H^2 -boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation

M. Anguiano, T. Caraballo, & J. Real

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

We prove some regularity results for the pullback attractor of a reaction-diffusion model. First we establish a general result about H^2 -boundedness of invariant sets for an evolution process. Then, as a consequence, we deduce that the pullback attractor of a non-autonomous reaction-diffusion equation is bounded not only in $L^2(\Omega) \cap H^1_0(\Omega)$ but in $H^2(\Omega)$.

Key words: reaction-diffusion equations, non-autonomous (pullback) attractors, invariant sets, H^2 -regularity. Mathematics Subject Classifications (2000): 35B41, 35Q35

1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous reaction-diffusion equation:

$$\frac{\partial u}{\partial t} - \Delta u = f(u) + h(t) \text{ in } \Omega \times (\tau, +\infty),
u = 0 \text{ on } \partial\Omega \times (\tau, +\infty),
u(x, \tau) = u_{\tau}(x), \quad x \in \Omega,$$
(1)

^{*} Corresponding author: T. Caraballo

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2008-00088, and Junta de Andalucía grant P07-FQM-02468.

Email addresses: anguiano@us.es (M. Anguiano), caraball@us.es (T. Caraballo), jreal@us.es (J. Real).

where $\Omega \subset \mathbb{R}^N$ is a bounded open set, $\tau \in \mathbb{R}$, $u_\tau \in L^2(\Omega)$, $f \in C^1(\mathbb{R})$ and $h \in L^2_{loc}(\mathbb{R}; L^2(\Omega))$. We assume that there exist positive constants α_1, α_2, k , l, and p > 2 such that

$$-k - \alpha_1 |s|^p \le f(s)s \le k - \alpha_2 |s|^p, \ \forall s \in \mathbb{R},$$
(2)

$$f'(s) \le l, \quad \forall s \in \mathbb{R}.$$
 (3)

Let us denote

$$\mathcal{F}(s) := \int_0^s f(r) dr.$$

Then, there exist positive constants $\tilde{\alpha}_1$, $\tilde{\alpha}_2$ and \tilde{k} such that

$$-\tilde{k} - \tilde{\alpha}_1 \left| s \right|^p \le \mathcal{F}(s) \le \tilde{k} - \tilde{\alpha}_2 \left| s \right|^p, \quad \forall s \in \mathbb{R}.$$
 (4)

It is well-known (see, e.g. [5] or [8]) that under the conditions above, for any initial condition $u_{\tau} \in L^2(\Omega)$, there exists a unique solution $u(\cdot) = u(\cdot; \tau, u_{\tau})$ of (1), i.e., a unique function $u \in L^2(\tau, T; H^1_0(\Omega)) \cap L^p(\tau, T; L^p(\Omega)) \cap C^0([\tau, T]; L^2(\Omega))$ for all $T > \tau$, such that

$$u(t) - \int_{\tau}^{t} \Delta u(s) \, ds = u_{\tau} + \int_{\tau}^{t} (f(u(s)) + h(s)) \, ds \quad \forall t \ge \tau,$$

where the equality must be understood in the sense of the dual of $H_0^1(\Omega) \cap L^p(\Omega)$.

Therefore, we can define a process $U = \{U(t, \tau), \tau \leq t\}$ in $L^2(\Omega)$ as

$$U(t,\tau)u_{\tau} = u(t;\tau,u_{\tau}) \quad \forall u_{\tau} \in L^{2}(\Omega), \quad \forall \tau \leq t.$$
(5)

A pullback attractor for the process U defined by (5) (cf. [1], [2], [3]) is a family $\mathcal{A} = \{\mathcal{A}(t) : t \in \mathbb{R}\}$ of compact subsets of $L^2(\Omega)$ such that

- a) (invariance) $U(t,\tau)\mathcal{A}(\tau) = \mathcal{A}(t)$ for all $\tau \leq t$,
- b) (pullback attraction) $\lim_{\tau \to -\infty} \sup_{u_{\tau} \in B} \inf_{v \in \mathcal{A}(t)} |U(t,\tau)u_{\tau} v| = 0$, for all $t \in \mathbb{R}$, for any bounded subset $B \subset L^2(\Omega)$,

where $|\cdot|$ denotes the norm in $L^{2}(\Omega)$.

