Nx.

Remark 2.2. Let xi ∈ Xi (i = 1, 2, . . . ,m) be a Levitan almost periodic point of
the dynamical system (Xi,T, πi). Then the point x := (x1, x2, . . . , xm) ∈ X :=
X1 × X2 × . . . × Xm is also Levitan almost periodic in the product dynamical
system (X,T, π), where π : T × X → X is defined by the equality π(t, x) :=
(π1(t, x1), π2(t, x2), . . . , πm(t, xm)) for all t ∈ T and x := (x1, x2, . . . , xm) ∈ X.

A point x ∈ X is called stable in the sense of Lagrange (st.L) (respectively, stable in
the sense of Lagrange in the positive direction (st.L+)), if its trajectory {π(t, x) :
t ∈ T} (respectively, its positive semi-trajectory {π(t, x) : t ∈ T+}) is relatively
compact, where T+; = {t ∈ T : t ≥ 0}.

A point x ∈ X is called almost automorphic [18, 24] in the dynamical system
(X,T, π), if the following conditions hold:

(i) x is st.L;
(ii) there exists a dynamical system (Y,T, σ), a homomorphism h from (X,T, π)

onto (Y,T, σ), and a point y ∈ Y which is almost periodic, in the sense of
Bohr, such that h−1(y) = {x}.

Remark 2.3. Notice the following well-known facts.

1. Every almost automorphic point is Levitan almost periodic.

2. A Levitan almost periodic point is almost automorphic if and only if is stable in
the sense of Lagrange.

2.2. Shift Dynamical Systems, Levitan/Bohr Almost Periodic and Al-
most Automorphic Functions. Below we recall a general method of construc-
tion of dynamical systems on spaces of continuous functions. In this way, we will
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obtain many well-known dynamical systems on some functional spaces (see, for
example, [2, 23, 26]).

Let (X,T, π) be a dynamical system onX, Y a complete pseudo metric space, and P
a family of pseudo metrics on Y . We denote by C(X,Y ) the family of all continuous
functions f : X → Y equipped with the compact-open topology. This topology is
given by the following family of pseudo metrics {dpK} (p ∈ P , K ∈ C(X)), where

dpK(f, g) := sup
x∈K

p(f(x), g(x))

and C(X) denotes the family of all compact subsets of X . For all τ ∈ T we
define a mapping στ : C(X,Y ) → C(X,Y ) by the following equality: (στ f)(x) :=
f(π(τ, x)), x ∈ X . We note that the family of mappings {στ : τ ∈ T} possesses
the next properties:

a. σ0 = idC(X,Y );
b. στ1 ◦ στ2 = στ1+τ2 , for all τ1, τ2 ∈ T;
c. στ is continuous for all τ ∈ T.

Lemma 2.4. [7] The mapping σ : T×C(X,Y ) → C(X,Y ), defined by the equality
σ(τ, f) := στf (f ∈ C(X,Y ), τ ∈ T), is continuous, and the triple (C(X,Y ),T, σ)
is a dynamical system on C(X,Y ).

Consider now some examples of dynamical systems of the form (C(X,Y ),T, σ),
which are useful in the applications.

Example 2.5. Let X = T, and denote by (X,T, π) a dynamical system on T,
where π(t, x) := x + t. The dynamical system (C(T, Y ),T, σ) is called Bebutov’s
dynamical system [2, 23, 26] (dynamical system of translations, or shifts dynamical
system).

It is said that the function ϕ ∈ C(T, Y ) possesses a property (A), if the motion
σ(·, ϕ) : T → C(T, Y ), generated by this function, possesses this property in the
Bebutov dynamical system (C(T, Y ),T, σ). As property (A) we can take periodicity,
quasi-periodicity, Bohr/Levitan almost periodicity, almost automorphy, recurrence,
pseudo recurrence, Poisson stability, etc.

Example 2.6. Let X := T × W , where W is a metric space, and let (X,T, π)
denote a dynamical system on X defined in the following way: π(t, (s, w)) :=
(s+ t, w). Using the general method proposed above, we can define on C(T×W,Y )
a dynamical system of translations (C(T ×W,Y ),T, σ).

The function f ∈ C(T × W,Y ) is called Bohr/Levitan almost periodic (quasi-
periodic, recurrent, almost automorphic, etc) with respect to t ∈ T, uniformly in
w on every compact from W , if the motion σ(·, f) is Bohr/Levitan almost peri-
odic (quasi-periodic, recurrent, almost automorphic, etc.) in the dynamical system
(C(T ×W,Y ),T, σ).

Remark 2.7. Recall that for a compact metric space W , the topology on C(T ×
W,Y ) is metrizable. For example, the equality

d(f, g) :=

∞
∑

k=1

1

2k
dk(f, g)

1 + dk(f, g)



LEVITAN/BOHR ALMOST PERIODIC AND ALMOST AUTOMORPHIC SOLUTIONS ... 7

defines a complete metric on the space C(T ×W,X) which is compatible with the
compact-open topology on C(T×W,X), where dk(f, g) := max

|t|≤k, x∈W
ρ(f(t, x), g(t, x)).

The space C(T×W,Y ) is topologically isomorphic to C(T, C(W,Y )) (see [26]), and
also the shifts dynamical systems (C(T×W,Y ),T, σ) and (C(T, C(W,Y )),T, σ) are
dynamically isomorphic.

2.3. Cocycles, Skew-Product Dynamical Systems and Non-Autonomous
Dynamical Systems. Let T1 ⊆ T2 be two sub-semigroups of the group S (S+ ⊆
T1).

A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism from (X,T1, π)
onto (Y,T2, σ) (i.e., h is continuous and h(π(t, x)) = σ(t, h(x)) for all t ∈ T1 and
x ∈ X), is called a non-autonomous dynamical system.

Let (Y,T2, σ) be a dynamical system, W a complete metric space, and ϕ a contin-
uous mapping from T1 ×W × Y into W , possessing the following properties:

a. ϕ(0, u, y) = u (u ∈ W, y ∈ Y );
b. ϕ(t+ τ, u, y) = ϕ(τ, ϕ(t, u, y), σ(t, y)) (t, τ ∈ T1, u ∈W, y ∈ Y ).

Then, the triplet 〈W,ϕ, (Y,T2, σ)〉 (or shortly ϕ) is called [23] a cocycle on (Y,T2, σ)
with fiber W .

