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Abstract

We introduce the concept of multivalued random dynamical system (MRDS)
as a measurable multivalued flow satisfying the cocycle property. We show how
this is a suitable framework for the study of the asymptotic behaviour of some
multivalued stochastic parabolic equations by generalizing the concept of global
random attractor to the case of a MRDS.
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1 Introduction

The study of the qualitative behaviour of ordinary and partial differential equations is

one of the most developed branches in this field. When a phenomenon from Physics,

Chemistry, Biology, Economics can be described by a system of differential equations
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1134. The third author has been supported by PB-2-FS-97 grant (Fundación Séneca de la Comunidad
Autónoma de Murcia).
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where the existence of global solutions can be assured, one of the most interesting problems

is to know what is the asymptotic behaviour of the system when time grows to infinite.

The study of the asymptotic behaviour of the system is giving us relevant information

about ”the future” of the phenomenon described in the model. In this context, the concept

of global attractor has become a very useful tool to describe the long-time behaviour of

many important differential equations (see, among others, Ladyzhenkaya [18], Babin and

Vishik [5], Hale [17], Temam [23]). Most of this theory has been successfully and deeply

developed for autonomous deterministic partial differential equations.

However, some difficulties appear when we have to work without uniqueness of solu-

tions in the system or when the model is better described by, for instance, a differential

inclusion. In these cases, it has been shown that the theory of multivalued flows makes

suitable the treatment of the asymptotic behaviour of these differential equations and

inclusions (Ball [6], Melnik and Valero [19]). It is proved in these works that we can

generalize the classical dynamical system theory to these more general cases.

A new and different difficulty appears when we a random term is added to the deter-

ministic equation, a white noise for instance, so that the corresponding stochastic partial

differential equation must be treated in a different way. Firstly, the equation becomes

nonautonomous, which makes necessary the introduction of a two time dependent pro-

cess instead of a semigroup. Moreover, the strong dependence on the random term adds

another difficulty. The new and rapidly growing theory of random dynamical systems

(Arnold [2]) has become the appropriate tool for the study of many important random

and stochastic equations. In this framework, Crauel and Flandoli [11] (see also Schmalfuss

[22]) introduced the concept of random attractor as a proper generalization (see Caraballo

et al.[9]) of the corresponding (determininstic) global attractor.

The joint treatment of multivalued functions and stochastic terms in a differential

equation makes difficult even the existence and uniqueness of solutions for these systems

(Ahmed [1], Da Prato and Frankowska [14], among others). In this paper we study

the asymptotic behaviour of some stochastic inclusions by introducing previously the

corresponding concept of random attractor for this case.

The paper is divided into two parts. In the first one (Section 2), we generalize the

concept of random dynamical system in Arnold [2] to the case of multivalued functions.

A multivalued random dynamical system (MRDS) will be a multivalued measurable map

satisfying the cocycle property. In this framework, we can introduce the concepts of

invariance, absorbtion and attraction which will lead us to a general result of existence

and uniqueness of random attractors (in the sense of Crauel and Flandoli [11]) for MRDS.

In the second part (Section 3), we apply the previous results to some stochastic differ-

ential inclusions. Special care must be paid to the correct definition of the corresponding

multivalued stochastic flow, as for example in proving the measurability condition or the

cocycle property. Next, it is shown that conditions for the existence of random attractors

are satisfied. Some particular examples are also given in Section 4.
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Finally, some remarks and conclusions appear in the last section.

2 Multivalued random dynamical systems and at-

tractors

2.1 Multivalued random dynamical systems

Let (X, dX) be a complete and separable metric space with the Borel σ-algebra B (X).

Let (Ω,F ,P) be a probability space and θt : Ω → Ω a measure preserving group of

transformations in Ω such that the map (t, ω) 7→ θtω is measurable and satisfying

θt+s = θt ◦ θs = θs ◦ θt; θ0 = Id.

The parameter t takes values in R endowed with the Borel σ-algebra B (R) .

Definition 1 A set valued map G : R+×Ω×X → C(X) (C(X) denotes the set of non-

empty closed subsets of X) is called a multivalued random dynamical system (MRDS) if

is measurable (see Aubin and Frankowska [4], definition 8.1.1) and satisfies

i) G(0, ω) = Id on X;

ii) G(t + s, ω)x = G(t, θsω)G(s, ω)x (cocycle property) for all t, s ∈ R+, x ∈ X,ω ∈ Ω.

Remark 1 When ii) holds identically, we call G a perfect cocycle. We call G a crude

cocycle if ii) holds for fixed s and all t ∈ R+, x ∈ X, P−a.s. (where the exceptional set Ns

can depend on s). We call G a very crude cocycle if ii) holds for fixed s, t ∈ R+, for all

x ∈ X,P−a.s. (where the exceptional set Ns,t can depend on both s and t). However, it is

worth pointing out that in the applications of the following section we shall obtain a map

satisfying ii) identically.

Remark 2 Throughout this paper all assertions about ω are assumed to hold on a θt

invariant set of full measure (unless otherwise stated).

Recall the definition of Hausdorff semi-distance between bounded sets of X. For any

A,B ⊂ X bounded put dist (A,B) =sup
y∈A

inf
x∈B

dX (y, x).

Definition 2 The MRDS G is said to be upper semicontinuous if for all t ∈ R+ and

ω ∈ Ω it follows that given x ∈ X and a neighbourhood of G(t, ω)x, O(G(t, ω)x), there

exists δ > 0 such that if dX(x, y) < δ then

G(t, ω)y ⊂ O(G(t, ω)x).
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On the other hand, G is called lower semicontinuous if for all t ∈ R+ and ω ∈ Ω, given

xn → x (n → +∞) and y ∈ G(t, ω)x, there exists yn ∈ G(t, ω)xn such that yn → y.

It is said to be continuous if it is upper and lower semicontinuous.

Remark 3 Note that these two definitions are not equivalent in general, as can be seen

in easy examples (Aubin and Frankowska [4], Section 1.4).

Remark 4 Note that if a map G (t, ω) is upper semicontinuous at x0, then ∀ε > 0 there

exists δ (ε) > 0 such that

dist (G (t, ω) y,G (t, ω) x0) ≤ ε,

for any y satisfying dX(y, x0) ≤ δ (ε). The converse is true when G (t, ω) x0 is compact.

On the other hand, if ∀ε > 0 there exists δ (ε) > 0 such that

dist (G (t, ω) x0, G (t, ω) y) ≤ ε,

for any y satisfying dX(y, x0) ≤ δ (ε) , then G (t, ω) is lower semicontinuous at x0. The

converse is true when G (t, ω) x0 is compact (see Aubin and Cellina [3, p.66], Propositions

2 and 3).

2.2 Existence of global random attractors

In this section we generalize the concept of random attractor to the case of a MRDS and

prove a general result for the existence and uniqueness of attractors. Firstly we need some

definitions.

Definition 3 A closed random set D is a map D : Ω → C(X), which is measurable. The

measurability must be understood in the sense of Castaing and Valadier [10] for measurable

multifunctions, that is, {D(ω)}ω∈Ω is measurable if given x ∈ X the map

ω ∈ Ω 7→ dist(x,D(ω))

is measurable.

A closed random set D(ω) is said to be negatively (resp. strictly) invariant for the

MRDS G if

D(θtω) ⊂ G(t, ω)D(ω) (resp. D(θtω) = G(t, ω)D(ω)), ∀ t ∈ R+, ω ∈ Ω.

Let us assume the following conditions for the MRDS G:

(H1) There exists an absorbing random compact set B(ω), that is, for P−almost all

ω ∈ Ω and every bounded set D ⊂ X, there exists tD(ω) such that for all t ≥ tD(ω)

G(t, θ−tω)D ⊂ B(ω) (1)
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(H2) G(t, ω) : X → C(X) is upper semicontinuous, for all t ∈ R+ and ω ∈ Ω.