It can be proved that, under the above conditions, if in addition f satisfies

$$\int_{-\infty}^{t} e^{\lambda_1 r} |h(r)|^2 dr < +\infty \qquad \forall t \in \mathbb{R},$$

where λ_1 denotes the first eigenvalue of the negative Laplacian with zero Dirichlet boundary condition in Ω , then there exists a pullback attractor for the process U defined by (5). Several studies on this model have already been published (see [4], [6], [7], [9]). However, as for as we know, no one refers to the H^2 -regularity we will consider in this paper.

In the next section we prove some results which, in particular, imply that, under suitable assumptions, any pullback attractor \mathcal{A} for U satisfies that $\mathcal{A}(t)$ is a bounded subset of $H^2(\Omega) \cap H^1_0(\Omega) \cap L^p(\Omega)$, for every $t \in \mathbb{R}$.

2 H²-boundedness of invariants sets

In this section we prove that, under suitable assumptions, every family of bounded subsets of $L^{2}(\Omega)$ which is invariant for the process U, is in fact bounded in $H^{2}(\Omega)$.

First, we recall a lemma (see [5]) which is necessary for the proof of our result.

Lemma 2.1 Let X, Y be Banach spaces such that X is reflexive, and the inclusion $X \subset Y$ is continuous. Assume that $\{u_n\}$ is a bounded sequence in $L^{\infty}(t_0, T; X)$ such that $u_n \rightharpoonup u$ weakly in $L^q(t_0, T; X)$ for some $q \in [1, +\infty)$ and $u \in C^0([t_0, T]; Y)$.

Then,
$$u(t) \in X$$
 for all $t \in [t_0, T]$ and
 $\|u(t)\|_X \le \sup_{n \ge 1} \|u_n\|_{L^{\infty}(t_0, T; X)} \quad \forall t \in [t_0, T].$

We will denote by (\cdot, \cdot) the scalar product in $L^2(\Omega)$, by $\|\cdot\| = |\nabla \cdot|$ the norm in $H_0^1(\Omega)$, and by $\langle \cdot, \cdot \rangle$ the duality product between $H^{-1}(\Omega)$ and $H_0^1(\Omega)$.

For each integer $n \ge 1$, we denote by $u_n(t) = u_n(t; \tau, u_\tau)$ the Galerkin approximation of the solution $u(t; \tau, u_\tau)$ of (1), which is given by

$$u_n(t) = \sum_{j=1}^n \gamma_{nj}(t) w_j, \tag{6}$$

and is the solution of

$$\begin{cases} \frac{d}{dt} (u_n(t), w_j) = \langle \Delta u_n(t), w_j \rangle + (f(u_n(t)), w_j) + (h(t), w_j), \\ (u_n(\tau), w_j) = (u_\tau, w_j) \qquad j = 1, ..., n, \end{cases}$$
(7)

where $\{w_j : j \ge 1\}$ is the Hilbert basis of $L^2(\Omega)$ formed by the eigenfunctions associated to $-\Delta$ in $H_0^1(\Omega)$.

We first prove the following result.

Proposition 2.2 Assume that $f \in C^1(\mathbb{R})$ satisfies (2) and (3). Suppose moreover that $\Omega \subset \mathbb{R}^N$ is a bounded C^s domain, with $s \ge \max(2, N(p-2)/2p)$, and $h \in L^2_{loc}(\mathbb{R}; L^2(\Omega))$. Then, for any bounded set $B \subset L^2(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon > 0$ and any $t > \tau + \varepsilon$, the set $\{u_n(r; \tau, u_\tau) : r \in [\tau + \varepsilon, t], u_\tau \in B, n \ge 1\}$, is a bounded subset of $H^1_0(\Omega) \cap L^p(\Omega)$.

Proof. Observe that by the regularity of Ω , all the eigenfunctions w_j associated to $-\Delta$ in $H_0^1(\Omega)$ belong to $H^2(\Omega) \cap H_0^1(\Omega) \cap L^p(\Omega)$.

Let us fix a bounded set $B \subset L^2(\Omega)$, $\tau \in \mathbb{R}$, $\varepsilon > 0$, $t > \tau + \varepsilon$, and $u_{\tau} \in B$.

