H^{2}-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation

M. Anguiano, T. Caraballo, \& J. Real
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

We prove some regularity results for the pullback attractor of a reaction-diffusion model. First we establish a general result about H^{2}-boundedness of invariant sets for an evolution process. Then, as a consequence, we deduce that the pullback attractor of a non-autonomous reaction-diffusion equation is bounded not only in $L^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ but in $H^{2}(\Omega)$.

Key words: reaction-diffusion equations, non-autonomous (pullback) attractors, invariant sets, H^{2}-regularity.
Mathematics Subject Classifications (2000): 35B41, 35Q35

1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous reaction-diffusion equation:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\triangle u=f(u)+h(t) \text { in } \Omega \times(\tau,+\infty) \tag{1}\\
u=0 \text { on } \partial \Omega \times(\tau,+\infty) \\
u(x, \tau)=u_{\tau}(x), \quad x \in \Omega
\end{array}\right.
$$

[^0]where $\Omega \subset \mathbb{R}^{N}$ is a bounded open set, $\tau \in \mathbb{R}, u_{\tau} \in L^{2}(\Omega), f \in C^{1}(\mathbb{R})$ and $h \in L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$. We assume that there exist positive constants $\alpha_{1}, \alpha_{2}, k$, l, and $p>2$ such that
\[

$$
\begin{gather*}
-k-\alpha_{1}|s|^{p} \leq f(s) s \leq k-\alpha_{2}|s|^{p}, \forall s \in \mathbb{R}, \tag{2}\\
f^{\prime}(s) \leq l, \quad \forall s \in \mathbb{R} \tag{3}
\end{gather*}
$$
\]

Let us denote

$$
\mathcal{F}(s):=\int_{0}^{s} f(r) d r
$$

Then, there exist positive constants $\widetilde{\alpha}_{1}, \widetilde{\alpha}_{2}$ and \widetilde{k} such that

$$
\begin{equation*}
-\widetilde{k}-\widetilde{\alpha}_{1}|s|^{p} \leq \mathcal{F}(s) \leq \widetilde{k}-\widetilde{\alpha}_{2}|s|^{p}, \quad \forall s \in \mathbb{R} \tag{4}
\end{equation*}
$$

It is well-known (see, e.g. [5] or [8]) that under the conditions above, for any initial condition $u_{\tau} \in L^{2}(\Omega)$, there exists a unique solution $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$ of (1), i.e., a unique function $u \in L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left(\tau, T ; L^{p}(\Omega)\right) \cap C^{0}\left([\tau, T] ; L^{2}(\Omega)\right)$ for all $T>\tau$, such that

$$
u(t)-\int_{\tau}^{t} \Delta u(s) d s=u_{\tau}+\int_{\tau}^{t}(f(u(s))+h(s)) d s \quad \forall t \geq \tau
$$

where the equality must be understood in the sense of the dual of $H_{0}^{1}(\Omega) \cap$ $L^{p}(\Omega)$.

Therefore, we can define a process $U=\{U(t, \tau), \tau \leq t\}$ in $L^{2}(\Omega)$ as

$$
\begin{equation*}
U(t, \tau) u_{\tau}=u\left(t ; \tau, u_{\tau}\right) \quad \forall u_{\tau} \in L^{2}(\Omega), \quad \forall \tau \leq t \tag{5}
\end{equation*}
$$

A pullback attractor for the process U defined by (5) (cf. [1], [2], [3]) is a family $\mathcal{A}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ of compact subsets of $L^{2}(\Omega)$ such that
a) (invariance) $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for all $\tau \leq t$,
b) (pullback attraction) $\lim _{\tau \rightarrow-\infty} \sup _{u_{\tau} \in B} \inf _{v \in \mathcal{A}(t)}\left|U(t, \tau) u_{\tau}-v\right|=0$, for all $t \in \mathbb{R}$, for any bounded subset $B \subset L^{2}(\Omega)$,
where $|\cdot|$ denotes the norm in $L^{2}(\Omega)$.
It can be proved that, under the above conditions, if in addition f satisfies

$$
\int_{-\infty}^{t} e^{\lambda_{1} r}|h(r)|^{2} d r<+\infty \quad \forall t \in \mathbb{R}
$$

where λ_{1} denotes the first eigenvalue of the negative Laplacian with zero Dirichlet boundary condition in Ω, then there exists a pullback attractor for the process U defined by (5).