Remark 5 We note that, although the measurability of the set B (ω) is not needed, in

the applications considered in this paper this property is satisfied.

Define the limit set Λ(D, ω) = ΛD(ω) of a bounded set D ⊂ X as

ΛD(ω) = ∩T≥0∪t≥T G(t, θ−tω)D. (2)

Lemma 1 ΛD(ω) is the set of limits of all converging sequences {xn}n≥1 , where xn ∈
G(tn, θ−tnω)D, tn ↗ +∞ .

Proof. The proof follows the same lines as Lemma 1 in Melnik and Valero [19].

We can now prove the following proposition:

Proposition 2 Assume conditions (H1) and (H2) hold. Then, for P−almost all ω ∈ Ω

and every D ⊂ X bounded, it follows:

i) ΛD (ω) ⊂ B (ω) is nonvoid and compact.

ii) ΛD(ω) is negatively invariant, that is, G(t, ω)ΛD(ω) ⊇ ΛD(θtω) for all t ∈ R+. If G

is lower semicontinuous, then ΛD(ω) is strictly invariant.

iii) ΛD(ω) attracts D,

lim
t→+∞

dist(G(t, θ−tω)D, ΛD(ω)) = 0.

Proof.

i) Since for P−almost all ω ∈ Ω and any bounded D ⊂ X we can write

ΛD(ω) = ∩T≥TD(ω)∪t≥T G(t, θ−tω)D ⊂ B (ω) ,

we obtain immediately that ΛD(ω) is compact.

Now let dn ∈ G(tn, θ−tnω)D, tn ↗ +∞. Since B(ω) is compact, there exists a

converging subsequence dnj
of dn. Therefore, in view of Lemma 1, d = limn→+∞ dnj

∈
ΛD(ω), which proves that ΛD(ω) is non-empty.

ii) We will firstly see that

ΛD(θtω) ⊂ G(t, ω)ΛD(ω), t ≥ 0.

Given y ∈ ΛD(θtω), there exist tn ↗ +∞, yn ∈ G(tn, θ−tnθtω)D such that y =

limn→∞ yn. On the other hand,

G(tn, θ−tnθtω)D = G(t + tn − t, θ−tnθtω)D

= G(t, ω)G(tn − t, θ−(tn−t)ω)D.
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Thus, there exists xn ∈ G(tn − t, θ−(tn−t)ω)D such that yn ∈ G(t, ω)xn. As tn −
t ↗ +∞, by (H1) there exists xnj

→ x0 ∈ ΛD(ω) ∩ B(ω). Since G(t, ω) is upper

semicontinuous with closed values, it has a closed graph (see Aubin and Frankowska

[4], Proposition 1.4.8.), so that

y ∈ G(t, ω)x0 ⊂ G(t, ω)ΛD(ω).

Let us prove the other inclusion. Suppose now that G(t, ω) is lower semicontin-

uous and take z ∈ G(t, ω)ΛD(ω). Then z ∈ G(t, ω)y, with y = limn→+∞ yn, yn ∈
G(tn, θ−tnω)D, so that

z ∈ G(t, ω)

(
lim

n→+∞
yn

)
.

By the lower semicontinuity we get that there exists zn ∈ G(t, ω)yn such that zn → z.

By the cocycle property

zn ∈ G (t, ω) yn ⊂ G (t + tn, θ−tnω) D,

so that z ∈ ΛD (θtω) .

iii) Finally, we prove that ΛD(ω) attracts D. If not, there exist δ > 0, tn ↗ +∞, dn ∈ D,

yn ∈ G(tn, θ−tnω)dn, such that

dist(yn, ΛD(ω)) ≥ δ.

But, by (H1), for n large enough G(tn, θ−tnω)dn ⊂ B(ω), so that there exist con-

verging subsequences of any sequence in {G(tn, θ−tnω)dn}n≥0. If we denote by y

one of these limits we get that y ∈ ΛD(ω), which is a compact set, so that we get a

contradiction.

Definition 4 The closed random set ω 7→ A(ω) is called a global random attractor of the

MRDS G if P− a.s.

i) G(t, ω)A(ω) = A(θtω), for all t ≥ 0, (that is, it is strictly invariant);

ii) for all bounded D ⊂ X,

lim
t→+∞

dist(G(t, θ−tω)D,A(ω)) = 0;

iii) A (ω) is compact.

We can now prove the following theorem on the existence of random attractors for

MRDS:
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Theorem 3 Let (H1)− (H2) hold, the map (t, ω) ∈ R+ × Ω 7→ G(t, ω)D be measurable

for all deterministic bounded sets D ⊂ X, and the map x ∈ X 7→ G (t, ω) x have compact

values. Then,

A(ω) = ∪D⊂Xbounded
ΛD(ω)

is a global random attractor for G (measurable with respect to F). It is unique and the

minimal closed attracting set.

Proof.

Properties ii)-iii) from Definition 6 are obvious from the previous proposition.

For i), we note that by Proposition 2

A(θtω) = ∪D⊂XΛD(θtω) ⊂ ∪D⊂XG(t, ω)ΛD(ω) ⊂ G(t, ω) ∪D⊂X ΛD(ω)

⊂ G(t, ω)∪D⊂XΛD(ω) = G(t, ω)A(ω).

The last inclusion is a consequence of having G(t, ω) a closed graph. Indeed, write

F = ∪D⊂XΛD(ω)

and take y ∈ G(t, ω)F . Then, there exists yn ∈ G(t, ω)zn, zn ∈ F with yn → y.

Since A(ω) is compact P−a.s., there exists z ∈ A(ω) such that zn → z (accurate to a

subsequence). Since G(t, ω) has closed graph, y ∈ G(t, ω)z.

For the uniqueness, we follow the same lines as in Crauel [13]: let E(ω) be a negatively

invariant closed random set and for D ⊂ X bounded define F = {ω ∈ Ω : E(ω) ⊂ D}. If

we write

F∞ = ∩N∈N ∪n≥N θnF = {ω : θ−nω ∈ F infinitely often},
we have that, by Poincare´s recurrence theorem applied to the pair (P, θn(= θn

1 )),

P(F∞) ≥ P(F ).

Now, if ω ∈ F∞, E(θ−nω) ⊂ D for infinitely many n ∈ N, so that, by the invariance of

E(ω),

E(ω) ⊂ G(n, θ−nω)E(θ−nω) ⊂ G(n, θ−nω)D for infinitely many n ∈ N.

Consequently, E(ω) ⊂ ∪n≥NG(n, θ−nω)D for all N ∈ N, and so, by definition of the

omega limit set of D,

E(ω) ⊂ ΛD(ω).

We have shown that

P(E(ω) ⊂ ΛD(ω)) ≥ P(E(ω) ⊂ D).
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On the other hand, by Proposition 3.15 in Crauel [12], if E(ω) is a compact random

set, for ε > 0 there exists Kε ⊂ X compact such that

P(E(ω) ⊂ Kε) > 1− ε,

and thus

P(E(ω) ⊂ A(ω)) ≥ P(E(ω) ⊂ ΛKε(ω)) > 1− ε

from where we get that P(E(ω) ⊂ A(ω)) = 1.

This means that the random attractor is the maximal negatively invariant compact

random set, so that if two different random attractors exist, A1(ω),A2(ω), we have that

P(A1(ω) ⊂ A2(ω)) = 1 = P(A2(ω) ⊂ A1(ω)).1

On the other hand, the set A′ (ω) = G (t, θ−tω)A (θ−tω) is negatively invariant, since

A′ (θtω) = G (t, ω)A (ω) ⊂ G (t, ω) G (t, θ−tω)A (θ−tω)

= G (t, ω)A′ (ω) .