Multiplying by γ_{nj} in (7), and summing from j = 1 to n, we obtain

$$\frac{1}{2}\frac{d}{dr}|u_n(r)|^2 + ||u_n(r)||^2 = \left(f(u_n(r)), u_n(r)\right) + \left(h(r), u_n(r)\right).$$
(8)

Using (2),

$$(f(u_n(r)), u_n(r)) \leq \int_{\Omega} (k - \alpha_2 |u_n(x, r)|^p) dx$$
$$= k |\Omega| - \alpha_2 ||u_n(r)||_{L^p(\Omega)}^p.$$

On the other hand,

$$(h(r), u_n(r)) \leq \frac{1}{2\lambda_1} |h(r)|^2 + \frac{\lambda_1}{2} |u_n(r)|^2$$

$$\leq \frac{1}{2\lambda_1} |h(r)|^2 + \frac{1}{2} ||u_n(r)||^2.$$

Thus, from (8) we deduce

$$\frac{d}{dr} |u_n(r)|^2 + ||u_n(r)||^2 + 2\alpha_2 ||u_n(r)||_{L^p(\Omega)}^p \le \frac{1}{\lambda_1} |h(r)|^2 + 2k |\Omega|,$$

and integrating between τ and r

$$|u_{n}(r)|^{2} + \int_{\tau}^{r} ||u_{n}(s)||^{2} ds + 2\alpha_{2} \int_{\tau}^{r} ||u_{n}(s)||_{L^{p}(\Omega)}^{p} ds \qquad (9)$$

$$\leq |u_{\tau}|^{2} + \frac{1}{\lambda_{1}} \int_{\tau}^{t} |h(s)|^{2} ds + 2k |\Omega| (t - \tau), \quad \forall r \in [\tau, t], \quad \forall n \geq 1.$$

Now, multiplying by the derivative γ'_{nj} in (7), and summing from j = 1 to n,

$$\begin{aligned} |u_n'(r)|^2 + \frac{1}{2} \frac{d}{dr} \, \|u_n(r)\|^2 &= (f(u_n(r)), u_n'(r)) + (h(r), u_n'(r)) \\ &\leq \frac{1}{2} \, |h(r)|^2 + \frac{1}{2} \, |u_n'(r)|^2 + \frac{d}{dr} \int_{\Omega} \mathcal{F} \left(u_n(x, r) \right) \, dx. \end{aligned}$$

Integrating now between $s \in [\tau, r]$ and $r \leq t$, we obtain

$$\int_{s}^{r} |u_{n}'(\theta)|^{2} d\theta + ||u_{n}(r)||^{2} \leq ||u_{n}(s)||^{2} + \int_{\tau}^{t} |h(\theta)|^{2} d\theta + 2 \int_{\Omega} \mathcal{F} (u_{n}(x,r)) dx - 2 \int_{\Omega} \mathcal{F} (u_{n}(x,s)) dx,$$

which, jointly with (4), yields that

$$\int_{s}^{r} |u_{n}'(\theta)|^{2} d\theta + ||u_{n}(r)||^{2} + 2\tilde{\alpha}_{2} ||u_{n}(r)||_{L^{p}(\Omega)}^{p}$$

$$\leq ||u_{n}(s)||^{2} + \int_{\tau}^{t} |h(\theta)|^{2} d\theta + 4\tilde{k} |\Omega| + 2\tilde{\alpha}_{1} ||u_{n}(s)||_{L^{p}(\Omega)}^{p},$$
(10)

for all $s \in [\tau, r]$, and any $r \in [\tau, t]$.

Integrating in this last inequality with respect to s from τ to r, we in particular obtain

$$(r-\tau)\left(\|u_n(r)\|^2 + 2\tilde{\alpha}_2\|u_n(r)\|_{L^p(\Omega)}^p\right) \le \int_{\tau}^t \|u_n(s)\|^2 \, ds + (t-\tau) \int_{\tau}^t |h(s)|^2 \, ds + 4\tilde{k} \, |\Omega| \, (t-\tau) + 2\tilde{\alpha}_1 \int_{\tau}^t \|u_n(s)\|_{L^p(\Omega)}^p \, ds,$$

for all $r \in [\tau, t]$, and for any $n \ge 1$. From this inequality and (9), our result holds.