Let X := W × Y and let us define a mapping π : X × T1 → X as follows:
π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e., π = (ϕ, σ)). Then, it is easy to see that
(X,T1, π) is a dynamical system on X , which is called a skew-product dynamical
system [23] and h = pr2 : X → Y is a homomorphism from (X,T1, π) onto (Y,T2, σ)
and, hence, 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical system.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 on the dynamical system (Y,T2, σ)
with fiber W , then it generates a non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 (X := W ×Y ), called a non-autonomous dynamical system generated
by the cocycle 〈W,ϕ, (Y,T2, σ)〉 on (Y,T2, σ).

Non-autonomous dynamical systems (cocycles) play a very important role in the
study of non-autonomous evolutionary differential equations. Under appropriate
assumptions, every non-autonomous differential equation generates a cocycle (a
non-autonomous dynamical system). Below we give some examples of this type.

Example 2.8. Consider the system of differential equations

(6)

{

u′ = F (y, u)
y′ = G(y),

where Y ⊆ Em (for example, Y = T m is an m–torus), G ∈ C(Y,En) and F ∈
C(Y ×En, En). Suppose that, for the system (6), the conditions ensuring existence,
uniqueness and extendability of solutions to R+ are fulfilled. Denote by (Y,R+, σ)
a dynamical system on Y generated by the second equation of the system (6) and
by ϕ(t, u, y) we denote the solution of the equation

u′ = F (σ(t, y), u)

passing through the point u ∈ En at t = 0. Then, the mapping ϕ : R+ ×En×Y →
En satisfies conditions a. and b. from the definition of cocycle and, consequently,
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system (6) generates a non-autonomous dynamical system 〈(X,R+, π), (Y,R+, σ), h〉
(where X := En × Y , π := (ϕ, σ) and h := pr2 : X → Y ).

Example 2.9. Let (Y,R, σ) be a dynamical system on the metric space Y . We
consider the equation

(7) u′ = F (σ(y, t), u) (y ∈ Y ),

where F ∈ C(Y × R
n,Rn). Suppose again that, for equation (7), the conditions

for the existence, uniqueness and extendability of solutions to R+ are fulfilled.
The non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 (respectively, the
cocycle 〈E,ϕ, (Y,R, σ)〉), where X := R

n × Y , π := (ϕ, σ), ϕ(·, x, y) is the solution
of (7) passing through the point x at time t = 0, and h := pr2 : X → Y is generated
by equation (7).

Example 2.10. We consider the equation

(8) u′ = f(t, u),

where f ∈ C(R×R
n,Rn). Along with equation (8), consider the family of equations

(9) u′ = g(t, u),

where g ∈ H(f) := {fτ : τ ∈ R} and fτ is the τ -shift of f with respect to the time
variable t, i.e., fτ (t, u) := f(t+τ, u) for all (t, u) ∈ R×R

n. Suppose that the function
f is regular [23], i.e., for all g ∈ H(f) and u ∈ R

n there exists a unique solution
ϕ(t, u, g) of equation (9). Denote by Y = H(f) and (Y,R, σ) a shift dynamical
system on Y induced by the Bebutov dynamical system (C(R × R

n,Rn),R, σ).
Now the family of equations (9) can be written as (7) if we take the mapping
F ∈ C(Y × R

n,Rn) defined by F (g, u) := g(0, u), for all g ∈ H(f) and u ∈ R
n.

A solution ϕ(t, u, y) of equation (7) is called [26, 28] compatible (respectively, uni-
formly compatible) by the character of recurrence if Ny ⊆ Nϕ (respectively, My ⊆
Mϕ), where Nϕ (respectively, Mϕ) is the set of all sequences {tn} ⊂ R such that
{ϕ(t + tn, u, y} converges to ϕ(t, u, y) (respectively, {ϕ(t + tn, u, y} converges) in
the space C(T,Rn).

Remark 2.11. The sequence {ϕ(t + tn, u, y)} converges to the function ψ in the
space C(T,Rn) if and only if {ϕ(tn, u, y)} converges to ψ(0).

Theorem 2.12. [26, 28] The following statements hold:

1. Let y ∈ Y be a stationary (respectively, τ-periodic, Levitan almost periodic,
almost recurrent, Poisson stable) point. If ϕ(t, u, y) is a compatible solution of
equation (7), then so is ϕ(t, u, y).

2. Let y ∈ Y be a stationary (respectively, τ-periodic, Bohr almost periodic, al-
most automorphic, recurrent, pseudo recurrent) point. If ϕ(t, u, y) is a uniformly
compatible solution of equation (7), then so is ϕ(t, u, y).

Example 2.13. Let us consider a second order differential equation

(10) x′′ = f(σ(t, y), x, x′), (y ∈ Y )

where f ∈ C(Y × R
n × R

n,Rn), and state a criterion for the existence of Levitan
almost periodic and almost automorphic solutions for this equation. Below we will
suppose that the function f is regular, i.e., for all y ∈ Y and x, x′ ∈ R

n the equation
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(10) admits a unique solution ϕ(t, x, x′, y) defined on R+ with the initial conditions
ϕ(0, x, x′, y) = x and ϕ′(0, x, x′, y) = x′.

As it is well-known, we can reduce equation (10) to the following equivalent system

(11)

{

u′ = v
v′ = f(σ(t, y), u, v),

(y ∈ Y ) or to the equation
z′ = F (σ(t, y), z)

on the product space R
n×R

n, where z := (u, v) and F ∈ C(Y ×R
n×R

n,Rn×R
n)

is the function defined by the equality F (y, z) := (v, f(y, u, v)) for all y ∈ Y and
z := (u, v) ∈ R

n × R
n.

Theorem 2.14. [26] Let ϕ ∈ C(R,Rn) be a continuously differentiable function.
If its derivative ϕ′ ∈ C(R,Rn) is uniformly continuous on R, then ϕ′ is uniformly
comparable by the character of recurrence with ϕ, i.e., Mϕ ⊆ Mϕ′ .

We can now prove the following result.

Lemma 2.15. Suppose that the following conditions hold:

(i) Y is compact;
(ii) f ∈ C(Y × R

n × R
n,Rn) is regular;

(iii) ϕ(t, x0, x
′
0, y) is a solution of equation (10) defined and bounded on R and

such that its derivative ϕ′(t, x0, x
′
0, y) is also bounded on R.