Moreover, the set A′ (ω) is P− a.s. compact. This follows from the fact that A (θ−tω) is

P − a.s. compact, the map x 7→ G (t, ω) x is upper semicontinuous and G has compact

values (see Aubin and Cellina, [3, p.42], Proposition 3). Then being A (ω) the maximal

negatively invariant compact set, A′ (ω) ⊂ A (ω), so that A (ω) is strictly invariant.

For the minimality, if K(ω) is another attracting random closed set, it is clear that

ΛD(ω) ⊂ K(ω), for all bounded D ⊂ X . Indeed, if y ∈ ΛD(ω) and y /∈ K(ω), as this last

set is closed, there exists δ > 0 such that

dist(y, K(ω)) > δ.

On the other hand, there exists tn ↗ +∞, yn ∈ G(tn, θ−tnω)D such that limn→∞ yn =

y. But since K(ω) is attracting, there exists n0(ω) such that for all n ≥ n0

dist(G(tn, θ−tnω)D, K(ω)) <
δ

2
,

so that

dist(yn, K(ω)) <
δ

2
, for all n ≥ n0,

which contradicts that y is the limit of {yn} .

Thus, A(ω) ⊂ K(ω) and A(ω) is minimal.

1In Flandoli and Schmalfuss [15] and Schenk-Hoppé [21] the attraction property is written with respect
to random sets {D(ω)} fulfilling particular growth conditions. In our case, this would lead to a direct
proof of uniqueness as it is shown in [14]. However, even with the weaker notion of attraction we use we
also reach the uniqueness property.
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Finally, let us prove the measurability of the global attractor. First, we note that for

any x ∈ X and any nonrandom bounded B ⊂ X the map

(t, ω) 7→ dist (x,G (t, θ−tω) B)

is measurable. Indeed, since the map (t, ω) 7→ G (t, ω) B is measurable, for any a ∈ R the

set

B = {(t, ξ) : dist (x,G (t, ξ) B) < a}
is measurable. Hence, being the map v : (t, ω) 7→ (t, θtω) measurable the set

C = v−1(B) = {(t, ω) : ξ = θtω, (t, ξ) ∈ B}

is measurable, so that the assertion follows.

Now, for each τ ≥ 0 we have

dist (x,∪t≥τG (t, θ−tω) B) = inf
t≥τ

dist (x,G (t, θ−tω) B) .

Let πΩ be the canonical projection of R+ × Ω onto Ω. For an arbitrary a ∈ R we have
{

ω ∈ Ω : inf
t≥τ

dist (x,G (t, θ−tω) B) < a

}
= πΩ {(t, ω) : dist (x,G (t, θ−tω) B) < a, t ≥ τ} .

Then, the measurability of ω 7→ dist
(
x,∪t≥τG (t, θ−tω) B

)
with respect to the P-completion

of F follows from the projection theorem (see Castaing and Valadier [10], Theorem III.23).

Taking

A (ω) = ∪
Bm⊂X

∩
τn≥0

∪
t≥τn

G (t, θ−tω) Bm

over a countable number of τn and Bm bounded we obtain that A is measurable with

respect to the P-completion of F (see Aubin and Frankowska [4], Theorem 8.2.4.).

Finally, thanks to Lemma 3.7 in Crauel [12] there exists a compact random set Ã (ω)

measurable with respect to F such that Ã (ω) = A (ω) for P− a.a. ω ∈ Ω .

Remark 6 If instead of having compact values we assume that x 7→ G (t, ω) x is lower

semicontinuous, then the statement of the theorem remains true.

Indeed, the assumption of having compact values is only used to prove that A (ω) is

positively invariant (that is, G (t, ω)A (ω) ⊂ A (θtω)). Take y ∈ A(ω). There exists a

sequence Dn ⊂ X and yn such that yn ∈ ΛDn(ω) and y = limn→+∞ yn. By the lower

semicontinuity of G, for any z ∈ G(t, ω)y, there exist zn, zn ∈ G(t, ω)yn, with

z = lim
n→+∞

zn.

But note that, by the strict invariance of the limit sets (see Proposition 2), zn ∈ G(t, ω)yn ⊂
ΛDn(θtω), for all n ∈ N, from which we get that z ∈ A(θtω), and so G(t, ω)y ⊂ A(θtω).
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Remark 7 Notice that if x 7→ G (t, ω) x is lower semicontinuous, then the map (t, ω) 7→
G(t, ω)D is measurable for all deterministic bounded sets D ⊂ X, t ≥ 0 and P − a.a.

ω ∈ Ω.

Indeed, if x 7→ G (t, ω) x is lower semicontinuous, then

(t, ω) 7→ dist (x,G (t, θ−tω) D) = inf
y∈D

dist (x,G (t, θ−tω) y) ,

is measurable. Since the map (t, ω) 7→ G (t, ω) y is measurable, for any a ∈ R the set

B = {(t, ξ) : dist (x,G (t, ξ) y) < a}
is measurable. Hence, being the map v : (t, ω) 7→ (t, θtω) measurable, the set

C = v−1(B) = {(t, ω) : ξ = θtω, (t, ξ) ∈ B}
is measurable. We have proved that the map (t, ω) 7→ dist (x,G (t, θ−tω) y) is measurable

for any y ∈ D. Being X separable, we can find a dense countable set {yn} , n ≥ 1, of the

set D. In view of the lower semicontinuity of G, for any z ∈ G (t, θ−tω) y, y ∈ D, there

exist sequences yj, zj ∈ G (t, θ−tω) yj, such that yj → y, zj → z. Then

inf
y∈D

dist (x,G (t, θ−tω) y) = inf
n≥1

dist (x,G (t, θ−tω) yn) ,

which proves the measurability of (t, ω) 7→ dist (x,G (t, θ−tω) D).

Remark 8 a) Clearly, if X is a Banach space, we can also write A(θtω) = ∪n≥1ΛBn(ω),

where Bn are balls in X centered at 0 with radius n.

b) The previous result is also true under weaker conditions, as we can suppose the

existence of a compact attracting set B(ω) instead of a compact absorbing set. Some

small changes would appear in the proof. But in the applications given in this paper we

will find the conditions of the previous theorem.

3 Attractors for stochastic differential inclusions

3.1 Setting of the problem

Now, let X be a real separable Hilbert space with the scalar product 〈·, ·〉 and the norm

‖·‖. Consider the following stochastic differential inclusion




du

dt
∈ Au (t) + F (u (t)) +

∑m
i=1 φi

dwi(t)
dt

, t ∈ (0, T ) ,

u (0) = u0,
(3)
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where A : D (A) → X is a linear operator, φi ∈ D (A) and wi (t) are independent two-

sided, i.e. t ∈ R, real Wiener processes with wi (0) = 0, i = 1, ..., m.

Let us introduce the next conditions:

(A) The operator A is m-dissipative, i.e. ∀y ∈ D(A)

< Ay, y >≤ 0 ,

and Im(A− λI) = X, ∀λ > 0.

(F1) F : X → Cv(X), where Cv(X) is the set of all non-empty, bounded, closed, convex

subsets of X.

(F2) The map F is Lipschitz on D(A), i.e. ∃C ≥ 0 such that ∀y1, y2 ∈ D(A)

distH(F (y1), F (y2)) ≤ C ‖y1 − y2‖ ,

where distH(·, ·) denotes the Hausdorff metric of bounded sets, i.e. distH(A,B) =

max{dist(A,B), dist(B, A)}.