Several studies on this model have already been published (see [4], [6], [7], [9]). However, as for as we know, no one refers to the H^{2}-regularity we will consider in this paper.

In the next section we prove some results which, in particular, imply that, under suitable assumptions, any pullback attractor \mathcal{A} for U satisfies that $\mathcal{A}(t)$ is a bounded subset of $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$, for every $t \in \mathbb{R}$.

$2 \quad H^{2}$-boundedness of invariants sets

In this section we prove that, under suitable assumptions, every family of bounded subsets of $L^{2}(\Omega)$ which is invariant for the process U, is in fact bounded in $H^{2}(\Omega)$.

First, we recall a lemma (see [5]) which is necessary for the proof of our result.
Lemma 2.1 Let X, Y be Banach spaces such that X is reflexive, and the inclusion $X \subset Y$ is continuous. Assume that $\left\{u_{n}\right\}$ is a bounded sequence in $L^{\infty}\left(t_{0}, T ; X\right)$ such that $u_{n} \rightharpoonup u$ weakly in $L^{q}\left(t_{0}, T ; X\right)$ for some $q \in[1,+\infty)$ and $u \in C^{0}\left(\left[t_{0}, T\right] ; Y\right)$.

Then, $u(t) \in X$ for all $t \in\left[t_{0}, T\right]$ and

$$
\|u(t)\|_{X} \leq \sup _{n \geq 1}\left\|u_{n}\right\|_{L^{\infty}\left(t_{0}, T ; X\right)} \quad \forall t \in\left[t_{0}, T\right]
$$

We will denote by (\cdot, \cdot) the scalar product in $L^{2}(\Omega)$, by $\|\cdot\|=|\nabla \cdot|$ the norm in $H_{0}^{1}(\Omega)$, and by $\langle\cdot, \cdot\rangle$ the duality product between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

For each integer $n \geq 1$, we denote by $u_{n}(t)=u_{n}\left(t ; \tau, u_{\tau}\right)$ the Galerkin approximation of the solution $u\left(t ; \tau, u_{\tau}\right)$ of (1), which is given by

$$
\begin{equation*}
u_{n}(t)=\sum_{j=1}^{n} \gamma_{n j}(t) w_{j} \tag{6}
\end{equation*}
$$

and is the solution of

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(u_{n}(t), w_{j}\right)=\left\langle\Delta u_{n}(t), w_{j}\right\rangle+\left(f\left(u_{n}(t)\right), w_{j}\right)+\left(h(t), w_{j}\right) \tag{7}\\
\left(u_{n}(\tau), w_{j}\right)=\left(u_{\tau}, w_{j}\right) \quad j=1, . ., n
\end{array}\right.
$$

where $\left\{w_{j}: j \geq 1\right\}$ is the Hilbert basis of $L^{2}(\Omega)$ formed by the eigenfunctions associated to $-\Delta$ in $H_{0}^{1}(\Omega)$.

We first prove the following result.

Proposition 2.2 Assume that $f \in C^{1}(\mathbb{R})$ satisfies (2) and (3). Suppose moreover that $\Omega \subset \mathbb{R}^{N}$ is a bounded C^{s} domain, with $s \geq \max (2, N(p-2) / 2 p)$, and $h \in L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$. Then, for any bounded set $B \subset L^{2}(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$ and any $t>\tau+\varepsilon$, the set $\left\{u_{n}\left(r ; \tau, u_{\tau}\right): r \in[\tau+\varepsilon, t], u_{\tau} \in B, n \geq 1\right\}$, is a bounded subset of $H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$.

Proof. Observe that by the regularity of Ω, all the eigenfunctions w_{j} associated to $-\Delta$ in $H_{0}^{1}(\Omega)$ belong to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$.

Let us fix a bounded set $B \subset L^{2}(\Omega), \tau \in \mathbb{R}, \varepsilon>0, t>\tau+\varepsilon$, and $u_{\tau} \in B$.
Multiplying by $\gamma_{n j}$ in (7), and summing from $j=1$ to n, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d r}\left|u_{n}(r)\right|^{2}+\left\|u_{n}(r)\right\|^{2}=\left(f\left(u_{n}(r)\right), u_{n}(r)\right)+\left(h(r), u_{n}(r)\right) . \tag{8}
\end{equation*}
$$

