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Gradient Infinite-Dimensional Random Dynamical Systems∗
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Abstract. In this paper we introduce the concept of a gradient random dynamical system as a random semiflow
possessing a continuous random Lyapunov function which describes the asymptotic regime of the
system. Thus, we are able to analyze the dynamical properties on a random attractor described
by its Morse decomposition for infinite-dimensional random dynamical systems. In particular, if
a random attractor is characterized by a family of invariant random compact sets, we show the
equivalence among the asymptotic stability of this family, the Morse decomposition of the random
attractor, and the existence of a random Lyapunov function.
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1. Introduction. One important aspect of the qualitative analysis of differential equations
and dynamical systems is the study of asymptotic, long-term behavior of solutions. To this
aim, the analysis of dynamical systems generally involves the study of the existence and
structure of invariant sets and their stability properties.

When an autonomous infinite-dimensional dynamical system, i.e., related to semiflows in
an infinite-dimensional phase space, with a global attractor is shown to possess a Lyapunov
function, the system is said to be gradient (see, for instance, Hale [19]), and most of the
important asymptotic regime of solutions can be deduced from the existence of this function.
In particular, alpha- and omega-limit sets of solutions converge to equilibria, and there are no
cycles between them. The existence of a finite family of invariant sets in the global attractor
describing the forward and backward behavior of solutions with no cycles between them is
defined in Carvalho and Langa [9] as a gradient-like dynamical system. Very recently, it has
been shown that this gradient-like dynamical description of a system, a consequence of the
existence of a Lyapunov map, is also a sufficient condition for the existence of such a function
(see Aragao-Costa et al. [1]); i.e., a system is gradient if and only if it is gradient-like in
the sense of Carvalho and Langa [9]. This fact allows us to describe a gradient system from
asymptotical dynamical properties of global solutions instead of the existence of an abstract
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Lyapunov function, for which no methods are known to obtain its existence. Moreover, as
gradient-like systems are robust under perturbation, in fact what is proved in [1] is that
gradient systems are persistent under (autonomous or nonautonomous) perturbations. The
argument in this result goes through the proof of the equivalence between a gradient-like
structure and the existence of a Morse decomposition on the global attractor.

On the other hand, when a semiflow in a phase space X is allowed to have random
influences, a description of the asymptotic behavior of the associated infinite-dimensional
random dynamical system is usually analyzed from the study of random attractors and their
characterization. A random attractor (see Crauel and Flandoli [17]) is an invariant random
compact set attracting in the pullback sense (see Definition 2.9). We prove that a random
attractor is an invariant compact set for which there exists a continuous (in the space variable)
random Lyapunov function describing a decreasing energy level on the evolutions of entire
orbits.

Recently, Liu has introduced a random version of Morse decomposition theory in Conley
[13] adapted to random invariant compact sets for flows or even semiflows (see Liu [27, 28, 29]
and Liu, Ji, and Su [30]). In particular, given a random attractor, it is first possible to define
a random attractor-repeller pair associated to a random dynamical system, from which to
describe a finite family {Mi(ω), i = 1, . . . , n} of random compact invariant sets named as
random Morse decomposition of the random attractor (see Definition 4.14). In these last
papers some dynamical properties of the Morse sets are proved. In this work, and in the
framework of infinite-dimensional dynamical systems, we prove the equivalence between a
gradient-like dynamics on a finite family of invariant random compact sets (see Definition
4.17) and the existence of a Morse decomposition on the random attractor.

On the other hand, in Liu [29] it is shown that any random Morse decomposition implies
the existence of a measurable random Lyapunov function on the phase space. In this paper we
prove that this function is in fact continuous in the phase spaceX and, conversely, its existence
gives rise to a Morse decomposition on the random attractor, which, as a consequence, implies
the equivalence with gradient-like dynamics on the associated finite family of invariant random
compact sets. Note that, in applications, the determination of a concrete Lyapunov function
is always a difficult problem, even in the deterministic case. Thus, our results allow us to
conclude the existence of such a Lyapunov function of a system from a detailed analysis of
the structure and asymptotic dynamics on the random attractor.

These results, as in the deterministic case (see Aragao-Costa et al. [1]), allow us to define a
concept of a gradient random dynamical system from two different but equivalent approaches:
an abstract one, by proving the existence of a random Lyapunov function, and a dynamical
one, by the description of the internal asymptotic behavior of entire orbits on the random
attractors with respect to the family Mi(ω).

Other concepts of attraction and, consequently, attractor-repeller pairs and Morse de-
composition have been introduced in the framework of random dynamical systems. Among
them, the one on weak attractors, related to convergence in probability, has been used to
prove the existence of Lyapunov functions on the random attractor (see Arnold and Schmal-
fuss [3]) or the existence of weak random Morse decomposition, as in Ochs [32]; see also [16].
We have adopted convergence P-a.s., in the pullback sense of a local attractor and in the
pullback-backwards sense in the case of a repeller. It is remarkable that this kind of conver-
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gence implies forward attraction in probability to local attractors and backwards attraction
in probability to associated repellers, as in the previous referenced papers, which is the same
as we observe in the autonomous deterministic case (see Conley [13], Rybakowski [33], or
Aragao-Costa et al. [1]).

2. Random dynamical systems and attractors. In this section, we will recall some defi-
nitions and propositions for later use. First, we establish the definition of continuous random
dynamical systems (cf. Arnold [2]).

Definition 2.1. Let (X, d) be a Polish metric space. Denote by T a subset of real numbers
R which satisfies either T = R or T = Z, and let T+ be defined by T+ = T∩R+. A continuous
random dynamical system (RDS), denoted by ϕ, consists of two ingredients:

(i) A model of the noise, namely, a metric dynamical system (Ω,F ,P, (θt)t∈T), where
(Ω,F ,P) is a probability space and (t, ω) �→ θtω is a measurable flow which leaves P invariant,
i.e., θtP = P for all t ∈ T.

(ii) A model of the system driven by noise, namely, a cocycle ϕ over θ, i.e., a measurable
mapping ϕ : T+×Ω×X → X, (t, ω, x) �→ ϕ(t, ω, x), such that (t, x) �→ ϕ(t, ω, x) is continuous
for all ω ∈ Ω and the family ϕ(t, ω, ·) = ϕ(t, ω) : X → X of random self-mappings of X
satisfies the cocycle property:

(2.1) ϕ(0, ω) = idX , ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ T+, ω ∈ Ω,

where ◦ means composition.
Remark 2.2. The time for the base flow (θt) is always assumed to be two-sided, even if

ϕ is defined for nonnegative time only. Furthermore, the maps ϕ(t, ω) : X → X are not
assumed to be invertible a priori. If the cocycle property (2.1) holds for two-sided time T
instead of T+, then ϕ(t, ω) is automatically invertible for every t ∈ T. In fact, in this case
ϕ(t, ω)−1 = ϕ(−t, θtω) for every t ∈ T.

We now establish the definition of random set, which is a basic concept for an RDS.
Definition 2.3. Let X be a metric space with a metric d. A set-valued map ω �→ D(ω)

taking values in the closed/compact subsets of X is said to be a random closed/compact set
if the mapping ω �→ d(x,D(ω)) is measurable for any x ∈ X, where d(x,B) := infy∈B d(x, y).
A set-valued map ω �→ U(ω) taking values in the open subsets of X is said to be a random
open set if ω �→ U c(ω) is a random closed set, where U c denotes the complement of U , i.e.,
U c := X \ U .

When we say a “random set” in what follows but do not specify that the set is open,
closed, or compact, then either it is clear from the context or it can be any one of these three
types, which, in our eyes, will not confuse the reader.

Definition 2.4. A random set D is said to be forward invariant under the RDS ϕ if
ϕ(t, ω)D(ω) ⊂ D(θtω) for all t ≥ 0 a.s. It is said to be invariant if ϕ(t, ω)D(ω) = D(θtω) for
all t ≥ 0 a.s.

Now we enumerate some basic results about random sets in the following proposition. For
more details the reader is referred to Arnold [2], Castaing and Valadier [10], Crauel [14], Hu
and Papageorgiou [21], and Arnold and Schmalfuss [3].

Proposition 2.5. Let X be a Polish space. Then the following assertions hold:
(i) D is a random closed set if and only if the set {ω ∈ Ω | D(ω)

⋂
U 	= ∅} is measurable

for any open set U ⊂ X.
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(ii) If D is a random closed set, then so is the closure of Dc.
(iii) If D is a random open set, then the closure D of D is a random closed set; if D is a

random closed set, then intD, the interior of D, is a random open set.
(iv) D is a random compact set in X if and only if D(ω) is compact for every ω ∈ Ω and

the set {ω ∈ Ω | D(ω)
⋂

C 	= ∅} is measurable for any closed set C ⊂ X.
(v) If {Dn, n ∈ N} is a sequence of random closed sets with nonvoid intersection, and there

exists n0 ∈ N such that Dn0 is a random compact set, then
⋂

n∈NDn is a random compact set
in X.

(vi) If f : Ω × X → X is a function such that f(ω, ·) is continuous for all ω and f(·, x)
is measurable for all x, then ω �→ f(ω,D(ω)) is a random compact set, provided that D is a
random compact set.

(vii) If D is a random closed set, then graph(D) := {(ω, x) ∈ Ω × X | x ∈ D(ω)} is a
measurable subset of F × B(X); conversely, given D : Ω → 2X , taking values in the closed
subsets of X, if graph(D) ∈ F × B(X), then D is an Fu-measurable (in particular, FP-
measurable, with FP being the completion of the σ-algebra F with respect to the measure
P) random closed set; i.e., the mapping ω ∈ Ω �→ d(x,D(ω)) is Fu-measurable (universally
measurable) for any x ∈ X.

(viii) If D is an FP-measurable random closed set, then there exists an F-measurable
random closed set D̃ such that D = D̃ a.s.

(ix) (Measurable selection theorem.) Let a multifunction ω �→ D(ω) take values in the
subspace of closed nonvoid subsets of X. Then D is a random closed set if and only if there
exists a sequence {vn : n ∈ N} of measurable maps vn : Ω → X such that

vn(ω) ∈ D(ω) and D(ω) = {vn(ω) ∈ X | n ∈ N} for all ω ∈ Ω.

In particular if D is a random closed set, then there exists a measurable selection, i.e., a
measurable map v : Ω → X such that v(ω) ∈ D(ω) for all ω ∈ Ω.

(x) (Projection theorem.) Let X be a Polish space and let M ⊂ Ω ×X be a set which is
measurable with respect to the product σ-algebra F × B(X). Then the set

ΠΩM = {ω ∈ Ω|(ω, x) ∈ M for some x ∈ X}
is universally measurable, i.e., belongs to Fu, where ΠΩ stands for the canonical projection of
Ω×X to Ω. In particular, it is measurable with respect to the P-completion F̄P of F .

Remark 2.6. By (vii) of the previous proposition, the intersection of a finite or countable
number of random closed sets is an Fu-measurable random closed set; and by (viii), we can
assume that it is just a random closed set.