Then, the following two statements are equivalent:

a. The solution ϕ(t, x0, x
′
0, y) of equation (10) is compatible (respectively, uni-

formly compatible) by the character of recurrence with the right-hand side;
b. The solution (ϕ(t, x0, x

′
0, y), ϕ

′(t, x0, x
′
0, y)) of equation (11) is compatible

(respectively, uniformly compatible) by the character of recurrence with the
right-hand side.

Proof. The implication b.=⇒ a. is evident. Thus, to prove the lemma, it is suf-
ficient to establish the converse implication. Let ϕ(t, x0, x

′
0, y) be a solution of

equation (10) such that ϕ(t, x0, x
′
0, y) and ϕ′(t, x0, x

′
0, y) are defined and bounded

on R. Then Ny ⊆ Nϕ (respectively, My ⊆ Mϕ). We need to show that the in-
clusion Ny ⊆ Nϕ′ (respectively, My ⊆ Mϕ′) also holds. Indeed, let {tn} ∈ Ny

(respectively, {tn} ∈ My), then the sequence {σ(tn, y)} converges to y (respec-
tively, the sequence {σ(tn, y)} converges to some point ỹ ∈ Y ). Consequently, the
functional sequence {f(σ(t+ tn, y), u, v)} converges to f(σ(t, y), u, v) (respectively,
to f(σ(t, ỹ), u, v)) uniformly with respect to t on every compact subset from R

and u, v ∈ Q := ϕ(R, x0, x′0, y) × ϕ′(R, x0, x′0, y). Since Ny ⊆ Nϕ (respectively,
My ⊆ Mϕ), the sequence {ϕ(tn, x0, x

′
0, y)} converges to x0 (respectively, to some

point x̃0 ∈ R). Since the function f ∈ C(Y × R
n × R

n,Rn) is regular, then the
functional sequence {ϕ(t + tn, x0, x

′
0, y)} converges to the function ϕ(t, x0, x

′
0, y)

(respectively, to ϕ(t, x̃0, x̃0
′, ỹ)) uniformly with respect to t on every compact sub-

set from R. Note that, under the conditions of Lemma, the second derivative
ϕ′′(t, x0, x

′
0, y) of the function ϕ(t, x0, x

′
0, y) is bounded on R and, consequently,

the first derivative ϕ′(t, x0, x
′
0, y) is uniformly continuous in t ∈ R. Thus, according
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to Theorem 2.14, the first derivative ϕ′(t, x0, x
′
0, y) is comparable (respectively, uni-

formly comparable) by the character of recurrence and, consequently, the sequence
ϕ′(t+tn, x0, x

′
0, y) converges to ϕ′(t, x0, x

′
0, y) (respectively, ϕ(t, x̃0, x̃0

′, ỹ)), and the
lemma is proved. �

Remark 2.16. 1. Notice that, if Y is not compact, then, in general, the bounded-
ness of ϕ(t, x0, x

′
0, y) and ϕ′(t, x0, x

′
0, y) on R do not imply the boundedness of the

second derivative ϕ′′(t, x0, x
′
0, y) on R . In this case, the equivalence of statements

a. and b. of Lemma 2.15 remains as an open problem.

2. If |f(y, x, x′)| ≤ c(1 + |x′|2) for all (y, x, x′) ∈ Y × R × R, then the boundedness
of ϕ(t, x, x′, y) implies the boundedness of its first derivative ϕ′(t, x, x′, y) (see, for
example, Lemma 2.1 [19] and also Lemma 5.1 from [17, Ch.XII]).

3. Non-Autonomous Dynamical Systems with Convergence

Let us now consider a special type of non-autonomous dynamical systems, namely
the so-called dynamical systems with convergence. We start by recalling some
definitions.

A dynamical system (X,T, π) is called point dissipative (respectively, compact dis-
sipative), if there exists a nonempty compact subset K ⊆ X such that

(12) lim
t→+∞

ρ(π(t, x),K) = 0

for all x ∈ X (respectively, the equality (12) holds uniformly with respect to x on
every compact subset M from X).

A compact and invariant set J ⊂ X is called the Levinson center of the compact
dissipative dynamical system (X,T, π), if, in addition, J attracts every compact
subset of X (i.e., (12) holds uniformly with respect to x on every compact subset
M ⊂ X) . It is worth noticing that this concept does not coincides in general with
that of global attractor (since the latter attracts the bounded subsets of X , i.e.,
(12) holds uniformly with respect to x on every bounded subset B ⊂ X). For a
more detailed analysis on the relationship between these two concepts, see Cheban
[7] .

A non-autonomous dynamical system 〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent
if the following conditions hold:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compact dissipative;
(ii) the set JX

⋂

Xy contains no more than one point for all y ∈ JY where
Xy := h−1(y) := {x ∈ X | h(x) = y} and JX (respectively, JY ) is the
Levinson center of the dynamical system (X,T1, π) (respectively (Y,T2, σ)).

Remark 3.1. 1. Note that convergent systems are, in some sense, the simplest
dissipative dynamical systems. If 〈(X,T1, π), (Y,T2, σ), h〉 is a convergent non-
autonomous dynamical system and JX (respectively, JY ) is the Levinson center
of the dynamical system (X,T1, π) (respectively, (Y,T2, σ)), then JX and JY are
dynamically homeomorphic. Although the center of Levinson of a convergent system
can be completely described, it may be sufficiently complicated. An example which
illustrates this fact can be found in [10, ChIV].
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2. Observe that:

(i) When Y is compact and invariant, then evidently (Y,T2, σ) is compact
dissipative and its Levinson center JY coincides with Y ;

(ii) If 〈(X,T1, π), (Y,T2, σ), h〉 is a convergent non-autonomous dynamical sys-
tem, and JX (respectively, JY ) is the Levinson center of the dynamical sys-
tem (X,T1, π) (respectively, (Y,T2, σ)) and JY = Y , then JX and Y are
dynamically homeomorphic. In particular, if the point y ∈ Y is station-
ary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic, almost
automorphic, recurrent), then so is the point x = h−1(y) ∈ JX .

Denote by X×̇X = {(x1, x2) ∈ X ×X | h(x1) = h(x2) }. If there exists a function
V : X×̇X → R+ with the following properties:

(i) V is continuous;
(ii) V is positive defined, i.e., V (x1, x2) = 0 if and only if x1 = x2;
(iii) V (π(t, x1), π(t, x2)) ≤ V (x1, x2) for all (x1, x2) ∈ X×̇X and t ∈ T

+
1 :=

{t ∈ T1 | t ≥ 0},

then, the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is called
V - monotone (see [7] and [18], [31]).