Using (2),

$$
\begin{aligned}
\left(f\left(u_{n}(r)\right), u_{n}(r)\right) & \leq \int_{\Omega}\left(k-\alpha_{2}\left|u_{n}(x, r)\right|^{p}\right) d x \\
& =k|\Omega|-\alpha_{2}\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(h(r), u_{n}(r)\right) & \leq \frac{1}{2 \lambda_{1}}|h(r)|^{2}+\frac{\lambda_{1}}{2}\left|u_{n}(r)\right|^{2} \\
& \leq \frac{1}{2 \lambda_{1}}|h(r)|^{2}+\frac{1}{2}\left\|u_{n}(r)\right\|^{2} .
\end{aligned}
$$

Thus, from (8) we deduce

$$
\frac{d}{d r}\left|u_{n}(r)\right|^{2}+\left\|u_{n}(r)\right\|^{2}+2 \alpha_{2}\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p} \leq \frac{1}{\lambda_{1}}|h(r)|^{2}+2 k|\Omega|,
$$

and integrating between τ and r

$$
\begin{align*}
& \left|u_{n}(r)\right|^{2}+\int_{\tau}^{r}\left\|u_{n}(s)\right\|^{2} d s+2 \alpha_{2} \int_{\tau}^{r}\left\|u_{n}(s)\right\|_{L^{p}(\Omega)}^{p} d s \tag{9}\\
& \quad \leq\left|u_{\tau}\right|^{2}+\frac{1}{\lambda_{1}} \int_{\tau}^{t}|h(s)|^{2} d s+2 k|\Omega|(t-\tau), \quad \forall r \in[\tau, t], \quad \forall n \geq 1
\end{align*}
$$

Now, multiplying by the derivative $\gamma_{n j}^{\prime}$ in (7), and summing from $j=1$ to n,

$$
\begin{aligned}
\left|u_{n}^{\prime}(r)\right|^{2}+\frac{1}{2} \frac{d}{d r}\left\|u_{n}(r)\right\|^{2} & =\left(f\left(u_{n}(r)\right), u_{n}^{\prime}(r)\right)+\left(h(r), u_{n}^{\prime}(r)\right) \\
& \leq \frac{1}{2}|h(r)|^{2}+\frac{1}{2}\left|u_{n}^{\prime}(r)\right|^{2}+\frac{d}{d r} \int_{\Omega} \mathcal{F}\left(u_{n}(x, r)\right) d x
\end{aligned}
$$

Integrating now between $s \in[\tau, r]$ and $r \leq t$, we obtain

$$
\begin{aligned}
\int_{s}^{r}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta+\left\|u_{n}(r)\right\|^{2} & \leq\left\|u_{n}(s)\right\|^{2}+\int_{\tau}^{t}|h(\theta)|^{2} d \theta \\
& +2 \int_{\Omega} \mathcal{F}\left(u_{n}(x, r)\right) d x-2 \int_{\Omega} \mathcal{F}\left(u_{n}(x, s)\right) d x
\end{aligned}
$$

which, jointly with (4), yields that

$$
\begin{align*}
& \int_{s}^{r}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta+\left\|u_{n}(r)\right\|^{2}+2 \widetilde{\alpha}_{2}\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p} \tag{10}\\
& \quad \leq\left\|u_{n}(s)\right\|^{2}+\int_{\tau}^{t}|h(\theta)|^{2} d \theta+4 \widetilde{k}|\Omega|+2 \widetilde{\alpha}_{1}\left\|u_{n}(s)\right\|_{L^{p}(\Omega)}^{p}
\end{align*}
$$

for all $s \in[\tau, r]$, and any $r \in[\tau, t]$.
Integrating in this last inequality with respect to s from τ to r, we in particular obtain

$$
\begin{aligned}
(r-\tau)\left(\left\|u_{n}(r)\right\|^{2}+2 \widetilde{\alpha}_{2}\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p}\right) & \leq \int_{\tau}^{t}\left\|u_{n}(s)\right\|^{2} d s+(t-\tau) \int_{\tau}^{t}|h(s)|^{2} d s \\
& +4 \widetilde{k}|\Omega|(t-\tau)+2 \widetilde{\alpha}_{1} \int_{\tau}^{t}\left\|u_{n}(s)\right\|_{L^{p}(\Omega)}^{p} d s
\end{aligned}
$$

for all $r \in[\tau, t]$, and for any $n \geq 1$. From this inequality and (9), our result holds.

Corollary 2.3 Under the assumptions in Proposition 2.2, for any bounded set $B \subset L^{2}(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the set $\bigcup_{r \in[\tau+\varepsilon, t]} U(r, \tau) B$ is a bounded subset of $H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$.