Definition 2.7. For any D : Ω → 2X , the omega-limit set of D, denoted by ΩD, is defined
by

ΩD(ω) :=
⋂
t≥0

⋃
s≥t

ϕ(s, θ−sω)D(θ−sω)

for each ω ∈ Ω.
Definition 2.8. Given two random sets D and A, we say that A (pullback) attracts D if

lim
t→∞ d(ϕ(t, θ−tω)D(θ−tω)|A(ω)) = 0
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holds a.s., where d(A|B) stands for the Hausdorff semimetric between two sets A,B, i.e.,
d(A|B) := supx∈Ad(x,B); and we say A attracts D in probability or weakly attracts D if

P− lim
t→∞ d(ϕ(t, ω)D(ω)|A(θtω)) = 0;

i.e., given ε > 0, there exists t(ε) such that

P({ω ∈ Ω | d(ϕ(t, ω)D(ω), A(θtω)) > ε}) ≤ ε for all t ≥ t(ε).

By the measure preserving property of θt, it is clear that pullback attraction implies weak
attraction.

Global random attractors were introduced by Crauel and Flandoli [17] and Schmalfuss
[35] and were studied for many SDEs; see [5, 6, 8, 15, 26, 34, 36], among others. First, let us
recall the definition of a global random attractor. Here we adopt the point of view from [36],
also considered in [2, 34] and others. This more flexible version allows us to consider some
local properties.

Definition 2.9 (see [2, 34, 36]). Assume that ϕ is a random semiflow on a Polish space X.
A universe D is a collection of families (D(ω))ω∈Ω of nonempty subsets of X which is closed
with respect to set inclusion; i.e., if D1 ∈ D and D2(ω) ⊂ D1(ω) for all ω, then D2 ∈ D. A
random compact set S ∈ D is called a global random attractor of ϕ in D if

• S is invariant, i.e.,

(2.2) ϕ(t, ω)S(ω) = S(θtω) for all t ≥ 0

for almost all ω ∈ Ω;
• S pullback attracts in D; i.e., for any D ∈ D, we have

(2.3) lim
t→∞ d(ϕ(t, θ−tω)D(θ−tω)|S(ω)) = 0

a.s.;
• there exists a neighborhood U ∈ D of S; i.e., S(ω) ⊂ intU(ω) for almost all ω ∈ Ω.

Note that not every element of the universe D is a random set. Throughout the paper, we
assume that S is the global attractor of ϕ in the universe D. In specific theorems or results,
we will point out what elements D need to contain.

Remark 2.10. (i) It is immediate to check that the global random attractor defined above
for the RDS ϕ is the minimal random closed set in D which attracts all the elements in D,
and it is the largest random compact set which is invariant in the sense of (2.2).

(ii) Note that the definition of global random attractor is stronger than that of [17] by
requesting that the attractor itself be an element of the universe and there be a random
neighborhood of it which belongs to the universe, but these are satisfied, for instance, when
the universe consists of all the random tempered sets.

(iii) If there exists a random compact set C ∈ D which pullback attracts in D, then there
exists a unique global random attractor that coincides with the omega-limit set of C. For
details, the reader is referred to [25, Theorem 2.2].

We list the following two results from [28, 27] for later use.
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Lemma 2.11 (see [28, Lemma 3.1]). Assume that U is a random open set and that an in-
variant random compact set A ⊂ U satisfies that ΩU = A a.s. Then there exists a forward
invariant random open set Ũ with the same properties as U , i.e., A ⊂ Ũ and ΩŨ = A a.s.

Lemma 2.12 (see [27, Lemma 3.5]). Let U be a random open set, and x a random variable.
Define

(2.4) t(ω) := inf{t ∈ R+| ϕ(t, ω)x(ω) ∈ U(θtω)},

i.e., the first entrance time of x into U under the cocycle ϕ. Then ω �→ t(ω) is a random
variable, which is measurable with respect to the universal σ-algebra Fu.

Remark 2.13. By Proposition 2.5 (viii), the random entrance time t in Lemma 2.12 can
be assumed to be measurable with respect to F . Furthermore, by the measurable selection
theorem, Lemma 2.12 also holds when the random variable x is replaced by a random closed
set and U is forward invariant.

3. Random attractors and associated Lyapunov functions. The following “backward
orbit” and “entire orbit” were introduced in [29] for random semiflows.

Definition 3.1. (i) For fixed ω and x, a mapping σ·(ω) : R− → X is called a backward
orbit of ϕ through x driven by ω if it satisfies the cocycle property:

σ0(ω) = x, σt+s(ω) = ϕ(s, θtω)σt(ω) for all t ≤ 0, s ≥ 0, t+ s ≤ 0.

(ii) Let M denote the set of all X-valued random variables and let x ∈ M. A mapping
σ : R− → M is called a backward orbit of ϕ through x if for all ω ∈ Ω the following cocycle
property holds:

σ0(ω) = x(ω), σt+s(ω) = ϕ(s, θtω)σt(ω) for all t ≤ 0, s ≥ 0, t+ s ≤ 0.

Definition 3.2. (i) For fixed ω and x, a mapping σ·(ω) : R→ X is called an entire orbit of
ϕ through x driven by ω if it satisfies the cocycle property:

σ0(ω) = x, σt+s(ω) = ϕ(s, θtω)σt(ω) for all t ∈ R, s ≥ 0.

(ii) Let x ∈ M. A mapping σ : R → M is called an entire orbit of ϕ through x if for all
ω ∈ Ω the following cocycle property holds:

σ0(ω) = x(ω), σt+s(ω) = ϕ(s, θtω)σt(ω) for all t ∈ R, s ≥ 0.

Remark 3.3. Note that by the definition of entire orbit, for s ≥ 0, t ∈ R,

σt+s(ω) = ϕ(s, θtω)σt(ω),

but usually we do not have

ϕ(s, θtω)σt(ω) = σ0(θt+sω).

That is,

σt+s(ω) = σ0(θt+sω)
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does not hold usually. Only when σ0 = x is a random fixed point, i.e., ϕ(s, ω)x(ω) = x(θsω)
for s ≥ 0 and ω ∈ Ω, does the above relation hold.

Remark 3.4. (i) Note that when ϕ is restricted to an entire orbit σ through x driven by
ω, which will be denoted by ϕσ, it can be extended to be defined for all t ∈ R along the entire
orbit σ. Indeed, let

ϕσ(t, ω)(x) :=

{
ϕ(t, ω)(x) for t ≥ 0,
σt(ω) for t < 0,

or simply ϕσ(t, ω)(x) = σt(ω) for t ∈ R, taking into account that ϕ(t, ω)(x) = σt(ω) for t ≥ 0,
by the definition of entire orbit. A similar fact holds for an entire orbit through a random
variable x ∈ M, i.e., for all ω ∈ Ω,

ϕσ(t, ω)(x(ω)) :=

{
ϕ(t, ω)(x(ω)) for t ≥ 0,
σt(ω) for t < 0.

(ii) In the case that σ is an entire orbit of ϕ through x ∈ X driven by ω ∈ Ω, ϕσ is a
mapping from R × {ω} × {σ0} to X defined through ϕσ(t, ω)σ0 := σt for all t ∈ R. In the
case that σ is an entire orbit of ϕ through a random variable x ∈ M, ϕσ is a mapping from
{(t, ω, σ0(ω)) ∈ R × Ω × X} to X defined through ϕσ(t, ω)σ0(ω) := σt(ω) for all t ∈ R and
ω ∈ Ω.

(iii) Note that for any fixed t ≥ 0 and ω ∈ Ω, ϕ(t, ω) : X → X is a continuous mapping
on X, but not necessarily a homeomorphism. Generally, we cannot extend the definition of ϕ
from R+ to R compatibly, i.e., extend ϕ from a random semiflow to a random flow, which is
just like saying that we cannot extend a semiflow to a flow in the deterministic case without
additional assumptions; see [37, section 2 of Part II] for details. So, generally, ϕσ is not a
mapping from R×Ω×X to X. But for any point or random variable in an invariant random
compact set, there is always an entire orbit through it; see Remark 3.5 and Lemma 3.6 for
details. Note also that the backward orbit through the point or the random variable is not
unique in general, which is also the main reason we cannot extend the definition of ϕ from
R+ to R compatibly.

Remark 3.5. A random set D is forward invariant if and only if D = D+
ϕ a.s., where

D+
ϕ (ω) := {x ∈ X | ϕ(t, ω)x ∈ D(θtω) for all t ≥ 0}.

A random set D is invariant if and only if D = Dϕ a.s., where, for all ω ∈ Ω,

Dϕ(ω) :=

⎧⎨
⎩x ∈ X

∣∣∣∣∣
there exists an entire orbit σ : R→ X
of ϕ through x driven by ω which
satisfies σt(ω) ∈ D(θtω) for all t ∈ R

⎫⎬
⎭ .

The following result from [29] will be used later.
Lemma 3.6 (see [29, Lemma 4.2 and Corollary 4.2]). Assume that D is a forward invariant

random compact set; then for any random variable on ΩD there exists a backward orbit lying
on ΩD through this random variable. In particular, if D is an invariant random compact set,
then for any random variable on D, there exists a backward orbit lying on D through it.

Next, we prove a simple result which confirms that, like in the deterministic case, the
global random attractor consists of entire orbits. For a given entire orbit σ through a random
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variable, denote by Trσ the trace of σ, i.e., Trσ(ω) := {σt(ω)|t ∈ R} for each ω ∈ Ω; denote
by M̃ the subset of M that consists of all x ∈ M satisfying that there exists an entire orbit
σ through x such that S attracts Trσ. Then we have the following.

Proposition 3.7. The global random attractor S satisfies

S(ω) = {x(ω) ∈ X | x ∈ M̃}(3.1)

for almost all ω ∈ Ω.
Proof. By Lemma 3.6, the global random attractor S is a subset of the right-hand side of

(3.1), so we need to show the converse inclusion. For a given random variable x belonging to
the right-hand side of (3.1), let σ be an entire orbit through x with trace being attracted by
S. By the definition of entire orbit, for all t ∈ R, σ is also an entire orbit through the random
variable σt ∈ Trσ, that is, Trσ is an invariant set. Since S attracts Trσ and S is compact, it
follows that the omega-limit set ΩTrσ of Trσ is nonempty and ΩTrσ ⊂ S a.s.; see [15, Theorem
2.1]. Note that ΩTrσ = Trσ since Trσ is invariant. Therefore, Trσ ⊂ S and, in particular,
x(ω) ∈ S(ω) a.s. The proof is complete.

Lemma 3.8. Assume that S is the global random attractor with U being a closed forward
invariant neighborhood of S such that ΩU (ω) = S(ω) a.s. Then, for any D ∈ D, there exists
a random variable TD ≥ 0 such that, for almost all ω ∈ Ω,

(3.2) ϕ(t, ω)D(ω) ⊂ U(θtω) for all t ≥ TD(ω).

Proof. Since ΩD ⊂ S a.s., there exists a random T ≥ 0 such that

ϕ(t, θ−tω)D(θ−tω) ⊂ U(ω) for all t ≥ T (ω).

Note that, since U is forward invariant, if for some t0 ≥ 0 we have ϕ(t0, ω)D(ω) ⊂ U(θt0ω),
then the same holds for any t ≥ t0. Therefore, if the result is not true, then there exists
Ω1 ⊂ Ω with P(Ω1) > 0 such that

ϕ(t, ω)D(ω) 	⊂ U(θtω) for all t ≥ 0, ω ∈ Ω1.

That is,

d(ϕ(t, ω)D(ω)|U(θtω)) > 0 for all t ≥ 0, ω ∈ Ω1.