A dynamical system (X,T, π) is said to be stable in the sense of Lagrange in the
positive direction (shortly, st. L+), if for every compact subset K from X its

positive semi-trajectory
∑+

K :=
⋃

{π(t, x) : t ≥ 0, x ∈ K} is relatively compact.

Remark 3.2. 1. Every compact dissipative dynamical system is st. L+.

2. There are simple examples of st. L+ dynamical systems which are not compact
dissipative.

Let (X,h, Y ) be a fiber space, i.e., let X and Y be two metric spaces and h : X → Y
be a homomorphism from X onto Y . The subset M ⊆ X is said to be conditionally
relatively compact, if the pre-image h−1(Y ′)

⋂

M of every relatively compact subset
Y ′ ⊆ Y is a relatively compact subset of X . In particular, My := h−1(y)

⋂

M is
relatively compact for every y. The set M is called conditionally compact if it is
closed and conditionally relatively compact.

Example 3.3. Let K be a compact space, X := K × Y , h = pr2 : X → Y, then
the triplet (X,h, Y ) is a fiber space, the space X is conditionally compact, but not
compact.

Theorem 3.4. [8] Let 〈(X,T, π), (Y, S, σ), h〉 be a NDS with the following proper-
ties:

(i) It admits a conditionally relatively compact invariant set J ;
(ii) The NDS 〈(X,T, π), (Y, S, σ), h〉 is positively uniformly stable on J ;
(iii) Every point y ∈ Y is two-sided Poisson stable.

Then,
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(i) All motions on J can be continued uniquely to the left, and define on J a
two-sided dynamical system (J, S, π), i.e., the semi-group dynamical system
(X,T, π) generates a two-sided dynamical system (J, S, π) on J ;

(ii) For every y ∈ Y , there are two sequences {t1n} → +∞ and {t2n} → −∞
such that

π(tin, x) → x (i = 1, 2)

as n→ ∞ for all x ∈ Jy.

Denote by K := {a ∈ C(R+,R+)| a(0) = 0, a is strictly increasing}.

Theorem 3.5. [8] (The invariance principle for NDS) Assume the following con-
ditions:

(i) y ∈ Y is Poisson stable;
(ii) The NDS 〈(X, T, π), (Y, S, σ), h〉 admits a conditionally relatively compact

invariant set J ;
(iii) 〈(X, T, π), (Y, S, σ), h〉 is a V -monotone non-autonomous dynamical sys-

tem, and there are two functions a, b ∈ K such that
(a) Im(a) = Im(b), where Im(a) := a(R+) is the image of the values of

a ∈ K;
(b) a(ρ(x1, x2)) ≤ V (x1, x2) ≤ b(ρ(x1, x2)) for all x1, x2 ∈ X (h(x1) =

h(x2)).

Then, V (π(t, x1), π(t, x2)) = V (x1, x2) for all t ∈ S and x1, x2 ∈ Jy.

Recall that the dynamical system (X,T1, π) is called asymptotically compact if for
every positively invariant bounded subset M ⊆ X there exists a nonempty compact
subset K ⊆ X such that

lim
t→+∞

β(π(t,M),K) = 0,

where β(A,B) := sup
a∈A

ρ(a,B) and ρ(a,B) := inf
b∈B

ρ(a, b).

Denote by ωx the ω–limit set of the point x, and by ΩX :=
⋃

{ωx| x ∈ X}. Let
M ⊆ X . Then we set

D+(M) :=
⋂

ε>0

⋃

t≥0

π(t, B(M, ε)),

where B(M, ε) := {x ∈ X | ρ(x,M) < ε}.

A subset M ⊆ X is called orbital stable if for arbitrary ε > 0 there exists a
δ = δ(ε) > 0 such that ρ(x,M) < δ implies ρ(π(t, x),M) < ε for all t ≥ 0.

Remark 3.6. 1. If the set M ⊆ X is orbital stable, then D+(M) = M (see [3]).

2. If the space X is locally compact and M is compact, then from the equality
D+(M) = M it follows the orbital stability of M . This fact is known as Theorem
of T. Ura [30] (see also [3]).

Theorem 3.7. [7, ChI] A point dissipative dynamical system (X,T, π) on the com-
plete metric space X is compact dissipative if and only if D+(ΩX) is compact and
orbital stable.
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Corollary 3.8. Let (X,T, π) be point dissipative and ΩX orbital stable. Then,
(X,T, π) is compact dissipative and its Levinson center JX coincides with ΩX .

Proof. If ΩX is orbital stable, then D+(ΩX) = ΩX and now to finish the proof it
is sufficient to apply Theorem 3.7. �

We can therefore prove our main result in this section.

Theorem 3.9. Let 〈(X,T,π),(Y,S,σ),h〉 be a non-autonomous dynamical system
satisfying the following conditions:

1. The dynamical system (Y, S, σ) is pseudo recurrent;
2. The dynamical system (X,T, π) is asymptotically compact;
3. There exists a point x0 ∈ Xy0 with relatively compact positive semi-trajectory

Σ+
x0

:= {π(t, x0) : t ≥ 0};

4. There exists a continuous function V : X×̇X → R+ such that V (π(t, x1),
π(t, x2)) < V (x1, x2) for all (x1, x2) ∈ X×̇X \ ∆X and t > 0 (t ∈ T),
where ∆X := {(x, x) : x ∈ X};

5. There are functions a, b ∈ K such that Im(a) = Im(b) and a(ρ(x1, x2) ≤
V (x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X.

Then, the following statements take place:

(i) The NDS 〈(X,T,π),(Y,S,σ),h〉 is convergent;
(ii) JX = ωx0

;
(iii) h(JX) = Y .

Proof. Since the point y0 is Poisson stable and ωy0 = H(y0) = Y then, for every
y ∈ Y , there exists a sequence {tn} ⊆ T2 such that tn → +∞ as n → ∞ and
{σ(tn, y0)} → y. Consider the sequence {π(tn, x0)}. Thanks to assumption 3., we
can assume that this sequence is convergent. Let p be its limit. Then, it is clear
that p ∈ ωx0

⋂

Xy. Thus, we have established that h(ωx0
) = Y .