Proof. This is a straightforward consequence of Lemma 2.1, Proposition 2.2, and the well known fact that $u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converges weakly to $u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}\left(\tau, t ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left(\tau, t ; L^{p}(\Omega)\right)$.

Proposition 2.4 In addition to the assumptions in Proposition 2.2, assume that $h \in W_{\text {loc }}^{1,2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$. Then, for any bounded set $B \subset L^{2}(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the set $\left\{u_{n}\left(r ; \tau, u_{\tau}\right): r \in[\tau+\varepsilon, t], u_{\tau} \in B, n \geq\right.$ $1\}$ is a bounded subset of $H^{2}(\Omega)$.

Proof. Let us fix a bounded set $B \subset L^{2}(\Omega), \tau \in \mathbb{R}, \varepsilon>0, t>\tau+\varepsilon$, and $u_{\tau} \in B$.

As we are assuming that $h \in W_{l o c}^{1,2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, we can differentiate with respect to time in (7), and then, multiplying by $\gamma_{n j}^{\prime}$, and summing from $j=1$ to n,
we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d r}\left|u_{n}^{\prime}(r)\right|^{2}+\left\|u_{n}^{\prime}(r)\right\|^{2} & =\left(f^{\prime}\left(u_{n}(r)\right) u_{n}^{\prime}(r), u_{n}^{\prime}(r)\right)+\left(h^{\prime}(r), u_{n}^{\prime}(r)\right) \\
& \leq l\left|u_{n}^{\prime}(r)\right|^{2}+\frac{1}{2}\left|u_{n}^{\prime}(r)\right|^{2}+\frac{1}{2}\left|h^{\prime}(r)\right|^{2}
\end{aligned}
$$

In particular, integrating in the last inequality,

$$
\left|u_{n}^{\prime}(r)\right|^{2} \leq\left|u_{n}^{\prime}(s)\right|^{2}+(2 l+1) \int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta+\int_{\tau+\varepsilon / 2}^{t}\left|h^{\prime}(\theta)\right|^{2} d \theta
$$

for all $\tau+\varepsilon / 2 \leq s \leq r \leq t$. Now, integrating with respect to s between $\tau+\varepsilon / 2$ and r,

$$
\begin{gathered}
(r-\tau-\varepsilon / 2)\left|u_{n}^{\prime}(r)\right|^{2} \leq[(2 l+1)(t-\tau-\varepsilon / 2)+1] \int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta \\
+(r-\tau-\varepsilon / 2) \int_{\tau+\varepsilon / 2}^{t}\left|h^{\prime}(\theta)\right|^{2} d \theta
\end{gathered}
$$

for all $\tau+\varepsilon / 2 \leq r \leq t$, and, in particular,

$$
\begin{align*}
\left|u_{n}^{\prime}(r)\right|^{2} \leq & 2 \varepsilon^{-1}[(2 l+1)(t-\tau-\varepsilon / 2)+1] \int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta \tag{11}\\
& +\int_{\tau+\varepsilon / 2}^{t}\left|h^{\prime}(\theta)\right|^{2} d \theta
\end{align*}
$$

for all $r \in[\tau+\varepsilon, t]$.
On the other hand, multiplying in (7) by $\lambda_{j} \gamma_{n j}$, where λ_{j} is the eigenvalue associated to the eigenfunction w_{j}, and summing once more from $j=1$ to n, we obtain

$$
\begin{equation*}
\left(u_{n}^{\prime}(r), \Delta u_{n}(r)\right)=\left|\Delta u_{n}(r)\right|^{2}+\left(f\left(u_{n}(r)\right), \Delta u_{n}(r)\right)+\left(h(r), \Delta u_{n}(r)\right) . \tag{12}
\end{equation*}
$$