Corollary 2.3 Under the assumptions in Proposition 2.2, for any bounded set $B \subset L^2(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon > 0$, and any $t > \tau + \varepsilon$, the set $\bigcup_{r \in [\tau + \varepsilon, t]} U(r, \tau)B$ is a bounded subset of $H^1_0(\Omega) \cap L^p(\Omega)$.

Proof. This is a straightforward consequence of Lemma 2.1, Proposition 2.2, and the well known fact that $u_n(\cdot; \tau, u_\tau)$ converges weakly to $u(\cdot; \tau, u_\tau)$ in $L^2(\tau, t; H^1_0(\Omega)) \cap L^p(\tau, t; L^p(\Omega))$.

Proposition 2.4 In addition to the assumptions in Proposition 2.2, assume that $h \in W_{loc}^{1,2}(\mathbb{R}; L^2(\Omega))$. Then, for any bounded set $B \subset L^2(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon > 0$, and any $t > \tau + \varepsilon$, the set $\{u_n(r; \tau, u_\tau) : r \in [\tau + \varepsilon, t], u_\tau \in B, n \ge 1\}$ is a bounded subset of $H^2(\Omega)$.

Proof. Let us fix a bounded set $B \subset L^2(\Omega)$, $\tau \in \mathbb{R}$, $\varepsilon > 0$, $t > \tau + \varepsilon$, and $u_{\tau} \in B$.

As we are assuming that $h \in W_{loc}^{1,2}(\mathbb{R}; L^2(\Omega))$, we can differentiate with respect to time in (7), and then, multiplying by γ'_{nj} , and summing from j = 1 to n,

we obtain

$$\frac{1}{2}\frac{d}{dr}|u'_n(r)|^2 + ||u'_n(r)||^2 = (f'(u_n(r))u'_n(r), u'_n(r)) + (h'(r), u'_n(r)) \\ \leq l|u'_n(r)|^2 + \frac{1}{2}|u'_n(r)|^2 + \frac{1}{2}|h'(r)|^2.$$

In particular, integrating in the last inequality,

$$|u'_{n}(r)|^{2} \leq |u'_{n}(s)|^{2} + (2l+1) \int_{\tau+\varepsilon/2}^{t} |u'_{n}(\theta)|^{2} d\theta + \int_{\tau+\varepsilon/2}^{t} |h'(\theta)|^{2} d\theta,$$

for all $\tau + \varepsilon/2 \le s \le r \le t$. Now, integrating with respect to s between $\tau + \varepsilon/2$ and r,

$$(r - \tau - \varepsilon/2) |u'_n(r)|^2 \leq \left[(2l+1)(t - \tau - \varepsilon/2) + 1 \right] \int_{\tau + \varepsilon/2}^t |u'_n(\theta)|^2 d\theta + (r - \tau - \varepsilon/2) \int_{\tau + \varepsilon/2}^t |h'(\theta)|^2 d\theta,$$

for all $\tau + \varepsilon/2 \le r \le t$, and, in particular,

$$|u'_{n}(r)|^{2} \leq 2\varepsilon^{-1} [(2l+1)(t-\tau-\varepsilon/2)+1] \int_{\tau+\varepsilon/2}^{t} |u'_{n}(\theta)|^{2} d\theta \qquad (11)$$
$$+ \int_{\tau+\varepsilon/2}^{t} |h'(\theta)|^{2} d\theta,$$

for all $r \in [\tau + \varepsilon, t]$.

On the other hand, multiplying in (7) by $\lambda_j \gamma_{nj}$, where λ_j is the eigenvalue associated to the eigenfunction w_j , and summing once more from j = 1 to n, we obtain

$$(u'_n(r), \Delta u_n(r)) = |\Delta u_n(r)|^2 + (f(u_n(r)), \Delta u_n(r)) + (h(r), \Delta u_n(r)).$$
(12)

But, it follows from (3) that

$$\begin{aligned} -(f(u_n(r)), \Delta u_n(r)) &= -\int_{\Omega} \left(f(u_n(x, r)) - f(0) \right) \Delta u_n(x, r) dx \\ &- f(0) \int_{\Omega} \Delta u_n(x, r) dx \\ &\leq l ||u_n(r)||^2 + \frac{1}{4} |\Delta u_n(r)|^2 + (f(0))^2 |\Omega| \\ &= l \left(u_n(r), -\Delta u_n(r) \right) + \frac{1}{4} |\Delta u_n(r)|^2 + (f(0))^2 |\Omega| \\ &\leq l^2 |u_n(r)|^2 + \frac{1}{2} |\Delta u_n(r)|^2 + (f(0))^2 |\Omega| , \end{aligned}$$

and thus, from (12) we obtain

$$\left|\Delta u_n(r)\right|^2 \le 8 \left|u'_n(r)\right|^2 + 8 \left|h(r)\right|^2 + 4l^2 \left|u_n(r)\right|^2 + 4 \left(f(0)\right)^2 \left|\Omega\right|, \quad (13)$$

for all $r \geq \tau$.