On the other hand, since U is a neighborhood of A, for arbitrary ε > 0, there exists δ > 0
such that

P{ω|d(U(ω)|S(ω)) ≥ δ} > 1− ε.

In particular, if we choose ε ≤ 1
2P(Ω1), then it follows that

P{ω|d(ϕ(t, ω)D(ω)|S(θtω)) ≥ δ} > 1− 1

2
P(Ω1) ≥ 1

2
P(Ω1) for all t ≥ 0.

This is a contradiction of the fact that S attracts D in probability. So, if we let

TD(ω) := inf{t ≥ 0|d(ϕ(t, ω)D(ω)|U(θtω)) = 0},
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then TD is the desired first entrance time. By Lemma 2.12 and Remark 2.13, we obtain that
TD is a random variable. The proof is complete.

Remark 3.9. In the previous lemma, we assume that there is a closed forward invariant
neighborhood U of S such that ΩU = S a.s. The forward invariance and closedness of U are not
restrictive assumptions, i.e., such a neighborhood does exist. Actually, by Definition 2.9, there
exists a neighborhood U (not necessarily closed and forward invariant) of S satisfying ΩU = S
a.s. Then it is clear that intU is an open random neighborhood of S with ΩintU = ΩU = S a.s.
By Lemma 2.11, there exists an open forward invariant neighborhood U1 of S with ΩU1 = S
a.s. Thus the closure of U1 is the required closed forward invariant neighborhood of S.

Remark 3.10. We may call the property (3.2) forward absorption, which appears in [3,
Proposition 4.4] for random flows. In contrast, there is also a concept of pullback absorption;
see [17, Definition 3.5] for details.

Lemma 3.11. Assume that U is a forward invariant random closed set. Then, for any
nonrandom constant T ≥ 0, UT (ω) := ϕ(T, θ−Tω)U(θ−Tω) is still a forward invariant random
closed set. Furthermore, for any t > s ≥ 0, Ut(ω) ⊂ Us(ω) for all ω ∈ Ω. In particular,

ΩU(ω) =
⋂
T≥0

UT (ω) =
⋂
n∈N

Un(ω) for all ω ∈ Ω.

Proof. Note that, for any t ≥ 0,

ϕ(t, ω)UT (ω) = ϕ(t, ω)ϕ(T, θ−Tω)U(θ−Tω)

⊂ ϕ(t, ω) ◦ ϕ(T, θ−Tω)U(θ−Tω)

= ϕ(t+ T, θ−Tω)U(θ−Tω)

= ϕ(T, θ−T ◦ θtω) ◦ ϕ(t, θ−Tω)U(θ−Tω)

= ϕ(T, θ−T ◦ θtω)U(θ−T ◦ θtω)
= UT (θtω),

where the inclusion holds since f(A) ⊂ f(A) for any continuous f , the second through fourth
equalities hold by the cocycle property, and the last equality holds by the definition of UT .
To see the second claim, note that

ϕ(t, θ−tω)U(θ−tω) = ϕ(s, θ−sω) ◦ ϕ(t− s, θ−tω)U(θ−tω) ⊂ ϕ(s, θ−sω)U(θ−sω),

where the inclusion holds thanks to the forward invariance of U . The proof is complete.
Theorem 3.12. Assume that D is a universe which contains all the singleton sets consisting

of a single deterministic point in X. Assume further that S is the global random attractor of
ϕ in D. Then there exists a Lyapunov function L : Ω×X → [0, 1] satisfying the following:

(i) x �→ L(ω, x) is continuous for each ω ∈ Ω and ω �→ L(ω, x) is measurable for each
x ∈ X.

(ii) L(ω, x) = 0 when x ∈ S(ω) and L(ω, x) > 0 when x ∈ X \ S(ω).
(iii) L is strictly decreasing along the orbits outside S, i.e., L(θtω,ϕ(t, ω)x) < L(ω, x) for

t > 0 when x ∈ X \ S(ω).
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Proof. Assume that U is a forward invariant random closed neighborhood of S in X such
that ΩU = S a.s. Define

Un(ω) := ϕ(n, θ−nω)U(θ−nω), n ∈ N.
Then, by Lemma 3.11, Un is also a forward invariant random closed set. Furthermore, Un+1 ⊂
Un and ΩUn = S a.s. Let

l̄n(ω, x) := d(x,Un(ω))

and
ln(ω, x) := sup

t≥0
l̄n(θtω,ϕ(t, ω)x) = sup

t≥0
d(ϕ(t, ω)x,Un(θtω)).

Then ln(ω, x) > 0 for x ∈ X \Un(ω), and ln(ω, x) = 0 for x ∈ Un(ω) by the forward invariance
of Un. Furthermore, ln is decreasing along orbits of ϕ. Actually, by the definition of ln(ω, x),
for s ≥ 0,

ln(θsω,ϕ(s, ω)x) = sup
t≥0

l̄n(θt ◦ θsω,ϕ(t, θsω) ◦ ϕ(s, ω)x)

= sup
t≥0

l̄n(θt+sω,ϕ(t + s, ω)x)

= sup
t≥s

l̄n(θtω,ϕ(t, ω)x)

≤ sup
t≥0

l̄n(θtω,ϕ(t, ω)x) = ln(ω, x).(3.3)

Note that, by the forward invariance of Un, for 0 ≤ t ≤ s, we have ϕ(s− t, θtω)Un(θtω) ⊂
Un(θsω), so

(3.4) d(ϕ(s, ω)x,Un(θsω)) ≤ d(ϕ(s, ω)x, ϕ(s − t, θtω)Un(θtω)).

On the other hand, by the continuity of the mapping t �→ ϕ(t, ω, x) for fixed (ω, x), we have

(3.5) lim
s↘t

d(ϕ(s, ω)x, ϕ(s − t, θtω)Un(θtω)) = d(ϕ(t, ω)x,Un(θtω)).

Thus, (3.4) and (3.5) imply that

(3.6) ln(ω, x) := sup
t∈R+∩Q

d(ϕ(t, ω)x,Un(θtω)),

so ln is measurable with respect to (ω, x) ∈ Ω×X.
For fixed ω and x we have from Lemma 3.8 that ϕ(t, ω)x ∈ intUn(θtω) for some t ≥ 0.

By the continuity of ϕ with respect to x, there exists a neighborhood Nx of x such that
ϕ(t, ω)Nx ⊂ intUn(θtω). By the forward invariance of intUn (note that since Un is forward
invariant, intUn is forward invariant),

ϕ(s, ω)Nx ⊂ intUn(θsω) for all s ≥ t.

It follows that, for any y ∈ Nx,

ln(ω, y) = sup
0≤s≤t

d(ϕ(s, ω)y, Un(θsω)).
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Therefore, for any y ∈ Nx, by the triangle inequality,

|ln(ω, x)− ln(ω, y)| ≤ sup
0≤s≤t

|ϕ(s, ω)x − ϕ(s, ω)y|,

which implies that ln(ω, ·) is continuous at x.
Let

l̃n(ω, x) :=
ln(ω, x)

ln(ω, x) + 1
.

Note that l̃n(ω, x) = 0 when x ∈ Un(ω) and ln(ω, x) > 0 when x 	∈ Un(ω). Furthermore, since
ln ≥ 0 and the derivative of the function x/(1 + x) is positive, we have l̃n(θtω,ϕ(t, ω)x) ≤
l̃n(ω, x) since ln satisfies this property. Let

l̂(ω, x) :=
∞∑
n=1

1

2n
l̃n(ω, x).

Since the sum is uniformly convergent, the mapping x �→ l̂(ω, x) is continuous for fixed ω ∈ Ω;
l̂(θtω,ϕ(t, ω)x) ≤ l̂(ω, x) because each l̃n satisfies this property. Furthermore, l̂(ω, x) = 0
if and only if ln(ω, x) = 0 for each n, that is, x ∈ ∩∞

n=1Un(ω) = S(ω); hence l̂(ω, x) > 0
for x 	∈ S(ω). Now l̂ satisfies all the properties needed except that it is decreasing but not
necessarily strictly decreasing along orbits outside S. To this end, and similar to the arguments
in [3, 29], let

L(ω, x) :=
1

2

[
l̂(ω, x) +

∫ ∞

0
e−t l̂(θtω,ϕ(t, ω)x)dt

]
.

Then it is not hard to check that L is continuous with respect to x, measurable with respect
to ω, and L(ω, x) = 0 for x ∈ S(ω), L(ω, x) > 0 for x /∈ S(ω) and L(θtω,ϕ(t, ω)x) ≤ L(ω, x)
for t ≥ 0. We only need to check that L is strictly decreasing along the orbits outside S. If for
some (ω, x) and t0 > 0 we have that L(θt0ω,ϕ(t0, ω)x) = L(ω, x), then by the monotonicity
of l̂ along the orbits of ϕ,

(3.7) l̂(θsω,ϕ(s, ω)x) = l̂(ω, x) > 0 for all 0 ≤ s ≤ t0

and
l̂(θs+t0ω,ϕ(s + t0, ω)x) = l̂(θsω,ϕ(s, ω)x) for Lebesgue almost all s ≥ 0.

Hence

(3.8) l̂(θnt0+sω,ϕ(nt0 + s, ω)x) = l̃(θsω,ϕ(s, ω)x)

for all n ∈ N and for Lebesgue almost all s ≥ 0. There exists a τ ≥ 0 such that (3.7) and (3.8)
hold, i.e.,

(3.9) l̂(θnt0+τω,ϕ(nt0 + τ, ω)x) = l̂(ω, x) > 0 for all n ∈ N.
By Lemma 3.8, for each k ∈ N, ϕ(nt0 + τ, ω)x ∈ intUk(θnt0+τω) when n is large enough. By
the standard diagonal method, there exists a subsequence {nk}∞k=1 ⊂ N such that ϕ(nkt0 +
τ, ω)x) ∈ intUk(θnkt0+τω) for each k ∈ N, so

lim
k→∞

l̂(θnkt0+τω,ϕ(nkt0 + τ, ω)x) = 0,

a contradiction to (3.9). The proof is complete.
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4. Morse decomposition for random dynamical systems. Recall that we use S to denote
the global random attractor of the given random dynamical system ϕ. By Remark 3.5 and
Lemma 3.6, for any point (random variable) in S, there exists a backward orbit lying in S
through this point (random variable). Afterward, when we say backward orbits, we refer to
those lying in S unless otherwise stated (since there may be backward orbits not lying in S
but lying in the entire phase space X).

Definition 4.1. An invariant random compact set A ⊂ S is called a (local) attractor if there
exists a random closed neighborhood U of A in X such that ΩU(ω) = A(ω). Here A attracts
in the universe given by taking all the subsets of U . The basin of attraction of A is defined by

B(A)(ω) := {x ∈ X|ϕ(t, ω)x ∈ intU(θtω) for some t ≥ 0}
and the dual repeller R of A is defined by

R(ω) := S(ω)\B(A)(ω).

(A,R) is called an attractor-repeller pair in S. We will denote B(A;S) := B(A) ∩ S in what
follows.

Remark 4.2. (i) Note that by Lemma 2.11 and Remark 3.9, without loss of generality, we
can assume that U in Definition 4.1 is forward invariant.