Let ζ (t) =
∑m

i=1 φiwi (t). Let us consider the Wiener probability space (Ω,F ,P)

defined by

Ω = {ω = (w1 (·) , ..., wm (·)) ∈ C (R,Rm) | ω (0) = 0} ,

equipped with the Borel σ−algebra F , the Wiener measure P, and the usual uniform

convergence on bounded sets of R. Each ω ∈ Ω generates a map ζ (·) =
∑m

i=1 φiwi (·) ∈
C (R, X) such that ζ (0) = 0.

We make the change of variable v (t) = u (t)− ζ (t). Inclusion (3) turns into





dv

dt
∈ Av (t) + F (v (t) + ζ (t)) +

∑m
i=1 Aφiwi (t) ,

v (0) = v0 = u0.
(4)

Remark 9 Note that (4) is a nonautonomous PDE parameterized by ω ∈ Ω. It would

be possible to prove that this differential equation defines a nonautonomous multivalued

dynamical system and then show the existence of a unique nonautonomous attractor for it,

which would be equivalent to the existence of a unique random attractor for (3). However,

to follow the general presentation in the previous section for general stochastic partial

differential inclusions, we will follow the ideas and notation written there.

We shall define the multivalued map F̃ : [0, T ]× Ω×X → Cv (X) ,

F̃ (t, ω, x) = F (x + ζ (t)) + Aζ (t) .
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It is easy to obtain from (F2) the existence of constants D1, D2 such that

‖F (x)‖+ ≤ D1 + D2 ‖x‖ ,

where ‖F (x)‖+ = sup
y∈F (x)

‖y‖. Hence,

∥∥∥F̃ (t, ω, x)
∥∥∥

+

≤ D1 + D2 ‖x‖+ D2 ‖ζ (t)‖+ ‖Aζ (t)‖ = n (t, ω, x) .

It follows that F̃ satisfies the next property:

(F3) For any x ∈ X there exists n (·) ∈ L1 (0, T ) depending on x and ω such that

∥∥∥F̃ (t, ω, x)
∥∥∥

+

≤ n (t) , a.e. in (0, T ) .

On the other hand, it is clear that F̃ satisfies conditions (F1) − (F2) for any fixed

t ∈ [0, T ] and ω ∈ Ω, where the constant C does not depend on t or ω.

Consider also the equation





dv(t)

dt
= Av(t) + f(t),

v(0) = v0,
(5)

where f(·) ∈ L1([0, T ], X).

Definition 5 The function u : [0, T ] → X is called a strong solution of problem (5) if:

1. u(·) is continuous on [0, T ] and u(0) = u0;

2. u(·) is absolutely continuous on any compact subset of (0, T ) and almost everywhere

(a.e.) differentiable on (0, T );

3. u(·) satisfies (5) a.e. on (0, T ).

Definition 6 The continuous function v : [0, T ] → X is called an integral solution of

problem (5) if:

1. v(0) = v0;

2. ∀ξ ∈ D(A),

‖v(t)− ξ‖2 ≤ ‖v(s)− ξ‖2 + 2

∫ t

s

< f(τ) + Aξ, v(τ)− ξ > dτ, t ≥ s. (6)
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Remark 10 We note that if u(·) is a strong solution of (5), then multiplying (5) by

v(t) − ξ and using (A), we obtain (6) after integration. This motivates the previous

definition.

It is well known (see Barbu [7, p.124]) that any strong solution of problem (5) is an

integral solution.

Definition 7 The process v : [0, T ]×Ω → X is said to be an integral solution of problem

(4) if for any ω ∈ Ω:

1. v(·) = v(·, ω) : [0, T ] → X is continuous.

2. v(0) = v0;

3. For some selection f ∈ L1([0, T ], X), f(t) ∈ F̃ (t, ω, v(t)) a.e. on (0, T ), the inequal-

ity (6) holds.

In what follows, we will omit ω if no confusion is possible.

If condition (A) holds and f ∈ L1([0, T ], X), then ∀v0 ∈ D(A) there exists a unique

integral solution v(·) of (5) for each T > 0 (see Barbu [7, p.124]). We shall denote this

solution by v(·) = I(v0)f(·). Moreover, for any integral solutions vi(·) = I(vi0)fi(·),
i = 1, 2, the next inequality holds:

‖v1(t)− v2(t)‖ ≤ ‖v1(s)− v2(s)‖+

∫ t

s

‖f1(τ)− f2(τ)‖ dτ , t ≥ s. (7)

If (A), (F1)− (F3) hold, then ∀v0 ∈ D(A) there exists at least one integral solution of (4)

for each T > 0 (see Tolstonogov [24], Theorem 3.1). Moreover, for any z(·) = I(z0)g(·),
g(·) ∈ L1([0, T ], X), and any v0 ∈ D(A) there exists an integral solution v(·) = I(v0)f(·)
of (4) such that

‖v(t)− z(t)‖ ≤ ξ(t), ∀t ∈ [0, T ], (8)

‖f(t)− g(t)‖ ≤ ρ(t) + 2Cξ(t), a.e. on (0, T ), (9)

where

ρ(t) = 2dist
(
g(t), F̃ (t, ω, z(t))

)
,

ξ(t) = ‖v0 − z0‖ exp(2Ct) +

∫ t

0

exp(2C(t− s))ρ(s)ds.
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3.2 Construction of the MRDS

Since T > 0 is arbitrary, each solution can be extended on [0,∞). Let us denote by

D(v0, ω) the set of all integral solutions of (4) such that v(0) = v0. We define the maps

G : R+ × Ω×D(A) → P (D(A)), θs : Ω → Ω as follows

G(t, ω)v0 = {v(t) + ζ (t) | v(·) ∈ D(v0, ω)},

θsω = (w1 (s + ·)− w1 (s) , ..., wm (s + ·)− wm (s)) ∈ Ω.

Then the function ζ̃ corresponding to θsω is defined by ζ̃ (τ) = ζ (s + τ) − ζ (s) =∑m
i=1 φi (wi (s + τ)− wi (s)) .

Proposition 4 Let (A), (F1), (F2) hold. Then G satisfies the cocycle property

G (t1 + s, ω) x = G (t1, θsω) G (s, ω) x, ∀t1, s ≥ 0, x ∈ X, ω ∈ Ω.

Proof. First let y ∈ G (t1 + s, ω) x. Then y = y (t1 + s) = v (t1 + s) + ζ (t1 + s) ,

where v (·) ∈ D (x, ω). It is clear that y (s) ∈ G (s, ω) x. We have to prove that y ∈
G (t1, θsω) y (s). Define z (t) = y (t + s)−ζ (t + s)+ζ (s) , ∀t ≥ 0, g (t) = f (t + s)−Aζ (s),

a.e. t > 0, where y (t)− ζ (t) = v (t) = I (x) f (t). For any r ≤ t, ξ ∈ D (A) we obtain

‖z (t)− ξ‖2 = ‖v (t + s) + ζ (s)− ξ‖2 ≤ ‖v (r + s) + ζ (s)− ξ‖2

+2

∫ t

r

〈f (τ + s) + Aξ − Aζ (s) , v (τ + s) + ζ (s)− ξ〉 dτ

= ‖z (r)− ξ‖2 + 2

∫ t

r

〈g (τ) + Aξ, z (τ)− ξ〉 dτ .

On the other hand,

g (t) ∈ F (v (t + s) + ζ (t + s)) + Aζ (t + s)− Aζ (s)

= F (z (t) + ζ (t + s)− ζ (s)) + A (ζ (t + s)− ζ (s)) = F̃ (t, θsω, z (t)) .

Therefore, since z (0) = y (s), it follows that z (·) ∈ D (y (s) , θsω). Being y = y (t1 + s) =

z (t1) + ζ (t1 + s)− ζ (s), we get y ∈ G (t1, θsω) y (s). Hence,

G (t1 + s, ω) x ⊂ G (t1, θsω) G (s, ω) x.