Finally, observe that by (10)

$$\int_{\tau+\varepsilon/2}^{t} |u_n'(\theta)|^2 d\theta \le ||u_n(\tau+\varepsilon/2)||^2 + \int_{\tau}^{t} |h(\theta)|^2 d\theta + 4\widetilde{k} |\Omega|$$

$$+ 2\widetilde{\alpha}_1 ||u_n(\tau+\varepsilon/2)||_{L^p(\Omega)}^p.$$
(14)

Taking into account that, in particular, $h \in C^0([\tau, t]; L^2(\Omega))$, the result is a direct consequence of Proposition 2.2 and estimates (11), (13) and (14).

Corollary 2.5 Under the assumptions of Proposition 2.4, for any bounded set $B \subset L^2(\Omega)$, any $\tau \in \mathbb{R}$, any $\varepsilon > 0$, and any $t > \tau + \varepsilon$, the set $\bigcup_{r \in [\tau + \varepsilon, t]} U(r, \tau)B$

is a bounded subset of $H^2(\Omega)$.

Proof. This follows from Lemma 2.1, propositions 2.2 and 2.4, and the well known facts that $u_n(\cdot; \tau, u_\tau)$ converges weakly to $u(\cdot; \tau, u_\tau)$ in $L^2(\tau, t; H_0^1(\Omega))$, and $u(\cdot; \tau, u_\tau) \in C^0([\tau + \varepsilon, t]; H_0^1(\Omega))$.

As a direct consequence of the above results, we can now establish our main results.

Theorem 2.6 Under the assumptions in Proposition 2.4, if $\mathcal{A} = \{\mathcal{A}(t) : t \in \mathbb{R}\}$ is a family of bounded subsets of $L^2(\Omega)$, such that $U(t, \tau)\mathcal{A}(\tau) = \mathcal{A}(t)$ for any $\tau \leq t$, then for any $T_1 < T_2$, the set $\bigcup_{t \in [T_1, T_2]} \mathcal{A}(t)$ is a bounded subset of $H^2(\Omega) \cap H^1_0(\Omega) \cap L^p(\Omega)$.

In particular, we have the following result for pullback attractors.

Corollary 2.7 Under the assumptions in Proposition 2.4, if $\mathcal{A} = \{\mathcal{A}(t) : t \in \mathbb{R}\}$ is a pullback attractor for the process defined by (5), then for any $T_1 < T_2$, the set $\bigcup_{t \in [T_1, T_2]} \mathcal{A}(t)$ is a bounded subset of $H^2(\Omega) \cap H^1_0(\Omega) \cap L^p(\Omega)$.

References

 T. Caraballo, G. Lukaszewicz & J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, *Nonlinear Analysis TMA* 64 (2006), 484-498.

- [2] T. Caraballo, G. Lukaszewicz & J. Real, Pullback attractors for nonautonomous 2D Navier-Stokes equations in unbounded domains, *Comptes rendus Mathématique* 342 (2006), 263–268.
- [3] P.E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn. 3 (2003), no. 1, 101-112.
- [4] Y. Li & C.K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, *Applied Mathematics and Computation* 190 (2007) 1020-1029.
- [5] J.C. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, 2001.
- [6] H. Song & H. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math. Anal. Appl. Vol.325 (2007), 1200-1215.
- [7] H. Song & C. Zhong, Attractors of non-autonomous reaction-diffusion equations in L^p, Nonlinear Analysis 68 (2008), 1890-1897.
- [8] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, Second Edition, 1997.
- [9] Y. Wang & C. Zhong, On the existence of pullback attractors for non-autonomous reaction-difusion equations, *Dynamical Systems*, Vol 23, No. 1, March 2008, 1-16.