(ii) The basin of attraction B(A) of A is independent of U , and this is why we use the
notation B(A) instead of B(A,U) in Definition 4.1. Indeed, by [27, Lemma 3.2], the basin of
attraction is independent of U when the entire state space X is compact; when A is compact
and attracting, we can show that the basin of attraction of A is still independent of U even
if X loses compactness; see the forthcoming Lemma 4.8 for details. We also remark that
when X is not compact and A is not compact or attracting, the basin may depend on the
neighborhood U ; see [22, 23] for details.

Remark 4.3. (i) By the definition of local attractor, it is clear that the universe, in which
the local attractor attracts, is not unique since different U may determine the same local
attractor. But a local attractor has a maximal universe which contains all the subsets of
B(A) that are attracted by the local attractor; see the forthcoming Lemma 4.8. In what
follows, if we do not write explicitly the universe of a local attractor, then the maximal
universe is assumed. Furthermore, by Lemma 4.6 below, the maximal universe of a local
attractor contains all the random compact sets in B(A).

(ii) Although it may seem that the definition of local attractor in Definition 4.1 depends
on the global attractor S, this is not the case. Indeed, an invariant random compact set A is
a local attractor if it is the omega-limit set of one of its neighborhoods. But in this section we
are mainly concerned with Morse decomposition of the global random attractor, so we assume
the existence of global random attractor S from the beginning of this section. Note that S
is the largest invariant random compact set (see Remark 2.10 (i)), so any local attractor is
contained in S. That is why in Definition 4.1 we write A ⊂ S. Note also that a local attractor
can be regarded as the global attractor in its maximal universe; conversely, by Definition
2.9, the global attractor S can be regarded as a local attractor since it pullback attracts a
neighborhood U of itself.

Remark 4.4. Note that the above definition of attractor-repeller pair is slightly different
from that in [29]: here the attractor A attracts a random neighborhood of itself in X; there
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the attractor A attracts a random neighborhood in S, like the definition in [13] and [33] for
the deterministic case. A definition similar to ours is also adopted in [1], where the authors
show that both definitions actually coincide for deterministic dynamical systems. But we do
not know whether or not the two definitions coincide in the random case.

The following lemmas will be used in what follows, so we list them for the convenience of
the reader.

Lemma 4.5 (see [29, Lemma 4.3]). Assume that (A,R) is an attractor-repeller pair in S.
Then A, B(A;S), and R are invariant random sets.

Lemma 4.6 (see [30, Lemma 5.2]). Assume that A1 and A2 are two random attractors with
basins of attraction B(A1) and B(A2), respectively. Assume that D is a random compact set
satisfying D ⊂ B(A1) ∪B(A2) a.s. Then A1 ∪A2 pullback attracts D.

Remark 4.7. Denote B∗(R;S)(ω) := S(ω) \ A(ω) for each ω.
(i) Similar to the proof of [29, Lemma 4.3 (ii)], we obtain that ifD ⊂ S is forward invariant,

then S \D is backward invariant. Furthermore, S \D is strongly backward invariant in the
sense that any backward orbit through the point (or the random variable) on S lies on S \D.

(ii) Observe that, in contrast to the random flow case, the complement of a backward
invariant set need not be forward invariant. Particularly, B∗(R;S) is not necessarily forward
invariant since the forward orbit through a point in B∗(R;S) may enter A.

(iii) Since A is forward invariant, B∗(R;S) is strongly backward invariant. Similarly, the
random set S \ (A ∪R) is strongly backward invariant, but not necessarily forward invariant.
Note that the forward orbit through the point in S \ (A ∪R) can enter A, but never enter R.

(iv) Note that if a random set D ⊂ S is strongly backward invariant in the above sense,
then S \ D is forward invariant. That is, the reason that the complement of a backward
invariant set is not necessarily forward invariant lies in that the set is not strongly backward
invariant.

Lemma 4.8. Assume that A is an invariant random compact set in X and U is a closed for-
ward invariant random neighborhood of A such that ΩU = A a.s. Then the basin of attraction
B(A) of A, defined in Definition 4.1, is independent of U .

Proof. Assume that Ũ is also a closed forward invariant random neighborhood of A with
ΩŨ = A. First, since Ũ is attracted by A and U is a closed forward invariant neighborhood
of A, by Lemma 3.8, there exists a random variable t1 ≥ 0 such that

ϕ(t, ω)Ũ (ω) ⊂ U(θtω) for all t ≥ t1(ω).

We use B(A,U) and B(A, Ũ ) to denote the basins of attraction of A with respect to U and
Ũ , respectively. That is,

B(A,U)(ω) := {x ∈ X |ϕ(t, ω)x ∈ intU(θtω) for some t ≥ 0}
and

B(A, Ũ )(ω) := {x ∈ X |ϕ(t, ω)x ∈ intŨ(θtω) for some t ≥ 0}.
For arbitrary x ∈ B(A, Ũ)(ω), by the definition of B(A, Ũ), there exists t0 ≥ 0 such that
ϕ(t0, ω)x ∈ Ũ(θt0ω). Then, when s ≥ t1(θt0ω), we have

ϕ(s+ t0, ω)x = ϕ(s, θt0ω)ϕ(t0, ω)x ⊂ ϕ(s, θt0ω)Ũ(θt0ω) ⊂ U(θs+t0ω),
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i.e., x ∈ B(A,U)(ω). HenceB(A, Ũ)(ω) ⊂ B(A,U)(ω). In the same way we obtain B(A,U)(ω)
⊂ B(A, Ũ)(ω). This completes the proof.

Definition 4.9. Assume that x is a random variable in S, and σ is an entire orbit through
x. Then the omega-limit set Ωx of x and the alpha-limit set Ω∗,σ

x of x along the entire orbit
σ are defined by

Ωx(ω) :=
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω)x(θ−tω)

and

Ω∗,σ
x (ω) :=

⋂
T≥0

⋃
t≥T

ϕσ(−t, θtω)x(θtω),

respectively.
Remark 4.10. (i) Clearly Ωx is actually the omega-limit set of the random set {x}. By

definition, a point y ∈ Ωx(ω) (respectively, y ∈ Ω∗,σ
x (ω)) if and only if there exist sequences

tn → +∞ (respectively, tn → −∞) and yn = ϕσ(tn, θ−tnω)x(θ−tnω) such that yn → y as
n → +∞.

(ii) The above definition is the same as that in [29, Definition 4.3], but the notation there
is a little confusing. So we write it more precisely here.

For later use, we recall the following result from [29].
Lemma 4.11 (see [29, Lemma 4.5]). Assume that x ∈ S is a random variable with σ being

an entire orbit through x, and (A,R) is a random attractor-repeller pair on S. Then the
following statements hold:

(i) If x ∈ R a.s., then Ωx ⊂ R and Ω∗,σ
x ⊂ R a.s.

(ii) If x ∈ B(A;S)\A a.s., then Ωx ⊂ A and Ω∗,σ
x ⊂ R a.s.

(iii) If x ∈ A a.s., then Ωx ⊂ A a.s.; if Ω∗,σ
x ⊂ A a.s., then σ lies in A a.s.; i.e., for

arbitrary t ∈ R, we have σt ⊂ A a.s.
(iv) If x ∈ B(A;S) a.s., then Ωx ⊂ A a.s.; if x ∈ B∗(R;S) a.s., then Ω∗,σ

x ⊂ R a.s.
Lemma 4.12. Assume that σ : R → M is an entire orbit lying in S through the random

variable x. Then, for all ω ∈ Ω, we have

Ω∗,σ
σt

(ω) = Ω∗,σ
στ

(θt−τω) and Ωσt(ω) = Ωστ (θt−τω) for all t, τ ∈ R.
In particular, Ω∗,σ

σt (ω) = Ω∗,σ
x (θtω) and Ωσt(ω) = Ωx(θtω) for all ω ∈ Ω and t ∈ R.

Proof. Note that, for all ω ∈ Ω, we have σ0(ω) = x(ω), σt(ω) = ϕ(t − τ, θτω)στ (ω) for
t ≥ τ , and σt(ω) = ϕσ(t − τ, θτω)στ (ω) for t ≤ τ . For notational simplicity, we just assume
that τ = 0 and t ≥ τ , and the general case can be proved similarly. Therefore,

Ω∗,σ
σt

(ω) =
⋂
T≥0

⋃
s≥T

ϕσ(−s, θsω)σt(θsω)

=
⋂
T≥0

⋃
s≥T

ϕσ(−s, θsω)ϕ(t, θsω)x(θsω)

=
⋂
T≥0

⋃
s≥T

ϕσ(−(s− t), θsω)x(θsω)

=
⋂
T≥0

⋃
s≥T

ϕσ(−(s− t), θs−t ◦ θtω)x(θs−t ◦ θtω)
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= Ω∗,σ
σ0

(θtω),

where the first and the last equalities hold by the definition of the alpha-limit, and the third
one by the cocycle property. The corresponding result for the omega-limit is proved similarly,
so we omit the details.

Lemma 4.13. Assume that S is the global random attractor in universe D and that (A,R)
is an attractor-repeller pair in S. Then, for any random variable x ∈ X \ (A∪R) a.s. and the
associated singleton random set {x} ∈ D, we have

(4.1) lim
t→∞ d(ϕ(t, θ−tω)x(θ−tω), A(ω) ∪R(ω)) = 0

a.s. In particular,
lim
t→∞ d(ϕ(t, ω)x(ω), A(θtω) ∪R(θtω)) = 0

in probability.
Proof. Assume that U is a random closed neighborhood of A in X, disjoint from R, such

that ΩU = A a.s. By Lemma 2.11, we may assume that U is forward invariant. Note that

B(A)(ω) = {x ∈ X|ϕ(t, ω)x ∈ intU(θtω) for some t ≥ 0},
and by the definition of attractor-repeller, we have

B(A) ∩ S = S \R a.s.

By Lemma 4.6, for any random compact set D ⊂ B(A), A pullback attracts D. In particular,
for any random variable x ∈ B(A), A pullback attracts x.

For any random variable y ∈ X \ B(A), by the definition of B(A), we obtain that the
forward orbit of y never enters U . That is, for any t ≥ 0, we have

P{ω ∈ Ω | d(ϕ(t, θ−tω)y(θ−tω), U(ω)) = 0}
= P{ω ∈ Ω | d(ϕ(t, ω)y(ω), U(θtω)) = 0} = 0

by the measure preserving property of θt. Noting that A = ΩU ⊂ U , we have

Ωy ∩ΩU = ∅ a.s.

On the other hand, note that the random variable y is attracted by the global attractor S,
so Ωy is an invariant random compact set, and Ωy ⊂ S a.s. Since A pullback attracts any
random compact set in B(A), this enforces that Ωy ⊂ R a.s. As y is attracted by Ωy, y is
attracted by R.

Now for any random variable x ∈ X \ (A ∪ R) with {x} ∈ D, choose random variables
x1 ∈ B(A) a.s. and x2 ∈ X \B(A) a.s. such that x2 is attracted by R and that

x(ω) = x1(ω) for ω ∈ Ω1 and x(ω) = x2(ω) for ω ∈ Ω2,

where Ω1 := {ω|x(ω) ∈ B(A)(ω)} and Ω2 := {ω|x(ω) ∈ X \B(A)(ω)}. Then, by Lemma 4.6,
it follows that

Ωx ⊂ Ωx1∪x2 ⊂ A ∪R.
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That is, (4.1) holds. The proof is complete.
Definition 4.14. Assume that (Ai, Ri), i = 1, . . . , n, are attractor-repeller pairs of ϕ on S

with
∅ = A0 � A1 � · · · � An = S and S = R0 � R1 � · · · � Rn = ∅.