Conversely, let y ∈ G (t1, θsω) G (s, ω) x. Then there exist v1 (·) ∈ D (x, ω) and v2 (·) ∈
D (y1 (s) , θsω), y1 (s) = v1 (s) + ζ (s), such that y = v2 (t1) + ζ (t1 + s)− ζ (s). Let

z (t) =

{
v1 (t) , if 0 ≤ t ≤ s,

v2 (t− s)− ζ (s) , if s ≤ t,
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f (t) =

{
f1 (t) , if 0 ≤ t ≤ s,

f2 (t− s) + Aζ (s) , if s ≤ t,

where v1 (·) = I (x) f1 (·), v2 (·) = I (y1 (s)) f2 (·) . We have to check that for a.a. t ∈ (0, T ),

f (t) ∈ F (z (t) + ζ (t)) + Aζ (t). If t ≤ s it is obvious that f (t) ∈ F (v1 (t) + ζ (t)) +

Aζ (t) = F (z (t) + ζ (t)) + Aζ (t) . If t ≥ s we have

f (t) = f2 (t− s) + Aζ (s) ∈ F (v2 (t− s) + ζ (t)− ζ (s)) + Aζ (t)

= F (z (t) + ζ (t)) + Aζ (t) = F̃ (t, ω, z (t)) .

It remains to prove that z (·) satisfies (6) for any r ≤ t. If t ≤ s the inequality is

evident. If r < s < t we get

‖z (t)− ξ‖2 = ‖v2 (t− s)− ζ (s)− ξ‖2 ≤ ‖v2 (0)− ζ (s)− ξ‖2

+2

∫ t

s

〈f2 (τ − s) + Aζ (s) + Aξ, v2 (τ − s)− ζ (s)− ξ〉 dτ

≤ ‖v1 (r)− ξ‖2 + 2

∫ s

r

〈f1 (τ) + Aξ, v1 (τ)− ξ〉 dτ

+2

∫ t

s

〈f2 (τ − s) + Aζ (s) + Aξ, v2 (τ − s)− ζ (s)− ξ〉 dτ

= ‖z (r)− ξ‖2 + 2

∫ t

r

〈f (τ) + Aξ, z (τ)− ξ〉 dτ .

Finally, the case s ≤ r is rather similar. Therefore, z (·) ∈ D (x, ω) and

y = v2 (t1) + ζ (t1 + s)− ζ (s) = z (t1 + s) + ζ (t1 + s) ∈ G (t1 + s, ω) x.

Hence,

G (t1, θsω) G (s, ω) x ⊂ G (t1 + s, ω) x.

Lemma 5 Let (A), (F1), (F2) hold. Then, for any fixed t ≥ 0 and ω ∈ Ω,

distH(G (t, ω) x,G(t, ω)y) ≤ exp(2Ct) ‖x− y‖ , ∀x, y ∈ D(A). (10)

Proof. Let µ ∈ G(t, ω)y, t ≥ 0, be arbitrary. Then there exists v(·) = I (y) f (·) , an

integral solution of (4), such that µ = v(t) + ζ (t). Since f(τ) ∈ F̃ (τ , ω, v(τ)), a.e. on

(0, t), it follows that dist(f(τ), F̃ (τ , ω, v(τ))) = 0, a.e. on (0, t). Then in view of (8) there

exists an integral solution u(·) = I (x) g (·) of (4) such that

‖u(τ)− v(τ)‖ ≤ exp(2Cτ) ‖x− y‖ , on [0, t].

It is clear that µ̃ = u (t) + ζ (t) ∈ G (t, ω) x and

‖µ− µ̃‖ ≤ exp(2Ct) ‖x− y‖ .
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Since µ ∈ G(t, ω)y is arbitrary, we get

dist(G(t, ω)y, G(t, ω)x) ≤ exp(2Ct) ‖x− y‖ .

In the same way we can prove the converse dist (G (t, ω) x,G (t, ω) y) ≤ exp(2Ct) ‖x− y‖.
Hence, the inequality (10) holds.

Lemma 6 Let (A), (F1), (F2) hold. Then for any fixed t ≥ 0, x ∈ D (A),

distH(G(t, ω1)x,G(t, ω2)x) ≤ k(t) ‖ω1 − ω2‖C([0,t],Rm) , for ω1, ω2 ∈ Ω, (11)

where k (t) is increasing and continuous.

Proof. Let ζ1, ζ2 ∈ C (R, X) be the maps corresponding to ω1 and ω2, respectively. Let

y ∈ G (t, ω1) x be arbitrary. Then y = y (t) + ζ1 (t), y (·) = I (x) f0 (·) and

f0 (τ) ∈ F
(
y (τ) + ζ1 (τ)

)
+ Aζ1 (τ) = F̃ (τ , ω1, y (τ)) , a.e. on (0, t) .

Now by (F2),

ρ (τ) = 2dist
(
f0 (τ) , F̃ (τ , ω2, y (τ))

)

≤ 2
(∥∥Aζ1 (τ)− Aζ2 (τ)

∥∥ + dist
(
F

(
y (τ) + ζ1 (τ)

)
, F

(
y (τ) + ζ2 (τ)

)))

≤ 2
(∥∥Aζ1 (τ)− Aζ2 (τ)

∥∥ + C
∥∥ζ1 (τ)− ζ2 (τ)

∥∥)

≤ 2K

(
m∑

i=1

(‖Aφi‖+ ‖φi‖)
)
‖ω1 − ω2‖C([0,t],Rm) .

In view of inequalities (8)-(9) there exists an integral solution of (4), v (·) = I (x) f (·) ,

f (τ) ∈ F
(
v (τ) + ζ2 (τ)

)
+ Aζ2 (τ) = F̃ (τ , ω2, v (τ)), a.e. on (0, t) , such that

‖v (t)− y (t)‖ ≤
∫ t

0

exp (2C (t− τ)) ρ (τ) dτ

≤ 2K exp (2Ct) t

(
m∑

i=1

(‖Aφi‖+ ‖φi‖)
)
‖ω1 − ω2‖C([0,t],Rm) .

Let v = v (t) + ζ2 (t) ∈ G (t, ω2) x. Then

‖y − v‖ ≤ ‖v (t)− y (t)‖+
∥∥ζ1 (t)− ζ2 (t)

∥∥

≤ K̃ (exp (2Ct) t + 1)

(
m∑

i=1

(‖Aφi‖+ ‖φi‖)
)
‖ω1 − ω2‖C([0,t],Rm) .

Repeating the same argument for any y ∈ G (t, ω2) x we finally have the existence of

a continuous increasing function k (t) such that

distH (G (t, ω1) x,G (t, ω2) x) ≤ k (t) ‖ω1 − ω2‖C([0,t],Rm) .
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Let C([0, T ], X) (respectively C([0, +∞), X)) be the Banach space of continuous func-

tions from [0, T ] (respectively [0, +∞)) into X. By πt : C([0,∞), X) → C([0, T ], X) we

denote the projection operator

πT (y(·)) = {ỹ(·) ∈ C([0, T ], X) | ỹ(s) = y(s), ∀t ∈ [0, T ]}.

Lemma 7 Let (A), (F1), (F2) hold and the semigroup S (t, ·) generated by the operator

A be compact. Then, the semiflow G has compact values.

Proof. From Tolstonogov [24, Theorem 3.4], it follows that for each v0 ∈ D (A), T > 0

the set πTD(v0, ω) is compact in C ([0, T ] , X). Hence, the set G (T, ω) v0 is compact in

X.

Theorem 8 Let (A), (F1), (F2) hold and the semigroup S (t, ·) generated by the operator

A be compact. Then, G generates a MRDS.

Proof. It is evident from the definition of the map G that t 7→ G (t, ω) x is lower

semicontinuous. Let us prove that the map (t, ω, x) 7→ G (t, ω) x is lower semicontinuous.