First, we notice that ωx0
is compact, invariant and, according to Theorem 3.4, on

ωx0
it is defined a two-sided dynamical system (ωx0

, S, π) such that π(t, x) = γx(t)
for all x ∈ ωx0

and t ∈ R−, where γx is the unique complete trajectory of the
dynamical system (X,T, π) passing through the point x at the initial moment t = 0.
We will show now that the set ωx0

⋂

Xy contains at most one point for all y ∈ Y .
Indeed, the set ωx0

is compact, invariant and, according to Theorem 3.5, we have
V (π(t, p1), π(t, p2)) = V (p1, p2) for all t ∈ S. But the last equality takes place only
if p1 = p2.

Let now x be an arbitrary point from X , y := h(x) and p ∈ ωx0

⋂

Xy. Accord-
ing to conditions 4. and 5., we have a(ρ(π(t, x), π(t, p))) ≤ V (π(t, x), π(t, p)) ≤
V (x, p) ≤ b(ρ(x, p)) for all t ≥ 0 and, consequently, we obtain ρ(π(t, x), π(t, p)) ≤
a−1(b(x1, x2)) for all t ≥ 0. Since p ∈ LX (where LX denotes the set of points
x ∈ X such that there exists a complete relatively compact trajectory γx of the dy-
namical system (X,T, π), passing through the point x at the initial moment t = 0),
then from the last inequality we obtain that the set Σ+

x is bounded. Taking into
account that (X,T, π) is asymptotically compact, we can conclude that the point x
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is stable in the sense of Lagrange in the positive direction. It is easy to show that
ωx

⋂

Xy contains a single point using the same arguments as we used above for
the set ωx0

. We now show that ωx = ωx0
. To this end, denote by M := ωx0

⋃

ωx,
and repeating the reasoning above for this set we obtain that M

⋂

Xy consists of
a single point for all y ∈ Y . Thus, we have ωx0

⋂

Xy = ωx
⋂

Xy = M
⋂

Xy for all
y ∈ Y and, consequently, ωx = ωx0

for all x ∈ X . This means that the dynamical
system (X,T, π) is point dissipative and ΩX = M, where M := ωx0

. Now, we will
show that (X,T, π) is compact dissipative. By Theorem 3.7 (see also Corollary 3.8),
it is sufficient to establish that the set M is orbitally stable, i.e., for every ε > 0
there exists a positive number δ(ε) such that ρ(x,M) < δ implies ρ(π(t, x),M) < ε
for all t ≥ 0. If we suppose the opposite, then there are ε0 > 0, δn → 0 (δn > 0)
xn ∈ X and tn → +∞ such that

(13) ρ(xn,M) < δn and ρ(π(tn, xn),M) ≥ ε0.

Letmn ∈M be a point such that ρ(xn,mn) = ρ(xn,M), and denote by yn := h(xn).
Since the set M is compact, taking into account (13), we can assume that the
sequences {xn}, {yn} and {mn} are convergent. Let x̄ := lim

n→∞
xn and m̄ :=

lim
n→∞

mn. Then, by (13), we have x̄ = m̄. Denoting by myn
:= M

⋂

Xyn
, and taking

into consideration the continuity of the mapping y 7→ my, we obtain lim
n→∞

myn
=

mȳ, where ȳ := h(m̄). Note that

(14) m̄ = mȳ

and, consequently,

(15) ρ(xn,myn
) ≤ ρ(xn,mn) + ρ(mn,myn).

From (14) and (15) it follows that

ρ(xn,myn
) → 0

as n→ ∞. On the other hand,

V (π(tn, xn), π(tn,myn
)) < V (xn,myn

) → 0

as n→ ∞. It is clear that π(tn,myn
) = mσ(tn,yn) and since the space Y is compact,

we can assume that the sequence {σ(tn, yn)} is convergent. Let us denote its limit
by ỹ. Then, lim

n→∞
mσ(tn,yn) = mỹ ∈M . But, the last equality contradicts inequality

(13). This contradiction proves our statement.

Since the set ΩX = M is orbitally stable, then, according to Theorem 3.7 and
Corollary 3.8, the dynamical system (X,T, π) is compact dissipative and its Levin-
son center JX coincides with ΩX = M . Since we established above that JX

⋂

Xy =
M

⋂

Xy consists of a single point for all y ∈ Y , then the NDS 〈(X,T, π), (Y, S, σ), h〉
is a system with convergence. The proof is now complete. �

4. First order differential equations

In this section we study a scalar differential equation of the form

(16) x′ = f(σ(t, y), x) (y ∈ Y ),

where f ∈ C(Y × R,R), Y is a complete metric space and (Y,R, σ) is a dynamical
system.
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A function f ∈ C(Y ×R,R) is said to be decreasing in the large sense (respectively,
strictly decreasing) with respect to the variable x ∈ R if for all x1, x2 ∈ R and y ∈ Y
the inequality x2 > x1 implies f(y, x2) ≤ f(y, x1) (respectively, f(y, x2) < f(y, x1)).

Let us now state a result which collects some properties of the solutions of (16).

Theorem 4.1. [8, 22, 27] Suppose that the function f ∈ C(Y × R,R) is regular
and decreasing (in the large sense) with respect to the variable x ∈ R, and the point
y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic,
recurrent). Then, the following statements hold:

(i) If (16) admits a solution which is bounded on R, then it has at least one
stationary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic,
recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (16), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly decreasing with respect to the variable x ∈ R,
then equation (16) admits at most one stationary (respectively, τ–periodic,
quasi-periodic, Bohr almost periodic, recurrent) solution.

Below we will prove some results which improve and generalize the third statement
of Theorem 4.1.

Theorem 4.2. Suppose that the function f ∈ C(Y × R,R) is regular and strictly
decreasing with respect to the variable x ∈ R, the dynamical system (Y,R, σ) is
pseudo recurrent, and Y = H(y). If (16) admits a solution ϕ(t, u0, y), which is
bounded on R+, then it is convergent, i.e., the non-autonomous dynamical system
generated by equation (16) is convergent.