Then the family D = {Mi}ni=1 of invariant random compact sets, defined by

Mi = Ai ∩Ri−1, 1 ≤ i ≤ n,

is called a random Morse decomposition of S, and each Mi is called a Morse set. If D is a
Morse decomposition, MD is defined to be

⋃n
i=1Mi.

The following important result describes the internal asymptotic dynamics between the
invariant sets in a Morse decomposition of a random attractor S.

Theorem 4.15. Assume that D = {Mi}ni=1 is a Morse decomposition of the global attractor
S, determined by attractor-repeller pairs (Ai, Ri), i = 1, . . . , n. Then MD determines the
limiting behavior of ϕ on S. More precisely, we have the following:

(i) For any random variable x in S, there is an entire orbit σ through x such that Ωx ⊂ MD

and Ω∗,σ
x ⊂ MD a.s.

(ii) If σ is an entire orbit through the random variable x satisfying that Ωx ⊂ Mp a.s. and
Ω∗,σ
x ⊂ Mq a.s. for some 1 ≤ p, q ≤ n, then p ≤ q. Moreover, p = q if and only if σ lies on

Mp.
(iii) For each 1 ≤ k ≤ n, there exists a neighborhood Uk of ∪k

i=1Mi in X and a neighborhood
Vk of an invariant random compact set A∗

k in X, disjoint from Ak, such that Uk ∩Vk = ∅ and
Uk ∪ Vk is a random neighborhood of S in X. Furthermore, Ωx ⊂ ∪k

i=1Mi for any random
variable x in Uk, Ωx ⊂ A∗

k for any random variable x in Vk \S, and Ω∗,σ
x ⊂ A∗

k for any random
variable x in Vk ∩ S with σ being any entire orbit through it.

(iv) The attractors A1, . . . , An are uniquely determined by

(4.2) Ak(ω) = {x(ω) ∈ X | x ∈ Mk}, k = 1, . . . , n.

for almost all ω ∈ Ω, where

(4.3) Mk :=

{
x ∈ M

∣∣∣∣ x ∈ S a.s. and there exists an entire orbit σ
through x such that Ω∗,σ

x ⊂ ∪k
i=1Mi

}
.

(v) If σ1, . . . , σl are l entire orbits through the random variables x1, . . . , xl, respectively,
such that for some 1 ≤ j0, . . . , jl ≤ n, Ωxk

⊂ Mjk−1
and Ω∗,σk

xk ⊂ Mjk for k = 1, . . . , l, then
j0 ≤ jl. Moreover, j0 < jl if and only if σk does not lie on MD with positive probability for
some k, and j0 = · · · = jl otherwise.

Proof. Note that our definition of attractor-repeller pairs is slightly stronger than that in
[29], so (i), (ii), and (v) have been proved in [29, Theorem 5]; we need to verify (iii) and (iv).
First choose a neighborhood U of S in X with ΩU = S and a neighborhood Uk ⊂ U of Ak

in X with ΩUk
= Ak. Let Vk := (S \ Uk) ∪ (U \ B(A)), A∗

k := Rk. Then Uk ∩ Vk = ∅ and
Uk ∪ Vk = U . Noting that ∪k

i=1Mi ⊂ Ak, then by (i) and the proofs of Lemmas 4.13 and
4.11 (iv), we obtain that (iii) holds.

Note again that the definitions of attractor-repeller pair and Morse decomposition are
slightly stronger than that in [29]. Even in that case, we can prove (iv). Actually, for fixed
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k, A1, . . . , Ak are random local attractors in Ak with dual repellers given by R1 ∩ Ak, . . . ,
Rk∩Ak, and it follows that the associated Morse decomposition of Ak induced by the filtration
of attractors A1, . . . , Ak is given by Mi = Ai ∩ (Ri−1 ∩ Ak) = Mi for i = 1, . . . , k. That is,
{M1, . . . ,Mk} is a Morse decomposition of Ak. For any random variable x ∈ Ak, by the
invariance of Ak there exists an entire orbit σ through x on Ak. By (i), Ω∗,σ

x ⊂ M1 ∪ · · · ∪Mk;
i.e., Ak is a subset of the right-hand side of (4.2). Since Ak is an attractor in S, for any random
variable x ∈ S\Ak a.s., we have Ω

∗,σ
x ⊂ Rk by Lemma 4.11 (iv), hence Ω∗,σ

x ∩(M1∪· · ·∪Mk) = ∅
a.s. So the right-hand side of (4.2) is a subset of Ak, and (iv) is proved.

Remark 4.16. The random Morse decomposition defined in Definition 4.14 is the random
version of the original definition of Morse decomposition due to Conley [13]. In [18], Franzosa
proposed an alternative definition of Morse decomposition like Theorem 4.15 (ii), which is
adopted by many authors; see [31] for details. Indeed, Conley [13, page 40] had shown that
both definitions are equivalent. But for randomMorse decomposition, we do not know whether
or not the two definitions are equivalent.

A natural question that comes to mind is what conditions can characterize a Morse de-
composition for RDSs. The following theorem shows that conditions (i)–(iv) in Theorem 4.15
are actually sufficient for that end, so that we introduce the following concept.

Definition 4.17. Assume that S is the random global attractor of ϕ in universe D and that
D = {Mi}ni=1 is a family of invariant random compact sets in S. Then the semiflow ϕ is said
to be dynamically gradient (with respect to D) if the following conditions hold:

(g1) For any random variable x in S, there is an entire orbit σ through x such that
Ωx ⊂ MD and Ω∗,σ

x ⊂ MD a.s.
(g2) If σ is an entire orbit through the random variable x satisfying that Ωx ⊂ Mp a.s.

and Ω∗,σ
x ⊂ Mq a.s. for some 1 ≤ p, q ≤ n, then p ≤ q. Moreover, p = q if and only if σ lies

on Mp.
(g3) Let

Ak(ω) := {x(ω) ∈ X | x ∈ Mk}, k = 1, . . . , n,(4.4)

recalling that Mk is defined in (4.3). Then Ak is a random compact set for each k = 1, 2, . . . , n.
(g4) For each 1 ≤ k ≤ n, there exists a neighborhood Uk of ∪k

i=1Mi in X and a neighborhood
Vk of an invariant random compact set A∗

k in X, disjoint from Ak, such that Uk ∩ Vk = ∅,
Uk ∪ Vk is a random neighborhood of S in X, and Uk ∪ Vk ∈ D. Furthermore, Ωx ⊂ ∪k

i=1Mi

for any random variable x in Uk, Ωx ⊂ A∗
k for any random variable x in Vk \S, and Ω∗,σ

x ⊂ A∗
k

for any random variable x in Vk ∩ S with σ being any entire orbit through it.
Theorem 4.18. Assume that M1, . . . ,Mn are disjoint invariant random compact sets in S

and the RDS ϕ is dynamically gradient with respect to M1, . . . ,Mn. Then {M1, . . . ,Mn} is a
Morse decomposition for S with Ak being the associated increasing family of local attractors.

Proof. It suffices to verify that Ak given by (4.4), for k = 1, . . . , n, is actually an attractor
in X with dual repeller Rk and Mk = Ak ∩ Rk−1. First we show that Ak defined by (4.4) is
invariant. For an arbitrary random variable x ∈ Ak, by the definition of Ak, there exists an
entire orbit σ through x such that Ω∗,σ

x ⊂ M1 ∪ · · · ∪Mk a.s. Note that, for any given t ∈ R,
σ is an entire orbit passing through the random variable σt at time t. On the other hand,
by Lemma 4.12, Ω∗,σ

σt (·) = Ω∗,σ
σ0 (θt·) and hence is a subset of (M1 ∪ · · · ∪Mk)(θt·) a.s. By the

definition (4.4) of Ak, σt(·) ∈ Ak(θt·), so Ak is an invariant set.
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To show that Ak is an attractor in X, we need to show that Ak attracts a neighborhood
of itself in X. First, for a given random variable y0 ∈ Ak a.s., there exists an entire orbit σ
through it with Ω∗,σ

y0 ⊂ ∪k
i=1Mi. By (g1) and (g2), it follows that Ωy0 ⊂ ∪k

i=1Mi a.s. On the
other hand, for any random variable y ∈ Vk ∩ S, we have Ω∗,σ

y ⊂ A∗
k for any entire orbit σ

through y and Ωx ⊂ A∗
k for any random variable x ∈ Vk \ S. This implies that y0 ∈ Uk a.s.

That is, Ak ⊂ Uk a.s.
Uk is a neighborhood of Ak in X. Actually, if Uk is not a neighborhood of Ak a.s., then

there exists a random variable x ∈ Ak a.s. and meantime x ∈ Vk with positive probability.
Since Ak is an invariant random compact set, by Lemma 3.6, there is an entire orbit σ through
x lying in Ak. By the measure preserving property of θt, we have

lim
t→∞ d(ϕσ(−t, ω)x(ω), Ak(θ−tω)) = 0

in probability. Similarly, if x ∈ Vk ∩ S with positive probability, then, by the property of Vk

and the measure preserving property of θt, we have

lim
t→∞ d(ϕσ(−t, ω)x(ω), A∗

k(θ−tω)) = 0

with positive probability. This is a contradiction since Ak ∩ A∗
k = ∅ a.s., recalling that

Uk ∩ Vk = ∅ and Vk is a neighborhood of A∗
k. If x ∈ Vk \ S with positive probability, then by

the property of Vk we have

lim
t→∞ d(ϕ(t, ω)x(ω), A∗

k(θtω)) = 0

with positive probability. This is a contradiction because Ak attracts x in probability, and
Ak ∩A∗

k = ∅ a.s. Therefore, Uk is a neighborhood of Ak a.s. in X.
Furthermore, Uk is pullback attracted by Ak, so Ak is an attractor in X. If not, then

ΩUk
\ Ak 	= ∅ a.s. (Note that since ΩUk

and A are invariant sets, if P is ergodic under
θt, this naturally holds; if P is not ergodic under θt, then ΩUk

	⊂ A holds on at least one
ergodic component, and we may consider the problem on the ergodic component.) Taking
y0 ∈ ΩUk

(ω0) \Ak(ω0), by the definition of omega-limit set, there exist sequences tm → ∞ as
m → ∞ and ym ∈ Uk(θ−mω0) such that ϕ(tm, θ−tmω0)ym → y0 as m → ∞. Choose a random
variable ỹ ∈ Uk a.s. such that ỹ(θ−tmω0) = ym. Note that ỹ ∈ Uk a.s. implies that Ωỹ ⊂ ∪k

i=1Mi

a.s. by (g4); then, by the definition of omega-limit sets, y0 ∈ Ωỹ(ω0) ⊂ ∪k
i=1Mi(ω0) ⊂ Ak(ω0),

which is a contradiction.
Next we show that Mk+1 = Ak+1 ∩ Rk a.s. with Rk being the dual repeller of Ak, hence

completing the proof. Since (Ak, Rk) is an attractor-repeller pair in S, Rk is the maximal
invariant random compact set in S disjoint from Ak. That is, Mk+1 ⊂ Rk a.s. Therefore,
Mk+1 ⊂ Ak+1 ∩Rk a.s.