Let tn → t, ωn → ω, xn → x. We take an arbitrary y ∈ G (t, ω) x. For any ε > 0 there

exists δ1 > 0 such that if |tn − t| < δ1 then for some yn ∈ G (tn, ω) x, ‖yn − y‖ < ε. On

the other hand, it follows from Lemmas 5-6 that the map (ω, x) 7−→ G (t, ω) x is lower

semicontinuous uniformly for t in bounded sets. Hence there exists δ2 > 0 such that if

‖xn − x‖ < δ2, ‖ωn − ω‖C(R,Rm) < δ2 then for any tn there is vn ∈ G (tn, ωn) xn for which

‖yn − vn‖ < ε. Therefore,

‖y − vn‖ ≤ ‖y − yn‖+ ‖yn − vn‖ ≤ 2ε.

Now we have to prove that the multivalued map G : R+ × Ω ×D(A) → C(D(A)) is

measurable with respect to the σ-algebra B (R+) ⊗ F ⊗ B
(
D(A)

)
. Since this σ-algebra

contains all open sets of the complete separable metric space R+ × Ω × D(A) and, in

view of the previous lemma, G has closed values (in fact, compact values), the lower

semicontinuity of G implies the measurability of the semiflow. Indeed, the map G is

measurable if and only if the inverse image of any open set O ⊂ D (A)

G−1 (O) =
{

(t, ω, x) ∈ R+ × Ω×D (A) : G (t, ω) x ∩ O 6= ∅
}

is measurable (see Aubin and Frankowska, [4], Theorem 8.3.1.). Being the map G lower

semicontinuous, the inverse image of any open set is open and then measurable (see Aubin

and Frankowska, [4, p.40]).

Finally, Proposition 4 implies that G generates a MRDS.

Lemma 9 Let (A), (F1), (F2) hold. Then for any v0 ∈ D (A) the set πT (D (v0, ω)) is

bounded in C ([0, T ] , X). For each t ≥ 0, v0 ∈ D (A) the set G (t, ω) v0 is bounded.
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Proof. It follows from (F2) that there exist constants D1, D2 ≥ 0 such that ∀x ∈ D(A),

∀y ∈ F (x),

‖y‖ ≤ D1 + D2 ‖x‖ . (12)

We take a fixed T > 0. We shall denote by z(·) ∈ C([0, T ], X) the unique integral

solution of the equation {
dz
dt

= A(z(t)), 0 ≤ t ≤ T,

z(0) = v0.

Let r0 = max{‖z(t)‖ , 0 ≤ t ≤ T} and let r(·) ∈ C ([0, T ]) be the solution to the equation

{
r′(t) = D1 + D2r(t), 0 ≤ t ≤ T,

r(0) = r0.

Consider an arbitrary solution v(·) ∈ D(v0, ω), v(·) = I(v0)f(·). Then it follows from (7)

and (12) that

‖v(t)‖ ≤ ‖z(t)‖+

∫ t

0

‖f(τ)‖ dτ

≤ r0 +

∫ t

0

(D1 + D2 (‖v(τ)‖+ ‖ζ(τ)‖) + ‖Aζ(τ)‖)dτ , ∀t ≤ T.

Let K (ω) be such that

sup
τ∈[0,T ]

{D2 ‖ζ(τ)‖+ ‖Aζ(τ)‖} ≤ K (ω) .

Then

‖v(t)‖ ≤ r0 + (D1 + K (ω)) t + D2

∫ t

0

‖v(τ)‖ dτ .

Using the Gronwall Lemma we have that for any t ∈ [0, T ] the next inequalities are

satisfied: {
‖v(t)‖ ≤ (r0 +

eD1

D2
) exp(D2t)− eD1

D2
= r(t, ω), if D2 6= 0,

‖v(t)‖ ≤ r0 + D̃1t, if D2 = 0,
(13)

where D̃1 = D1 + K (ω) . Hence, πTD(v0, ω) is bounded in C([0, T ], X), ∀T ≥ 0, ∀v0 ∈
D(A). It is obvious from the definition of G that the set G(t, ω)v0 is bounded for each

t ≥ 0, v0 ∈ D(A).

For T > 0 and bounded B ⊂ D(A), let us denote D(B, ω) = ∪x∈BD(x, ω) and

M(B, ω, T ) = {f(·) ∈ L1([0, T ], X) | v(·) = I(x)f(·), v(·) ∈ πTD(B, ω)}.

Lemma 10 Let (A), (F1), (F2) hold. Then for any T > 0 and any bounded set B ⊂
D(A) the sets M(B, ω, T ) and πTD(B, ω) are bounded in L∞ ([0, T ] , X) and C ([0, T ] , X),

respectively.
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Proof. Let x ∈ B, T > 0, be arbitrary. In view of Lemma 9, there exists K1 (ω) > 0

such that for any v(·) ∈ D(x, ω),

‖v(t)‖ ≤ K1(ω), ∀t ∈ [0, T ].

We take an arbitrary u(·) ∈ D(B, ω), u(0) = y ∈ B. Then, in the same way as in Lemma

5, we obtain the existence of v(·) ∈ D(x, ω) such that

‖v(t)− u(t)‖ ≤ exp(2CT ) ‖x− y‖ , on [0, T ].

Hence

‖u(t)‖ ≤ ‖v(t)‖+ exp(2CT ) ‖x− y‖ ≤ K1 (ω) + exp(2CT )K2, on [0, T ],

where K1 (ω) , K2 depend on B. We have proved that πTD(B, ω) is bounded in C([0, T ], X).

Further, we must prove that M(B, ω, T ) is bounded in L∞([0, T ], X). Let f(·) ∈
M(B, ω, T ) be arbitrary. Then, there exist x ∈ B, x(·) ∈ D(x, ω), such that x(·) =

I(x)f(·), f(t) ∈ F (x(t) + ζ (t)) + Aζ (t) , a.e. on (0, T ). Let x be fixed. Since F has

bounded values, ‖y‖ ≤ D < ∞, ∀y ∈ F (x). For almost all t ∈ (0, T ) and any ε > 0, there

exists yε(t) ∈ F (x) such that

dist(f(t)− Aζ (t) , F (x)) = ‖f(t)− Aζ (t)− yε(t)‖ − ε.

Then, it follows from (F2) that

‖f(t)‖ ≤ ‖yε(t)‖+ ‖Aζ (t)‖+ ε + C ‖x(t) + ζ (t)− x‖ ,

≤ D + ‖Aζ (t)‖+ ε + C ‖x(t) + ζ (t)− x‖ , a.e. on (0, T ).

Since πTD(B, ω) is bounded in C([0, T ], X), we obtain the required result.

3.3 Existence of the global random attractor

In order to obtain the existence of a compact absorbing set we need more regularity of

the integral solutions. Namely, we shall suppose that each integral solution of (4) is, in

fact, a strong solution of (5).

Proposition 11 Let (A), (F1), (F2) hold. Suppose that each integral solution of (4),

v (·) = I (u0) f (·) is a strong solution of (5). Let there exist constants δ > 0, M ≥ 0 such

that ∀u ∈ D (A) , y ∈ F (u) ,

〈y, u〉 ≤ (−δ + ε) ‖u‖2 + M, (14)

where ε ≥ 0 is the biggest constant such that

〈Au, u〉 ≤ −ε ‖u‖2 , ∀u ∈ D (A) . (15)
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Then there exists a random radius r (ω) > 0 such that for P− almost all ω ∈ Ω and any

bounded set B ⊂ D (A) we can find T (B) = T (B,ω) ≥ 1 for which

‖G (−1 + t0, θ−t0ω) u0‖+ ≤ r (θ−1ω) , ∀t0 ≥ T (B) ,∀u0 ∈ B.