Proof. Let ϕ(t, u, y) be the unique solution of equation (16) passing through the
point u ∈ R at the initial moment t = 0 and 〈(X,T, π), (Y,R, σ), h〉 (X := R ×
Y, π := (ϕ, σ) and h = pr2 : X 7→ Y ) be the non-autonomous dynamical system
generated by (16). Consider the mapping V : X×̇X 7→ R+ defined by equality

V ((u1, y), (u2, y)) :=
|u1 − u2|

2

2

for all u1, u2 ∈ R and y ∈ Y . Note that

(17)
dV (π(t, (u1, y)), π(t, (u2, y)))

dt

∣

∣

t=0
= (u1 − u2)(f(y, u1) − f(y, u2)) < 0

for all (ui, y) ∈ R × Y (i = 1, 2) with u1 6= u2. From (17) it follows that
V (π(t, (u1, y)), π(t, (u2, y))) < V ((u1, y), (u2, y)) for all t > 0, u1, u2 ∈ R and y ∈ Y .
Now, to finish the proof of the Theorem, it is sufficient to apply Theorem 3.9. �

Corollary 4.3. Suppose that the function f ∈ C(Y×R,R) is regular and strictly de-
creasing with respect to the variable x ∈ R, and assume that the point y is stationary
(respectively, τ–periodic, quasi-periodic, Bohr almost periodic, almost automorphic,
recurrent, pseudo recurrent).
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If (16) admits a solution which is bounded on R+, then it possesses a unique sta-
tionary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic, almost auto-
morphic, recurrent, pseudo recurrent) solution which is globally uniformly asymp-
totically stable.

Proof. This statement follows directly from Theorem 4.2 and Remark 3.1 (item 2
(ii)). �

Remark 4.4. 1. The analog of Theorem 4.2 (as well as Corollary 4.3) holds if we
replace the condition “f is strictly decreasing” by “f is strictly increasing”. This
case can be reduced to the considered one by the time substitution t→ −t.

2. Note that Theorem 4.2 and Corollary 4.3 remain true also for a vectorial equation
(i.e., for systems of equations). Indeed, to this end, we assume that f ∈ C(Y ×
R
n,Rn), and replace the condition “f is strictly decreasing” by the condition

〈f(y, u1) − f(y, u2), u1 − u2〉 < 0

for all y ∈ Y and u1, u2 ∈ R
n (u1 6= u2), where 〈, 〉 is the scalar product on the

space R
n.

3. If the function f ∈ C(Y × R,R) is continuously differentiable with respect to
x ∈ R and

(18)
∂f

∂x
(y, x) ≤ −k < 0

for all y ∈ Y and x ∈ R, then Theorem 4.2 and Corollary 4.3 also hold without
the requirement that equation (16) admits at least one solution which is bounded on
R+. Owing to condition (18), it follows

(19) 〈f(y, u1) − f(y, u2), u1 − u2〉 ≤ −k|u1 − u2|
2

for all y ∈ Y and u1, u2 ∈ R. But condition (19) guarantees (see [11]) that equation
(16) is convergent.

4. We plan to study in more details the multi-dimensional case in one of our next
publications.

5. Levitan almost periodic and almost automorphic solutions of
second order differential equations

In this section we consider a scalar differential equation of the type (10), i.e., n = 1.

In the sequel, we suppose that the function f ∈ C(Y × R
2,R) is regular and

increasing (in the large sense) with respect to the variable x, i.e., if u1 ≤ u2 then
f(y, u1, v) ≤ f(y, u2, v) for all y ∈ Y and v ∈ R.

Lemma 5.1. [22] Let u(t), v(t) be two solutions of equation (10) defined on R.
Then, only one of the following three cases is possible:

(i) The function u(t) − v(t) is monotone on the real axis R;
(ii) u(t)−v(t) is positive on R, and there exists a number t0 ∈ R such that this

function is non-decreasing on the interval (t0,+∞), and non-increasing on
(−∞, t0);
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(iii) The function u(t)−v(t) is negative on R, and there exists a number t0 ∈ R

such that it is non-increasing on the interval (t0,+∞), and non-decreasing
on (−∞, t0).

Let ϕ ∈ C(R,R), and denote by aϕ := inf{ϕ(t)| t ∈ R} and bϕ := sup{ϕ(t)| t ∈ R}.

Remark 5.2. Notice that the following facts take place:

1. aϕ ≤ bϕ for all ϕ ∈ C(R,R).

2. The inequalities

(20) aϕ ≤ aψ ≤ bψ ≤ bϕ

hold for all ψ ∈ H(ϕ).

3. If the function ϕ is recurrent, then

aϕ = aψ and bψ = bϕ

for all ψ ∈ H(ϕ).

Theorem 5.3. [25, 29] Let f ∈ C(R × R
n,Rn) be Poisson stable with respect to

the time variable t ∈ R. If the equation

x′ = f(t, x)

admits a solution ϕ which is bounded on R, then it admits at least a Poisson stable
solution ψ ∈ H(ϕ).

Let us now establish our first main result in this section.

Theorem 5.4. Suppose that f ∈ C(Y × R
2,R) is regular and increasing (in the

large sense) with respect to the variable x ∈ R, and assume that the point y ∈ Y is
Poisson stable. Then, the following statements hold:

(i) If (10) admits a solution φ such that φ and φ′ are bounded on R, then it has
at least one compatible (by the character of recurrence with the right-hand
side) solution;

(ii) If u(t) and v(t) are two compatible solutions of equation (10), then u(t)−
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ R,
then equation (10) admits at most one compatible solution which is bounded
on R.

Proof. Let φ ∈ C(R,R) be a solution of equation (10) such that φ and φ′ are
bounded on R. To prove the first statement, on account of Lemma 2.15, it is
sufficient to show that the function φ is comparable with y by the character of
recurrence, i.e., the functional sequence {φ(t + tn)} converges to φ(t) uniformly
on every compact subset from R, for every sequence {tn} ∈ Ny. Consider the
motion σ(t, φ) in the shift dynamical system (Bebutov’s system) (C(R,R),R, σ).

According to Theorem 5.3, the set H(φ) := {σ(τ, φ)| τ ∈ R} contains at least one
Poisson stable solution ϕ ∈ H(φ) of equation (10) (in fact, the function ϕ and
the point y are jointly Poisson stable) . We will prove that the solution ϕ is
compatible. To this end, we will show that equation (10) possesses at most one
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solution from H(ϕ) ⊆ H(φ). Indeed, if ψ ∈ H(ϕ) is a solution of equation (10) and
r(t) := ψ(t) − ϕ(t) for all t ∈ R, then, by Lemma 5.1, there exist the limits

lim
t→+∞

r(t) = c+, lim
t→−∞

r(t) = c−

and

|c+| + |c−| > 0.

Suppose, for example, that c+ > 0. Then, by the joint Poisson stability of the point
y and the solution ϕ, there exists a sequence {tn} ∈ Ny∩Nϕ such that tn → +∞ as
n → ∞. Without loss of generality, we can suppose that the sequence {ψ(t+ tn)}
is convergent in the space C(R,R). Let ψ̄ be its limit, i.e., ψ̄(t) = lim

t→+∞
ψ(t+ tn).