For an arbitrary random variable x ∈ Ak+1 ∩ Rk, there exists an entire orbit σ such that
Ω∗,σ
x ⊂ M1 ∪ · · · ∪Mk+1. Since x ∈ Rk we have Ωx ⊂ Rk by Lemma 4.11 (i). Note also that

Ωx ∩ (M1 ∪ · · · ∪Mk) = ∅ since M1 ∪ · · · ∪Mk ⊂ Ak. By (g1),

(4.5) Ωx ⊂ Mk+1 ∪ · · · ∪Mn a.s.
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Note that Ω∗,σ
x ⊂ Rk a.s. by Lemma 4.11 (i), so

(4.6) Ω∗,σ
x ⊂ (M1 ∪ · · · ∪Mk+1) ∩Rk = Mk+1 ∩Rk = Mk+1 ⊂ Ak+1 a.s.

By Lemma 4.11 (iii), σ lies on Ak+1 a.s. In particular, Ωx ⊂ Ak+1 a.s. Hence, by (4.5),

Ωx ⊂ (Mk+1 ∪ · · · ∪Mn) ∩Ak+1 = Mk+1 a.s.,

noting that Ak+1 is disjoint from Mk+2 ∪ · · · ∪ Mn by the definition (4.4) of Ak. This fact,
together with (4.6) and (g2), implies that σ lies on Mk+1 a.s. In particular, x ∈ Mk+1 a.s.
That is, Ak+1∩Rk ⊂ Mk+1 a.s. Therefore, Mk+1 = Ak+1∩Rk a.s. The proof is complete.

Remark 4.19. Note that property (i) in Theorem 4.15 is much weaker than its deterministic
counterpart. Note that, for any entire orbit σ, we have Ωx ⊂ Mi and Ω∗,σ

x ⊂ Mj for some i, j
in the deterministic case. This property in the deterministic case produces a partial order �
among the invariant sets Mi, i = 1, . . . , n: Mi � Mj if Ωx ⊂ Mi and Ω∗,σ

x ⊂ Mj for some entire
orbit σ. However, for property (i) in the random case, it cannot produce any partial order
among Mi, i = 1, . . . , n. The property (ii) in Theorem 4.15 is similar: it is also much weaker
than that in the deterministic case and cannot determine any order among Mi, i = 1, . . . , n,
if the entire orbit satisfying the condition (ii) is not known a priori. In the deterministic case,
the property (ii) always holds for any entire orbits, so it is simpler.

Remark 4.20. Again a natural question arises: can properties (i) and (ii) of a Morse de-
composition in Theorem 4.15 be improved like in the deterministic case pointed out in Remark
4.19? Unfortunately, the answer is no. This can be seen from a very simple observation. As-
sume that σ1 and σ2 are entire orbits through the random variables x and y, respectively,
with Ωx ⊂ Mi and Ωy ⊂ Mj a.s. for different i and j. Construct a new random variable
z(ω) = x(ω) for ω ∈ Ω1 and z(ω) = y(ω) for ω ∈ Ω2 with Ω1 ∩Ω2 = ∅ and Ω = Ω1 ∪Ω2; then
Ωz can be contained by neither Mi nor Mj a.s., nor by other Mk’s. This holds similarly for
the alpha-limit even if we consider only the random flow case instead of the random semiflow
case.

Remark 4.21. It seems a little artificial that, to characterize a Morse decomposition of
an invariant random compact set, we need the condition (g4). Actually this condition is
necessary. We know well that to characterize a Morse decomposition, we need to determine a
partial order among the given disjoint invariant sets Mi, i = 1, . . . , n. But note that conditions
(g1) and (g2) are not enough; see Remark 4.19. Now, condition (g4) induces a partial order
to obtain the Morse decomposition.

5. Lyapunov functions for Morse decompositions. In this section, we consider the re-
lation between Lyapunov functions and Morse decompositions. First, let us prepare some
lemmas for later use.

Lemma 5.1. Assume that S is the global random attractor of ϕ in universe D and that
(A,R) is an attractor-repeller pair in S. Then, for any random neighborhood V of R in
X \B(A) with V ∈ D, we have ΩV = R a.s.

Proof. Take a random neighborhood V ⊂ X \B(A) of R in X \B(A) with V ∈ D. Then
ΩV ⊂ S a.s. since S is the global attractor in D. For arbitrary x ∈ X \ B(A)(ω), by the
definition of B(A), we have ϕ(t, ω)x ∈ X \ B(A)(θtω) for any t ≥ 0. That is, X \ B(A) is a
forward invariant random closed set, noting that B(A) is a random open set since B(A)(ω) =
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∪t≥0ϕ(t, ω)
−1intU(θtω), where ϕ(t, ω)

−1intU(θtω) denotes the preimage of intU under ϕ. The
measurability of B(A) follows from the same proof as that in [12, Proposition 1.5.1].

By the definition of omega-limit sets, it follows that ΩV ⊂ ΩX\B(A) ⊂ X\B(A). Therefore,
ΩV ⊂ S∩(X\B(A)) = R a.s. The other inclusion is easy to check. The proof is complete.

Remark 5.2. By Lemma 2.11, the neighborhood V in the above lemma can be chosen
forward invariant.

By Lemmas 5.1 and 3.8, we have the following lemma.
Lemma 5.3. Assume that V is a forward invariant neighborhood of R in X \ B(A) with

ΩV = R a.s. Then, for any D ∈ D with D ⊂ X \ B(A) a.s., there exists a random variable
TD ≥ 0 such that, for almost all ω ∈ Ω,

ϕ(t, ω)D(ω) ⊂ V (θtω) for all t ≥ TD(ω).

To construct continuous Lyapunov functions for attractor-repeller pairs, we need the fol-
lowing assumption.
(H) Given (A,R) being an attractor-repeller pair on the global attractor S, assume that there

are a forward invariant random closed neighborhood U of A and a forward invariant
random closed neighborhood V of R in X \B(A) such that

(5.1) distmin(U(ω), V (ω)) ≥ 1

2
distmin(A(ω), R(ω)) for all ω ∈ Ω,

where distmin(A,B) := infx∈A infy∈B d(x, y).
Remark 5.4. Note that since A is an attractor, there is a forward invariant neighborhood U

ofA, disjoint fromR such that ΩU = A a.s. By Lemma 3.11, we have limn→∞ d(Un(ω)|A(ω)) =
0 a.s. with each Un(ω) = ϕ(n, θ−nω)U(θ−nω) being a forward invariant random closed set
containing A. By Lemma 5.1, a similar result holds for a forward invariant neighborhood V
of R in X \B(A) with Vn defined similarly.

Note that distmin(A(ω), R(ω)) > 0 for all ω ∈ Ω since A and R are compact. It follows
that for any ε > 0 there is N such that

P

{
ω ∈ Ω | distmin(Un(ω), Vn(ω)) ≥ 1

2
distmin(A(ω), R(ω))

}
> 1− ε for n ≥ N.

Proposition 5.5. Assume that (A,R) is an attractor-repeller pair in S, and that hypothesis
(H) holds. Then there exists a Lyapunov function L : Ω×X → [0, 1] satisfying that

(i) x �→ L(ω, x) is continuous for each ω ∈ Ω and ω �→ L(ω, x) is measurable for each
x ∈ X;

(ii) L(ω, x) = 0 when x ∈ A(ω) and L(ω, x) = 1 when x ∈ R(ω);
(iii) L is decreasing along all the orbits and is strictly decreasing along the orbits on

S \ (A∪R), i.e., 0 ≤ L(θtω,ϕ(t, ω)x) < L(ω, x) < 1 for t > 0 when x ∈ S(ω) \ (A(ω)∪R(ω)).

Proof. Since A is an attractor, i.e., there exists a forward invariant random closed neigh-
borhood U of A in X, disjoint from R, such that ΩU = A a.s., we denote

Un(ω) := ϕ(n, θ−nω)U(θ−nω).
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Then, by Lemma 3.11, Un is also a forward invariant random closed set. Furthermore, Un+1 ⊂
Un a.s. Similarly, by Lemma 5.1, choose a forward invariant random closed neighborhood V
of R in X \B(A) with ΩV = R a.s., and denote

Vn(ω) := ϕ(n, θ−nω)V (θ−nω),

with Vn+1 ⊂ Vn a.s. being forward invariant. Let

ln1 (ω, x) :=
d(x,Un(ω))

d(x,Un(ω)) + d(x, Vn(ω))

and
ln2 (ω, x) := sup

t≥0
ln1 (θtω,ϕ(t, ω)x).

Analogously to (3.3) in the proof of Theorem 3.12, for each n, ln2 is decreasing along the orbits,
i.e.,

ln2 (θtω,ϕ(t, ω)x) ≤ ln2 (ω, x) for any t ≥ 0.

By the forward invariance of Un and Vn, we have

ln2 (ω, x) =

{
0, x ∈ Un(ω),
1, x ∈ Vn(ω).

Similar to the proof of (3.6), we have

ln2 (ω, x) := sup
t∈R+∩Q

ln1 (θtω,ϕ(t, ω)x),

so ln2 is measurable with respect to (ω, x) ∈ Ω×X.
We now show that, for fixed ω ∈ Ω, the mapping ln2 (ω, ·) : X → [0, 1] is continuous. Note

that
B(A)(ω) = {x ∈ X|ϕ(t, ω)x ∈ intUn(θtω) for some t ≥ 0}.

For any x ∈ B(A)(ω), there exists t0 ≥ 0 such that ϕ(t, ω)x ∈ intUn(θtω) for t ≥ t0 by the
forward invariance of Un, and hence intUn. In particular, there exists a neighborhood Nx of
x with Nx ⊂ B(A)(ω) such that ϕ(t0, ω)Nx ⊂ intUn(θt0ω) and hence ϕ(t, ω)Nx ⊂ intUn(θtω)
for t ≥ t0 by the forward invariance of intUn. That is,

ln2 (θtω,ϕ(t, ω)x) = 0 for all t ≥ t0.

Therefore,

ln2 (ω, x) = sup
0≤t≤t0

d(ϕ(t, ω)x,Un(θtω))

d(ϕ(t, ω)x,Un(θtω)) + d(ϕ(t, ω)x, Vn(θtω))
.

For any y ∈ Nx, we have

|ln2 (ω, x)− ln2 (ω, y)| ≤ sup
0≤t≤t0

2d(ϕ(t, ω)x, ϕ(t, ω)y)

distmin(Un(θtω), Vn(θtω))

≤ sup
0≤t≤t0

4d(ϕ(t, ω)x, ϕ(t, ω)y)

distmin(A(θtω), R(θtω))

≤ α sup
0≤t≤t0

d(ϕ(t, ω)x, ϕ(t, ω)y),
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where the first inequality follows from [1, Proposition 3.3]; the second inequality follows from
the assumption (H); the third inequality holds for some constant α since the mappings t �→
A(θtω) and t �→ R(θtω) are continuous by the invariance of A and R, which implies that

inf
0≤t≤t0

distmin(A(θtω), R(θtω)) ≥ c

for some constant c > 0 since A and R are compact. So, we have obtained the continuity of
the mapping x �→ ln2 (ω, x) at x ∈ B(A)(ω) for fixed ω ∈ Ω.