Remark 11 We observe that, since A is m-dissipative, 〈Au, u〉 ≤ 0,∀u ∈ D (A) .

Proof. We note that for any y ∈ G (t, θsω) u0, y = v (t) + ζ (t + s) − ζ (s), being

v (·) = I (u0) f (·) an integral solution of





dv

dt
∈ Av (t) + F (v (t) + ζ (t + s)− ζ (s)) + Aζ (t + s)− Aζ (s) ,

v (0) = u0,

which is a strong solution of (5) with

f (t) ∈ F (v (t) + ζ (t + s)− ζ (s)) + Aζ (t + s)− Aζ (s) , a.e. in (0, T ) .

After the change of variable z (t) = v (t)−ζ (s) , we obtain that y = z (t)+ζ (t + s), being

z (·) the integral solution (in fact, a strong one) of the problem





dz

dt
= Az (t) + g (t) ,

z (0) = u0 − ζ (s) ,
(16)

where g (t) = f (t) + Aζ (s) = h (t) + Aζ (t + s) ∈ F (z (t) + ζ (t + s)) + Aζ (t + s), a.e. in

(0, T ) , and h (t) = f (t)− Aζ (t + s) + Aζ (s) .

In our case s = −t0. Multiplying (16) by z (t) we have

1

2

d

dt
‖z (t)‖2 = 〈Az (t) , z (t)〉+ 〈g (t) , z (t)〉

= 〈Az (t) , z (t)〉+ 〈h (t) , z (t) + ζ (t + s)〉 − 〈h (t) , ζ (t + s)〉+ 〈Aζ (t + s) , z (t)〉 .
Now by (14), (15) we get

1

2

d

dt
‖z (t)‖2 ≤ −ε ‖z (t)‖2 + (ε− δ) ‖z (t) + ζ (t− t0)‖2

+ ‖F (z (t) + ζ (t− t0))‖+ ‖ζ (t− t0)‖+ ‖Aζ (t− t0)‖ ‖z (t)‖+ M.

Inequality (12) and Young’s inequality then imply

1

2

d

dt
‖z (t)‖2 ≤ −δ ‖z (t)‖2 + (ε− δ) ‖ζ (t− t0)‖2

+ (D1 + D2 ‖z (t)‖+ D2 ‖ζ (t− t0)‖) ‖ζ (t− t0)‖+
1

δ
‖Aζ (t− t0)‖2 +

δ

4
‖z (t)‖2 + M
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≤ −δ

2
‖z (t)‖2 +

(
ε− δ + D2 +

D2
2

δ

)
‖ζ (t− t0)‖2 +D1 ‖ζ (t− t0)‖+

1

δ
‖Aζ (t− t0)‖2 +M.

Hence,
d

dt
‖z (t)‖2 ≤ −δ ‖z (t)‖2 + p (t− t0, ω) , (17)

where

p (t− t0, ω) = 2

(
ε− δ + D2 +

D2
2

δ

)
‖ζ (t− t0)‖2+2D1 ‖ζ (t− t0)‖+2

δ
‖Aζ (t− t0)‖2+2M.

Multiplying (17) by exp (δt) and integrating over (0,−1 + t0) we obtain

‖z (−1 + t0)‖2 ≤ exp (−δ (−1 + t0)) ‖z (0)‖2

+ exp (−δ (−1 + t0))

∫ −1+t0

0

exp (δs) p (s− t0, ω) ds

and then, by the change s− t0 = τ ,

‖z (−1 + t0)‖2 ≤ exp (−δ (−1 + t0)) ‖u0‖2 + exp (−δ (−1 + t0)) ‖ζ (t0)‖2

+

∫ −1

−∞
exp (−δ (−1− τ)) p (τ , ω) dτ .

We take

r2
1 (θ−1ω) = 1+ sup

t0≤−1
exp (−δ (−1 + t0)) ‖ζ (t0)‖2 +

∫ −1

−∞
exp (−δ (−1− τ)) p (τ , ω) dτ ,

r (θ−1ω) = r1 (θ−1ω) + ‖ζ (−1)‖ .

The radius r (θ−1ω) is P-a.s. finite, because ‖ζ (−t0)‖2 and p (τ , ω) have at most polyno-

mial growth for P−almost all ω ∈ Ω. For a bounded set B we choose T (B) ≥ 1 such

that

exp (−δ (−1 + t0)) ‖u0‖2 ≤ 1, ∀t0 ≥ T (B) ,∀u0 ∈ B.

Since y = z (−1 + t0) + ζ (−1) we have

‖y‖ ≤ ‖z (−1 + t0)‖+ ‖ζ (−1)‖ ≤ r (θ−1ω) ,

for P-a.a. ω ∈ Ω and any y ∈ G (−1 + t0, θ−t0ω) u0, u0 ∈ B.

Theorem 12 Let the conditions of Proposition 11 hold, the semigroup S (t, ·) generated

by the operator A be compact and the multivalued map G (1, ω) be compact (that is, it maps

bounded sets into precompact ones). Then, G has the minimal global random attractor

A(ω). Moreover, it is measurable with respect to F .
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Proof. First, due to Lemma 5, G(t, ω) is a continuous multivalued map in the sense

of Hausdorff’s metric. On the other hand, it follows from Lemma 7 that G(t, ω) has

compact values. Hence, the map G(t, ω) is continuous (see Aubin and Cellina [3, p.67])

and, consequently, the multivalued semiflow G(t, ω) is upper and lower semicontinuous

for any t ≥ 0 and ω ∈ Ω.

Let us define the random ball

B (r (θ−1ω)) =
{

u ∈ D (A) | ‖u‖ ≤ r (θ−1ω)
}

,

where r (θ−1ω) is taken from Proposition 11. Let

K (ω) = G (1, θ−1ω) B (r (θ−1ω)).

The set K (ω) is P-a.s. compact, since the operator G (1, θ−1ω) is compact. It follows

from Proposition 11 that for any bounded nonrandom set B and P-a.a ω ∈ Ω there exists

such that T (B) = T (B,ω) ≥ 1 such that ∀t0 ≥ T (B) ,

G (t0, θ−t0ω) B ⊂ G (1, θ−1ω) G (−1 + t0, θ−t0ω) B ⊂ K (ω) .

Therefore, G has the compact random absorbing set K (ω). We note that being (ω, x) 7→
G (1, θ−1ω) x a Carathéodory map, K (ω) is measurable with respect to the completion

of F (see Aubin and Frankowska [4], Corollary 8.2.13. and Theorem 8.2.8.), and so with

respect to F (Crauel [12], Lemma 3.7), although this fact is not necessary.

The statement of the theorem follows then from Theorem 3.

4 Applications

4.1 The case of a subdifferential map

In order to check when the operator G (1, ω) is compact we shall consider the case where

the operator −A is the subdifferential of a proper lower semicontinuous function ϕ : X →
(−∞, +∞]. Inclusion (3) turns into

{
du
dt
∈ −∂ϕ(u) + F (u) +

∑m
i=1 φi

dwi(t)
dt

, t ∈ [0, T ],

u(0) = u0,
(18)

where F : X → 2X is a multivalued map, satisfying (F1) − (F2), D(A) = D(∂ϕ). It is

well known (see Barbu [7, p.54 and 71]) that −∂ϕ is an m-dissipative operator. Moreover,

D(ϕ) = D(∂ϕ). Then, ∂ϕ generates a nonlinear semigroup of operators S(t, ·) : D(ϕ) →
D(ϕ) and the differential inclusion (18) gives the multivalued map G (t, ω) : D(ϕ) → 2D(ϕ).

It is known (see Haraux [16, p.1398]) that the semigroup S is compact if the following

condition is satisfied:
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(H) The level sets

MR = {u ∈ D(ϕ) | ‖u‖ ≤ R, ϕ(u) ≤ R}
are compact in X for any R > 0.