Then,

(21) ψ̄(t) = ϕ(t) + c+ for all t ∈ R.

From (20) and the fact that ψ̄ ∈ H(ψ) ⊆ H(ϕ), we have

(22) aϕ ≤ aψ ≤ aψ̄ ≤ bψ̄ ≤ bψ ≤ bϕ.

On the other hand, from (21) we have bψ̄ = bϕ + c+. From the last equality and
(22) we obtain c+ ≤ 0. This contradiction proves our statement. The other cases
can be treated similarly.

Let now u(t) and v(t) be two compatible solutions of equation (10). Then, thanks to
Lemma 5.1, there exists a number t0 ∈ R such that the function r(t) := u(t)−v(t) is
monotone on one of the two intervals: (−∞, t0) or (t0,+∞). Consider, for example,
the case when r(t) is monotone on the interval (−∞, t0). Since the solutions u and
v are compatible, and the point y is Poisson stable, the function r(t) is Poisson
stable too. In particular, it is Poisson stable in the negative direction. On the
other hand, this function is monotone on the interval (−∞, t0) and, consequently,
is a constant. Thus u(t) − v(t) = c for all t ∈ R, where c ∈ R is some constant.

Finally, we prove the third statement of our theorem. Suppose that the function
f is strictly increasing with respect to the variable x ∈ R. If we suppose that
equation (10) admits two different solutions u and v which are bounded on R, then
the function

(23) r(t) := u(t) − v(t) (t ∈ R)

possesses the limits c± := lim
t→±∞

r(t) and |c−| + |c+| > 0. Suppose, for example,

that c+ > 0. Then, we take a sequence {tn} ∈ Ny such that tn → +∞ and the
functional sequences {u(t+ tn)} and {v(t+ tn)} are convergent (since the functions
u and v are solutions of (10) which are bounded on R. Denote by ū (respectively,
v̄) the limit of the sequence {u(t+ tn)} (respectively, {v(t+ tn)})). From equality
(23) we have

ū(t) := v̄(t) + c+ for allt ∈ R

and, consequently, we obtain f(σ(t, y), v̄(t), v̄′(t)) = f(σ(t, y), v̄(t) + c+, v̄
′(t)) for

all t ∈ R. The last identity contradicts the strict monotony of the function f with
respect to the variable x. This contradiction completes the proof. �

As a consequence of Theorem 5.4 and Theorem 2.12, we have the second main
result in this section.
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Corollary 5.5. Suppose that f ∈ C(Y ×R
2,R) is regular and monotone increasing

(in the large sense) with respect to the variable x ∈ R, and the point y ∈ Y is
stationary (respectively, τ–periodic, Levitan almost periodic, almost automorphic,
almost recurrent, Poisson stable). Then, the following statements hold:

(i) If (10) admits a solution φ such that φ and φ′ are bounded on R, then it has
at least one stationary (respectively, τ–periodic, Levitan almost periodic,
almost automorphic, almost recurrent, Poisson stable) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, Levitan almost
periodic, almost automorphic, almost recurrent, Poisson stable) solutions
of equation (10), then u(t) − v(t) = c for all t ∈ R, where c ∈ R is some
constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ R,
then equation (10) admits at most one stationary solution (respectively, τ–
periodic, Levitan almost periodic, almost automorphic, almost recurrent,
Poisson stable) which is bounded on R.

6. Quasi-periodic, Bohr almost periodic, almost automorphic and
recurrent solutions

In this section we analyze problem (10) in the scalar case, i.e., n = 1, and suppose
that Y is compact and (Y,R, σ) is a minimal dynamical system, i.e., Y does not
contain a proper compact invariant subset.

Our main result below ensures that compatibility is now uniform.

Theorem 6.1. Suppose that f ∈ C(Y × R
2,R) is regular and monotone increas-

ing (in the large sense) with respect to the variable x ∈ R. Then, the following
statements hold:

(i) If (10) admits a solution ϕ such that ϕ and ϕ′ are bounded on R then it
has at least one uniformly compatible (by the character of recurrence with
the right-hand side) solution;

(ii) If u(t) and v(t) are two uniformly compatible solutions of equation (10),
then u(t) − v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ R,
then equation (10) admits at most one uniformly compatible solution.

Proof. Let ϕ ∈ C(R,R) be a solution such that ϕ and varφ′ are bounded on
R. To prove the first statement, taking into account Lemma 2.15, it is sufficient
to show that ϕ is uniformly comparable with y by the character of recurrence,
i.e., the functional sequence {ϕ(t+ tn)} is convergent uniformly on every compact
subset from R, for every sequence {tn} ∈ My. Denote by X := C(R,R) × Y
and (X,R, π) the product dynamical system, i.e., π(τ, (ϕ, y)) := (ϕτ , σ(τ, y)) for
all (ϕ, y) ∈ C(R,R) × Y and τ ∈ R, where ϕτ is a τ–shift of the function ϕ
(ϕτ (t) := ϕ(t + τ) for all t ∈ R). Consider the motion π(t, (ϕ, y)) in the product
dynamical system (X,R, π). Under the conditions of our theorem, this motion

is stable in the sense of Lagrange, i.e., the set H(ϕ, y) := {π(τ, (ϕ, y))| τ ∈ R}
is compact. According to Birkhoff’s theorem, the set H(ϕ, y) contains at least
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one minimal set M ⊆ H(ϕ, y). Note that the mapping h := pr2 : M 7→ Y
is an homomorphism of the dynamical system (H(ϕ, y),R, π) onto (Y,R, σ) and,
consequently, My := {(ψ, y) : (ψ, y) ∈ H(ϕ, y)} is a nonempty compact subset
of H(ϕ, y). Now we will show that the set My consists of a single point for every
y ∈ Y . Indeed, if we assume the opposite, then there exists a point y0 ∈ Y such that
My0 contains at least two different points (vi, y0) (i = 1, 2 and v1 6= v2). According
to Theorem 5.4, without loss of generality we may suppose, for example, that v1
is comparable by the character of recurrence with the point y0, i.e., Ny0 ⊆ Nv1 .
On the other hand, by Lemma 5.1, there exist the limits lim

t→±∞
r(t) = c± and

|c−| + |c+| > 0, where r(t) := v2(t) − v1(t) for all t ∈ R. Suppose, for example,
that c− > 0. Then, taking into account the fact that the point (v1, y0) is negatively
Poisson stable, we have a sequence {tn} ∈ Nv1∩Ny0 such that tn → −∞ as n→ ∞.
We can suppose that the sequence {v2(t+tn)} is convergent. Denote by v̄2 its limit.
Then, we have v̄2(t) = v1(t) + c− for all t ∈ R and, consequently, we have

(24) av̄2 = av1 + c−.