We next show that, for fixed ω, the mapping x �→ ln2 (ω, x) is continuous at x ∈ R(ω).
Note that for any x0 ∈ R(ω) and x ∈ X, we have

|ln2 (ω, x)− ln2 (ω, x0)| ≤ 1− ln2 (ω, x) ≤ 1− ln1 (ω, x).

Note that for arbitrary ε > 0, when x is close to R(ω), we have 1− ln1 (ω, x) < ε.
Observe also that X = B(A)(ω) ∪B(R)(ω) for each ω ∈ Ω, where

B(R)(ω) := X \B(A)(ω).

Now to show the continuity of the mapping ln2 (ω, ·) on X, we only need to show that it
is continuous in B(R)(ω). For x ∈ B(R)(ω), by Lemma 5.3, there exists t ≥ 0 such that
ϕ(t, ω)x ∈ Vn(θtω), that is, l

n
2 (ω, x) = 1. Therefore, ln2 (ω, ) is continuous in B(R)(ω).

So far, the continuity of the mapping ln2 (ω, ·) : X → X has been proved.
Similar to the proof of Theorem 3.12, let

ln3 (ω, x) :=
1

2

[
ln2 (ω, x) +

∫ ∞

0
e−tln2 (θtω,ϕ(t, ω)x)dt

]
.

Then ln3 satisfies all the properties that ln2 possesses. By a similar argument to that in the
proof of Theorem 3.12, ln3 is strictly decreasing along orbits on S\(Un∪Vn), but not necessarily
strictly decreasing along orbits outside S.

Let

L(ω, x) :=
∞∑
n=1

1

2n
ln3 (ω, x).

Then ω �→ L(ω, x) is measurable for fixed x since each ω �→ ln3 (ω, x) is also measurable;
x �→ L(ω, x) is continuous for fixed ω since each x �→ ln3 (ω, x) is continuous, and the series
is uniformly convergent. Noting that A = ∩∞

n=1Un, we have L(ω, x) = 0 when x ∈ A(ω).
Furthermore, L(ω, x) = 1 when x ∈ ∩∞

n=1Vn(ω) = R(ω) and L is strictly decreasing along
orbits on S \ (A ∪R).

The previous proposition can be partly improved, as can be seen in the following corollary.
Corollary 5.6. Assume that the hypotheses of Theorem 3.12 hold, that (A,R) is an attractor-

repeller pair in S, and that hypothesis (H) holds. Then there exists a Lyapunov function
L : Ω×X → [0, 2] satisfying that

(i) x �→ L(ω, x) is continuous for each ω ∈ Ω and ω �→ L(ω, x) is measurable for each
x ∈ X;

(ii) L(ω, x) = 0 when x ∈ A(ω) and L(ω, x) = 1 when x ∈ R(ω);



GRADIENT RANDOM DYNAMICAL SYSTEMS 1839

(iii) L is decreasing along all the orbits and is strictly decreasing along the orbits on
X \ (A ∪R), i.e., 0 ≤ L(θtω,ϕ(t, ω)x) < L(ω, x) < 2 for t > 0 when x ∈ X \ (A(ω) ∪R(ω)).

Proof. The result follows by setting L̃ = L1 + L2, with L1 being the Lyapunov function
in Theorem 3.12 and L2 being the Lyapunov function in Proposition 5.5.

In what follows, we need the following lemmas on omega-limit sets.
Lemma 5.7. Let S be the global attractor for ϕ. Then, for any forward invariant random

closed set D ∈ D, ΩD is the maximal invariant random compact set in D.
Proof. First, by the definition of omega-limit set and the forward invariance of D, we

have ΩD ⊂ D. Since S is the global attractor, by [17, Proposition 3.6], ΩD ⊂ S and ΩD is
invariant. If E ⊂ D is another invariant random compact set and E \ ΩD 	= ∅ a.s., then by
the definition of omega-limit set, we have

E = ΩE ⊂ ΩD

since E ⊂ D implies ΩE ⊂ ΩD, a contradiction.
Lemma 5.8. Let S be the global attractor of ϕ in the universe D. Assume that D ∈ D is a

forward invariant random closed set. Then

ΩD∩S = ΩD a.s.

Proof. By the definition of omega-limit set, ΩD∩S ⊂ ΩD, so we only need to show that
the converse inclusion holds a.s. Note that ΩD ⊂ S and ΩD is invariant since S is the global
attractor. Since D ∩ S is forward invariant, by Lemma 5.7, ΩD∩S is the maximal invariant
random compact set inD∩S. On the other hand, ΩD ⊂ D and ΩS ⊂ S, so ΩD∩ΩS(= ΩD) is an
invariant random compact set in D∩S. Therefore, ΩD ⊂ ΩD∩S. The proof is complete.

The following result ensures the existence of an attractor-repeller pair from the existence
of a Lyapunov function.

Proposition 5.9. Assume that A and R are two disjoint invariant random compact sets and
L is a continuous Lyapunov function for (A,R) satisfying the properties in Proposition 5.5.
Then (A,R) is an attractor-repeller pair of ϕ on the global attractor S.

Proof. The proof is a modification of [30, Lemma 4.6] for random flows on compact spaces.
Note that A ∪R ⊂ S a.s. since S is the maximal invariant random compact set. Define a

random set M by
M(ω) := {x ∈ X | L(ω, x) < 1} ∩ S(ω).

Then it is easy to see that R = S\M . On the one hand, L(ω, x) < 1 implies L(θtω,ϕ(t, ω)x) <
1 for t ≥ 0, so M is forward invariant. On the other hand, M is the complement of R in S,
an invariant set, so M is backward invariant (see Remark 4.7 (i)). That is, M is an invariant
random open set in S. For given 0 < α < 1, define the random sets M̃α and Mα by

M̃α(ω) := {x ∈ X | L(ω, x) ≤ α}
and

Mα(ω) := {x ∈ X | L(ω, x) ≤ α} ∩ S(ω),

respectively. That is, Mα = M̃α ∩ S. Since, for any (x, ω) ∈ X × Ω, we have

L(ω, x) ≥ L(θtω,ϕ(t, ω)x), t ≥ 0,
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hence x ∈ M̃α(ω) implies ϕ(t, ω, x) ∈ M̃α(θtω); i.e., M̃α is a forward invariant random closed
set (thus, Mα is also forward invariant) and it is a random neighborhood of A in X. By
Lemma 5.8, we have

ΩM̃α
= ΩMα .

Let Aα be the omega-limit set of Mα, i.e.,

Aα(ω) := ΩMα(ω) =
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω)Mα(θ−tω).

Then, by the forward invariance of Mα, we have

Aα(ω) =
⋂
t≥0

ϕ(t, θ−tω)Mα(θ−tω).

On the one hand, for all ω ∈ Ω, we have

A(ω) =
⋂
t≥0

ϕ(t, θ−tω)A(θ−tω) ⊂
⋂
t≥0

ϕ(t, θ−tω)Mα(θ−tω) = Aα(ω).

Note that Mα is attracted by the global attractor S and S is compact, so Aα is an invariant
random compact set. Consider

L̃(ω) := sup
x∈Aα(ω)

L(ω, x).

On the other hand we have Aα ⊂ A P-a.s. If the assertion is false, similarly to the argument
of Proposition 6.2 in [3], we then have L̃(·) > 0 with positive probability and hence

(5.2) L̃(·) > L̃(θt·) for all t > 0

with positive probability. Note that L̃(ω) ≤ α for all ω, so L̃ is integrable. Then by the
invariance of P under θ, we have∫

Ω
(L̃(ω)− L̃(θtω))dP(ω) = 0,

a contradiction to (5.2). Hence, we have obtained A = Aα P-a.s. Therefore, A = ΩMα and,
consequently, A = ΩM̃α

P-a.s., i.e., A is an attractor. Now, we only need to show that M is
in fact the basin of attraction of A on S, i.e., B(A;S) = M , recalling that B(A;S) is defined
in Definition 4.1.

For any random compact set D ⊂ M , by the strict decreasing property of the Lyapunov
function L on S \ (A ∪ R) and the compactness of D, for P-almost all ω ∈ Ω, we have, for
some α < 1,

ϕ(t, ω)D(ω) ⊂ Mα(θtω) for all t ≥ TD(ω).

Analogously to the proof of [30, Lemma 4.3], we can conclude that A pullback attracts D.
Since A and R are two disjoint invariant random compact sets, A can never pullback attract
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R. On the other hand, R = S \M , so M is the basin of attraction of A on S, and (A,R) is
an attractor-repeller pair on S. The proof is complete.

It seems that the following result has dynamical meaning, although the proof we provide
is entirely algebraic.

Lemma 5.10. Assume that D = {Mi}ni=1 is a Morse decomposition of S determined by
attractors ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = S. Then we have

n⋃
i=1

Mi =

n⋂
i=1

(Ai ∪Ri).

Proof. The proof amounts to a verification of

n⋃
i=1

(Ai ∩Ri−1) =
n⋂

i=1

(Ai ∪Ri).

Suppose x ∈ ⋂n
i=1(Ai(ω) ∪ Ri(ω)). Let k := min{i|x ∈ Ai(ω)}. Then x /∈ Ak−1(ω), so

x ∈ Rk−1(ω). That is, x ∈ Ak(ω) ∩ Rk−1(ω) = Mk(ω) ⊂ MD(ω). On the other hand, if
x ∈ MD(ω), then x ∈ Mk(ω) = Ak(ω) ∩ Rk−1(ω) for some 1 ≤ k ≤ n. Hence x ∈ Ak(ω) ⊂
Ak+1(ω) ⊂ · · · ⊂ An(ω) and x ∈ Rk−1(ω) ⊂ Rk−2(ω) ⊂ · · · ⊂ R1(ω). It follows that

x ∈
(

n⋂
i=k

Ai(ω)

)
∩
(

k−1⋂
i=1

Ri(ω)

)
⊂
(

n⋂
i=k

(Ai(ω) ∪Ri(ω))

)
∩
(

k−1⋂
i=1

(Ai(ω) ∪Ri(ω))

)

=
n⋂

i=1

(Ai(ω) ∪Ri(ω)).

The proof is complete.
We can now conclude with the following important result.
Theorem 5.11. Assume that D = {M1,M2, . . . ,Mn} is a Morse decomposition of the global

random attractor S and that hypothesis (H) holds for each of the attractor-repeller pairs which
induce the Morse decomposition. Then there exists a Lyapunov function L : Ω ×X → [0, 1]
such that the following hold:

(i) The mapping x �→ L(ω, x) is continuous for fixed ω and the mapping ω �→ L(ω, x) is
measurable for fixed x.

(ii) L is constant on each Mi, i.e., for all x, y ∈ Mi(ω), L(ω, x) = L(ω, y) = αi, and αi is
independent of ω, i = 1, . . . , n.

(iii) 0 = α1 < α2 < · · · < αn, i.e., L(·,M1(·)) < L(·,M2(·)) < · · · < L(·,Mn(·)).
(iv) For any x ∈ X and t > 0, L(ω, x) ≥ L(θtω,ϕ(t, ω)x); for x ∈ S(ω) \ (⋃n

i=1 Mi(ω))
and t > 0, L(ω, x) > L(θtω,ϕ(t, ω)x).