But, it follows from (3) that

$$
\begin{aligned}
-\left(f\left(u_{n}(r)\right), \Delta u_{n}(r)\right) & =-\int_{\Omega}\left(f\left(u_{n}(x, r)\right)-f(0)\right) \Delta u_{n}(x, r) d x \\
& -f(0) \int_{\Omega} \Delta u_{n}(x, r) d x \\
& \leq l\left\|u_{n}(r)\right\|^{2}+\frac{1}{4}\left|\Delta u_{n}(r)\right|^{2}+(f(0))^{2}|\Omega| \\
& =l\left(u_{n}(r),-\Delta u_{n}(r)\right)+\frac{1}{4}\left|\Delta u_{n}(r)\right|^{2}+(f(0))^{2}|\Omega| \\
& \leq l^{2}\left|u_{n}(r)\right|^{2}+\frac{1}{2}\left|\Delta u_{n}(r)\right|^{2}+(f(0))^{2}|\Omega|
\end{aligned}
$$

and thus, from (12) we obtain

$$
\begin{equation*}
\left|\Delta u_{n}(r)\right|^{2} \leq 8\left|u_{n}^{\prime}(r)\right|^{2}+8|h(r)|^{2}+4 l^{2}\left|u_{n}(r)\right|^{2}+4(f(0))^{2}|\Omega| \tag{13}
\end{equation*}
$$

for all $r \geq \tau$.
Finally, observe that by (10)

$$
\begin{align*}
\int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta & \leq\left\|u_{n}(\tau+\varepsilon / 2)\right\|^{2}+\int_{\tau}^{t}|h(\theta)|^{2} d \theta+4 \widetilde{k}|\Omega| \tag{14}\\
& +2 \widetilde{\alpha}_{1}\left\|u_{n}(\tau+\varepsilon / 2)\right\|_{L^{p}(\Omega)}^{p} .
\end{align*}
$$

Taking into account that, in particular, $h \in C^{0}\left([\tau, t] ; L^{2}(\Omega)\right)$, the result is a direct consequence of Proposition 2.2 and estimates (11), (13) and (14).

Corollary 2.5 Under the assumptions of Proposition 2.4, for any bounded set $B \subset L^{2}(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the set $\bigcup_{r \in[\tau+\varepsilon, t]} U(r, \tau) B$ is a bounded subset of $H^{2}(\Omega)$.

Proof. This follows from Lemma 2.1, propositions 2.2 and 2.4, and the well known facts that $u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converges weakly to $u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}\left(\tau, t ; H_{0}^{1}(\Omega)\right)$, and $u\left(\cdot ; \tau, u_{\tau}\right) \in C^{0}\left([\tau+\varepsilon, t] ; H_{0}^{1}(\Omega)\right)$.

As a direct consequence of the above results, we can now establish our main results.

Theorem 2.6 Under the assumptions in Proposition 2.4, if $\mathcal{A}=\{\mathcal{A}(t): t \in$ $\mathbb{R}\}$ is a family of bounded subsets of $L^{2}(\Omega)$, such that $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for any $\tau \leq t$, then for any $T_{1}<T_{2}$, the set $\bigcup_{t \in\left[T_{1}, T_{2}\right]} \mathcal{A}(t)$ is a bounded subset of $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$.

In particular, we have the following result for pullback attractors.
Corollary 2.7 Under the assumptions in Proposition 2.4, if $\mathcal{A}=\{\mathcal{A}(t): t \in$ $\mathbb{R}\}$ is a pullback attractor for the process defined by (5), then for any $T_{1}<T_{2}$, the set $\bigcup_{t \in\left[T_{1}, T_{2}\right]} \mathcal{A}(t)$ is a bounded subset of $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap L^{p}(\Omega)$.

References

[1] T. Caraballo, G. Lukaszewicz \& J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis TMA 64 (2006), 484-498.
[2] T. Caraballo, G. Lukaszewicz \& J. Real, Pullback attractors for nonautonomous 2D Navier-Stokes equations in unbounded domains, Comptes rendus Mathématique 342 (2006), 263-268.
[3] P.E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn. 3 (2003), no. 1, 101-112.
[4] Y. Li \& C.K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Applied Mathematics and Computation 190 (2007) 1020-1029.
[5] J.C. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, 2001.
[6] H. Song \& H. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math. Anal. Appl. Vol. 325 (2007), 1200-1215.
[7] H. Song \& C. Zhong, Attractors of non-autonomous reaction-diffusion equations in L^{p}, Nonlinear Analysis 68 (2008), 1890-1897.
[8] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, Second Edition, 1997.
[9] Y. Wang \& C. Zhong, On the existence of pullback attractors for non-autonomous reaction-difusion equations, Dynamical Systems, Vol 23, No. 1, March 2008, 1-16.

[^0]: * Corresponding author: T. Caraballo

 This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2008-00088, and Junta de Andalucía grant P07-FQM02468.

 Email addresses: anguiano@us.es (M. Anguiano), caraball@us.es (T. Caraballo), jreal@us.es (J. Real).