But the functions v1, v̄2 ∈ H(v1), and the function v1 is recurrent and, consequently,
we have

(25) av̄2 = av1 = av2 .

From (24) and (25) it follows that c− = 0. This contradiction proves our statement.
The other cases can be considered in a similar way. Thus, we have established
that the set My consists of a single point for all y ∈ Y . Let φ be a solution of
equation (10) such that {(φ, y)} = My. Now, it is easy to show that the solution
φ is uniformly compatible. Indeed, let {tn} ∈ My. Then, the sequence {σ(tn, y)}
converges. Denote by ỹ its limit. We will show that the functional sequence {φ(t+
tn)} is also convergent in the space C(R,R). If it is not true, then there exist at
least two points of accumulation ψi (i = 1, 2 and ψ1 6= ψ2) for this sequence. On
the other hand, it is easy to see that (ψi, ỹ) ∈ Mỹ (i = 1, 2). The last inclusion
contradicts the fact that every subsets My ⊆ M consists of a single point for all
y ∈ Y . This contradiction proves the first statement of our theorem.

The second and third statements follow from Theorem 5.4. �

Corollary 6.2. Suppose that f ∈ C(Y ×R
2,R) is regular and monotone increasing

(in the large sense) with respect to the variable x ∈ R, and the point y ∈ Y is sta-
tionary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic, recurrent).
Then, the following statements hold:

(i) If (10) admits a solution ϕ such that ϕ and ϕ′ are bounded on R, then it
has at least one stationary (respectively, τ–periodic, quasi-periodic, Bohr
almost periodic, recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ R,
then equation (10) admits at most one stationary (respectively, τ–periodic,
quasi-periodic, Bohr almost periodic, recurrent) solution.

Proof. These statements follow from Theorem 6.1 and Theorem 2.12. �
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Remark 6.3. In the particular case in which Y is a Bohr almost periodic minimal
set, then Corollary 6.2 coincides with the result proved by Opial in [22].

7. Some generalizations

Let now I := (a, b), where a, b ∈ [−∞,+∞]. For example, I = R, I = (0,+∞),
I = (a, b) and a, b ∈ R, etc. Consider equation (10) when f ∈ C(Y × I ×R,R). For
example, for the equation

x′′ + cx′ +
1

xα
= f(σ(t, y))

we have f(y, x, x′) := −cx′ − 1/xα + f(y) and I = (0,+∞), where α > 0.

In this context, we will now highlight an extended meaning to the concept of bound-
edness on R. To this respect, a solution ϕ ∈ C(R,R) of equation (10) is said to be

bounded on R (respectively, on R+) if Q := ϕ(R) is a compact subset from I, i.e., if
there exist two real numbers α and β such that a < α ≤ ϕ(t) ≤ β < b for all t ∈ R

(respectively, t ∈ R+).

All of our results about our second order equation (10) (especially, theorems 5.4,
6.1 and Corollaries 5.5 and 6.2) remain true also when f ∈ C(Y × I × R,R). We
will formulate for example the following statements.

Theorem 7.1. Suppose that f ∈ C(Y × I ×R,R) is regular and increasing (in the
large sense) with respect to the variable x ∈ I. Then, the following statements hold:

(i) If (10) admits a solution ϕ such that ϕ and ϕ′ are bounded on R, then it
has at least one uniformly compatible (by the character of recurrence with
the right-hand side) solution;

(ii) If u(t) and v(t) are two uniformly compatible solutions of equation (10),
then u(t) − v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ I,
then equation (10) admits at most one uniformly compatible solution.

Proof. We omit the proof because is completely similar to the proof of Theorem
6.1. �

Corollary 7.2. Suppose that the function f ∈ C(Y × I × R,R) is regular and
increasing (in the large sense) with respect to the variable x ∈ I, and the point
y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic,
recurrent). Then, the following statements hold:

(i) If (10) admits a solution ϕ such that ϕ and ϕ′ are bounded on R, then it
has at least one stationary (respectively, τ–periodic, quasi-periodic, Bohr
almost periodic, recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ I,
then equation (10) admits at most one stationary (respectively, τ–periodic,
quasi-periodic, Bohr almost periodic, recurrent) solution.
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Proof. This result follows from Theorem 7.1 and Theorem 2.12. �

Corollary 7.3. Suppose that the following conditions are fulfilled:

(i) f ∈ C(Y × I × R,R) and there exists a constant C > 0 such that

(26) |f(y, x, x′)| ≤ C(1 + |x′|2)

for all (y, x, x′) ∈ Y × I × R;
(ii) The function f is regular and monotone increasing (in the large sense)

with respect to the variable x ∈ R;
(iii) The point y ∈ Y is stationary (respectively, τ–periodic, quasi-periodic,

Bohr almost periodic, recurrent).

Then, the following statements hold:

(i) If (10) admits a solution which is bounded on R, then it has at least one
stationary (respectively, τ–periodic, quasi-periodic, Bohr almost periodic,
recurrent) solution;

(ii) If u(t) and v(t) are two stationary (respectively, τ–periodic, quasi-periodic,
Bohr almost periodic, recurrent) solutions of equation (10), then u(t) −
v(t) = c for all t ∈ R, where c ∈ R is some constant;

(iii) If the function f is strictly increasing with respect to the variable x ∈ I,
then equation (10) admits at most one stationary (respectively, τ–periodic,
quasi-periodic, Bohr almost periodic, recurrent) solution.

Proof. These statements follow from Corollary 7.2. To this end, it is sufficient to
note that under condition (26), if ϕ ∈ C(R,R) is a solution of equation (10) which
is bounded on R, then its derivative ϕ′ is also bounded on R (see Lemma 2.1 [19]
and also Lemma 5.1 from [17, Ch.XII]). �

Remark 7.4. 1. Corollary 7.3 (item (iii)) improves and generalizes some of the
results from [4, 12, 14, 19] when the function f is strictly increasing with respect to
the second variable.

2. We plan to study in more detail this case (f is strictly increasing with respect to
second variable) in one of our future publication.
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