Proof. Assume that the Morse decomposition D = {Mi}ni=1 is determined by attractor-
repeller pairs (Ai, Ri), i = 0, 1, . . . , n, and assume that li is the Lyapunov function constructed
in Proposition 5.5 for the attractor-repeller pair (Ai, Ri). Let

(5.3) L(ω, x) :=
n∑

i=1

2li(ω, x)

3i+1
.
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Then L is the desired Lyapunov function. Clearly (i) holds. For the Morse set Mi, 1 ≤ i ≤ n,
we have

Mi ⊂ Aj, j ≥ i, and Mi ⊂ Rj , j ≤ i− 1.

Hence by the definition of li, we have L(·,Mi(·)) =
∑i−1

j=1

2

3j+1
, which verifies (ii)–(iii). For

x ∈ X\(⋃n
i=1 Mi(ω)), by Lemma 5.10 we know that there exists an i for 1 ≤ i ≤ n such that

x /∈ Ai(ω)∪Ri(ω). Therefore, we have li(ω, x) > li(θtω,ϕ(t, ω)x) for all t > 0, which, together
with the fact lj(ω, x) ≥ lj(θtω,ϕ(t, ω)x) for each 1 ≤ j ≤ n, imply (iv).

Corollary 5.12. Assume that D = {M1,M2, . . . ,Mn} is a Morse decomposition of the global
random attractor S. Then there is a Lyapunov function L̃ : Ω×X → [0, 1] satisfying (i)–(iii)
in Theorem 5.11; furthermore L̃ is strictly decreasing on X \ (⋃n

i=1Mi); i.e., for any t > 0
and x ∈ X \ (⋃n

i=1Mi(ω)), L̃(ω, x) > L̃(θtω,ϕ(t, ω)x).

Proof. Let L̃(ω, x) :=
∑n

i=1
2li(ω,x)
3i+1 with each li being the Lyapunov function for the

attractor-repeller pair (Ai, Ri) given in Corollary 5.6. Then L̃ satisfies the desired prop-
erty.

The following result shows the importance of the existence of a Lyapunov function in order
to provide a Morse decomposition on a random attractor which, by Theorem 4.15, implies the
RDS to be dynamically gradient as in Definition 4.17.

Theorem 5.13. Let D = {M1,M2, . . . ,Mn} be a finite collection of mutually disjoint in-
variant random compact sets, and assume that there exists a continuous Lyapunov function
for D satisfying (i)–(iv) in Theorem 5.11. Then D is a Morse decomposition of the global
attractor S.

Proof. The proof is a modification of [30, Lemma 5.4] for the random flow case on compact
spaces.

Note that S is the maximal invariant random compact set, so M1, . . . ,Mn are subsets of S.
Assume that L is a Lyapunov function for D. Without loss of generality, let L(·,Mi(·)) = αi.
By Theorem 5.11 (ii)–(iii), αi are nonrandom constants and 0 = α1 < α2 < · · · < αn. Let
A1 := M1. For arbitrary α1,2 with α1 < α1,2 < α2, define the random sets Ñ1,2 and N1,2 by

Ñ1,2(ω) := {x ∈ X| α1 ≤ L(ω, x) ≤ α1,2} and N1,2(ω) = Ñ1,2(ω) ∩ S(ω),

respectively. Note that Ñ1,2 is a forward invariant neighborhood of A1 in X. Then, completely
identical to the proof of Proposition 5.9, we know that A1(= M1) is an attractor with ΩÑ1,2

=

A1, and the corresponding basin of attraction B(A1;S) on S is

B(A1;S)(ω) = {x ∈ X | α1 ≤ L(ω, x) < α2} ∩ S(ω).

Therefore, the repeller R1 corresponding to A1 on S is

R1(ω) = {x ∈ X | L(ω, x) ≥ α2} ∩ S(ω).

Hence M2, . . ., Mn ⊂ R1.
For each α2,3 ∈ (α2, α3), define the random sets Ñ2,3 and N2,3 by

Ñ2,3(ω) := {x ∈ X| α1 ≤ L(ω, x) ≤ α2,3} and N2,3(ω) = Ñ2,3(ω) ∩ S(ω),
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respectively. Then M1 ∪ M2 ⊂ N2,3 and Ñ2,3 is a forward invariant random neighborhood
of A2 in X. Assuming that A2 is the attractor inside Ñ2,3, by Lemma 5.8, for P-almost all
ω ∈ Ω, we obtain

(5.4) A2(ω) =
⋂
t≥0

ϕ(t, θ−tω)N2,3(θ−tω).

Hence, we have M1 ∪M2 ⊂ A2 P-a.s. Therefore, we have obtained A2 ∩R1 ⊃ M2 P-a.s. Next,
we show that A2 ∩ R1 ⊂ M2 P-a.s. For any x ∈ N2,3(ω)\(M1(ω) ∪M2(ω)) and for all t > 0,
we have

L(θtω,ϕ(t, ω)x) < L(ω, x).

Therefore, by the proof of Proposition 5.9, for every α ∈ (α2, α3), the forward invariant
random compact set Nα, given by

Nα(ω) := {x ∈ X | α1 ≤ L(ω, x) ≤ α} ∩ S(ω),

is always a forward invariant neighborhood of A2 in S and ΩNα = A2. Hence, we have

A2 ⊂
⋂
n∈N

Nα2+
1
n

P-a.s.,

and, similarly, we also have

R1 ⊂
⋂
n∈N

N̂α2− 1
n

P-a.s.,

where

Nα2+
1
n
(ω) :=

{
x ∈ X | α1 ≤ L(ω, x) ≤ α2 +

1

n

}
∩ S(ω)

and

N̂α2− 1
n
(ω) :=

{
x ∈ X | L(ω, x) ≥ α2 − 1

n

}
∩ S(ω).

Thus, for P-almost all ω,

A2(ω) ∩R1(ω) ⊂
(⋂

n∈N
Nα2+

1
n
(ω)

)
∩
(⋂

n∈N
N̂α2− 1

n
(ω)

)

⊂
⋂
n∈N

(Nα2+
1
n
(ω) ∩ N̂α2− 1

n
(ω))

= {x ∈ X | L(ω, x) = α2} = M2(ω);

i.e., we have obtained A2 ∩R1 = M2 P-a.s. Then we can obtain R2 from A2, i.e.,

R2(ω) = {x ∈ X | L(ω, x) ≥ α3} ∩ S(ω).

Similar to the above arguments, for α3,4 ∈ (α3, α4), define the random sets Ñ3,4 and N3,4

by
Ñ3,4(ω) = {x ∈ X| α1 ≤ L(ω, x) ≤ α3,4} and N3,4(ω) = Ñ3,4(ω) ∩ S(ω),
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and we immediately obtain A3 similar to (5.4). Hence we at once obtain the repeller R3

corresponding to A3. Similarly, we can obtain A4, R4, . . . , An−1, Rn−1 in the same way. Let
A0 = Rn = ∅, An = R0 = S. Therefore we have obtained

∅ = A0 � A1 � · · · � An = S P-a.s. and S = R0 � R1 � · · · � Rn = ∅ P-a.s.

from Mi, i = 1, . . . , n, satisfying

Mi = Ai ∩Ri−1, 1 ≤ i ≤ n.

This shows that D is a Morse decomposition of S and hence completes the proof of the
theorem.

6. Applications. For infinite-dimensional dynamical systems, the structure and charac-
terization of global attractors is a difficult task. Indeed, there is only a small set of examples
in which the description of the geometrical structure of attractors has been satisfactorily car-
ried out (see, for instance, Hale [19]). The same problem appears in the random case. In the
deterministic case, one of these canonical models is the Chafee–Infante equation, for which the
attractor consists of an odd number of stationary points (which bifurcate from the origin) and
the unstable manifolds joining them (see Hale [19], Henry [20], and Chafee and Infante [11]).
The following example is a random version of this model, and we show, from the study of
dynamical properties on the random attractor, the existence of a gradient infinite-dimensional
dynamical system.

Suppose there exists a single multiplicative Stratonovich term on the Chafee–Infante equa-
tion on the interval D = (0, π),

(6.1) du = [Δu+ βu− u3] dt+ σu ◦ dWt, u(0, t) = u(π, t) = 0

(Wt is a two-sided one-dimensional Brownian motion), using the framework of RDSs (see [7]
for more details). The equation can be rewritten in the form of an evolution equation on
X = L2(D),

(6.2) du = [−Au+ βu− u3] dt+ σu ◦ dWt,

where A = −Δ on D with Dirichlet boundary condition. For the details of the finite-
dimensional Stratonovich integral, the reader is referred to [24, pages 100–102]. There is
no essential difference to rewrite the definition and properties for the Hilbert space–valued
Stratonovich integral, which is sufficient for our purpose here. We also remark that the mild
solution to (6.2) satisfies a variant of constants formula, i.e.,

u(t) = T (t)u(0) +

∫ t

0
T (t− s)(βu(s) − u3(s))ds+ σ

∫ t

0
T (t− s)u(s) ◦ dWs,

where T (t)t≥0 is the strongly continuous semigroup generated by −A.
Nevertheless, the procedure to prove that (6.2) generates an RDS (see [4, 7]) does not

make use of this formulation, as it is carried out by performing a change of variables which
transforms (6.2) into a problem for a random partial differential equation, i.e., a partial
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differential equation whose coefficients depend on the random parameter ω, and which can be
analyzed for every fixed ω ∈ Ω.

The study in Caraballo et al. [4, 7] shows that (6.2) generates an RDS ϕ in the space X,
and with respect to a metric dynamical system (Ω,F ,P, θt), which possesses a positive ξ(ω),
and, respectively, a negative −ξ(ω), random fixed point; i.e., ξ(·) is a random variable such
that ϕ(t, ω)ξ(ω) = ξ(θtω) in the interior of the positive and, respectively, negative, invariant
cones

K+ = {u ∈ X : u(x) ≥ 0 a.e.}
and

K− = {u ∈ X : u(x) ≤ 0 a.e.}.
Note that {0} is also a fixed point of the equation in K+ ∪ K−. Then there exist random
attractors S+(ω) and S−(ω) in K+ and K−, respectively. Let λi denote the eigenvalues of the
operator A. It is also proved in [7] that if β ∈ (λ1, λ2), 0 is locally unstable, and it is conjectured
that ξ(ω) and −ξ(ω) are pullback attracting random compact sets inside K+ and K−. For
this concrete model, Liu [29] describes the Morse sets for the attractor S(ω) = S+(ω)∪S−(ω)
in the phase space K+ ∪ K−. Indeed, to the local attractors

A0 = ∅, A1(ω) = {ξ(ω)}, A2(ω) = {−ξ(ω), ξ(ω)}, A3(ω) = S(ω)

correspond the associated repellers

R0 = S(ω), R1(ω) = [−ξ(ω), 0], R2(ω) = {0}, R3(ω) = ∅,

so that the Morse sets are given by

M1(ω) = {ξ(ω)}, M2(ω) = {−ξ(ω)}, M3(ω) = {0}.

That is, {M1,M2,M3} is a Morse decomposition of the attractor S. By the results of this
paper, we can say more: we conclude from Theorem 5.11 that there exists a continuous random
Lyapunov function associated to this Morse decomposition, so that (6.1) is a gradient RDS.
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