If (H) holds, it follows from Lemma 7 that G has compact values. Hence, G(t, ω) :

D(ϕ) → K(D(ϕ)), where K(D(ϕ)) is the set of all nonempty compact subsets of D(ϕ).

Theorem 8 implies that G generates a MRDS.

Further we shall remind the next regularity result for solutions of the inclusion

{
dv
dt
∈ −∂ϕ(v) + f(t), t ∈ [0, T ],

v(0) = v0 ∈ D(ϕ).
(19)

Proposition 13 (Brezis [8, p.82] and Barbu [7, p.189]) For any f(·) ∈ L2([0, T ], X),

v0 ∈ D(ϕ), there exists a unique strong solution of inclusion (19) such that

v(·) ∈ C([0, T ], X),
√

t
dv

dt
∈ L2([0, T ], X),

ϕ(v(·)) ∈ C((0, T ]), ϕ(v(·)) ∈ L1([0, T ]),

and ϕ(v(t)) is absolutely continuous on [δ, T ], ∀δ > 0. Moreover,

∣∣∣∣
dv

dt

∣∣∣∣
2

+
d

dt
ϕ(v(t)) =

〈
f,

dv

dt

〉
, a.e. on (0, T ). (20)

If u0 ∈ D (ϕ) then du
dt
∈ L2([0, T ], X) and ϕ (u) is absolutely continuous on [0, T ] .

We note the next important consequence of the preceding proposition. Let us take an

arbitrary integral solution of inclusion (4), v(·) ∈ D(v0, ω), v(·) = I(v0)f(·). It follows

from Lemma 10 that f(·) ∈ L2([0, T ], X). Then, since the solution of (19) is unique for

any v0 ∈ D(ϕ), it follows that v(·) is a strong solution of (19).

Further, Proposition 13 and Lemma 10 allow us to prove an important property of

the map G.

Theorem 14 Let property (H) hold. Then for any bounded B ⊂ X , any T > 0 and

ω ∈ Ω, there exists R (ω) > 0 such that G(T, ω)B ⊂ MR(ω).

Proof. In view of Lemma 10, the set M(B,ω, T ) is bounded in L∞([0, T ], X) and then it

is bounded in L2([0, T ], X) for any bounded B ⊂ X,T > 0, ω ∈ Ω. We take and arbitrary

v(·) ∈ D(B, ω), v(·) = I (v0) f (·), v0 ∈ B. Consider first that v0 ∈ D (ϕ). It follows from

equality (20) that

t

∣∣∣∣
dv

dt

∣∣∣∣
2

+ t
d

dt
ϕ(v) = t

〈
f,

dv

dt

〉
, a.e. on (0, T ).
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Hence, ∫ T

0

t

∣∣∣∣
dv

dt

∣∣∣∣
2

dt + Tϕ(v(T )) =

∫ T

0

t

〈
f,

dv

dt

〉
dt +

∫ T

0

ϕ(v(t))dt,

and then,

Tϕ(v(T )) ≤ 1

2

∫ T

0

t

∣∣∣∣
dv

dt

∣∣∣∣
2

dt + Tϕ(v(T )) ≤

≤ 1

2

∫ T

0

t ‖f(t)‖2 dt +

∫ T

0

ϕ(v(t))dt. (21)

On the other hand, there is no loss of generality in assuming that min{ϕ(v) : v ∈ X} =

ϕ(x0) = 0. Indeed, let x0 ∈ D(∂ϕ), v0 ∈ ∂ϕ(x0). If we introduce the new function

ϕ̃(v) = ϕ(v)− ϕ(x0)− (y0, v − x0), then the equation

dv

dt
+ ∂ϕ(v) 3 f(t)

is equivalent to
dv

dt
+ ∂ϕ̃(v) 3 f(t)− y0 = f̃(t)

and min{ϕ̃(v) : v ∈ X} = ϕ̃(x0) = 0. It is clear that ϕ̃ satisfies also property (H).

Hence, since f(t)− dv(t)
dt

∈ ∂ϕ(v(t)) a.e. on (0, T ), we have

ϕ(v(t)) ≤
〈

f(t)− dv(t)

dt
, v(t)− x0

〉
.

Integrating over (0, T ) we get

∫ T

0

ϕ(v(t))dt ≤ 1

2
‖v(0)− x0‖2 − 1

2
‖v(T )− x0‖2 +

∫ T

0

‖f(t)‖ ‖v(t)− x0‖ dt ≤

≤ 1

2
‖v(0)− x0‖2 +

∫ T

0

‖f(t)‖ ‖v(t)− x0‖ dt.

Since 0 ∈ −∂ϕ(x0), it follows from inequality (7) that

‖v(t)− x0‖ ≤ ‖v(0)− x0‖+

∫ T

0

‖f(τ)‖ dτ , 0 ≤ t ≤ T.

It follows from the last two inequalities and Lemma 10 that

∫ T

0

ϕ(v(t))dt ≤
(
‖v(0)− x0‖+

∫ T

0

‖f(t)‖ dt

)2

≤ D (ω) < ∞. (22)

Since the set M(B,ω, T ) is bounded in L∞([0, T ], X) for any bounded set B, D (ω) does

not depend on v(·) ∈ D(B, ω). Using (22) in relation (21) we obtain that, for any T > 0,

there exists K (ω) > 0 such that ϕ(v(T )) ≤ K (ω).
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Now let v0 ∈ B be arbitrary. We can assume without loss of generality that B is open

and then there exists a sequence vn
0 → v0, where vn

0 ∈ D (ϕ) , vn
0 ∈ B. In view of (8), for

each vn
0 there exists an integral solution of (4), vn (·) such that

‖vn (t)− v (t)‖ ≤ ‖vn
0 − v0‖ exp (2Ct) , ∀t ∈ [0, T ] .

Since ϕ (vn(T )) ≤ K (ω), ∀n, and ϕ is lower semicontinuous, we get

ϕ (v (T )) ≤lim inf
n→∞

ϕ (vn (T )) ≤ K (ω) .

On the other hand, by Lemma 10, D(B, ω) is bounded in C([0, T ], X). Hence,

‖v(T )‖ ≤ L (ω) < ∞, ∀v(·) ∈ D(B, ω).

Therefore,

G(T, ω)B ⊂ MR(ω),

where R (ω) = max{K (ω)+‖ζ (T )‖ , L (ω)+‖ζ (T )‖}. It follows from (H) that G(T, ω)B

is precompact in X.

Corollary 15 Let property (H) hold. Then, for any T > 0 and ω ∈ Ω, G (T, ω) is

compact.

Proof. We must prove that for every bounded set B, any T > 0 and ω ∈ Ω, the

set G (T, ω) B is precompact in X. But this fact follows immediately from (H) and the

previous Theorem.

Theorem 16 Let (F1)−(F2), (H) and (14) be satisfied. Then, G has the minimal global

invariant random attractor A(ω), which is measurable with respect to F .

Proof. It is a consequence of Theorem 12 and Corollary 15.

4.2 Reaction-diffusion inclusions

Let f : R → Cv(R) be a multivalued map. Assume that f is Lipschitz, i.e. ∃C ≥ 0 such

that ∀x, z ∈ R
distH(f(x), f(z)) ≤ C ‖x− z‖ . (23)

Let O ⊂ Rn be an open bounded subset with smooth boundary ∂O. Consider the

stochastic inclusion




∂u
∂t
∈ ∆u + f(u) + h +

∑m
i=1 φi

dwi(t)
dt

, on O × (0, T ),

u = 0, on ∂O × (0, T ),

u(x, 0) = u0(x) on O,

(24)
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where h(·) ∈ L2(O). Define the operators A : D (A) → X, F : X → 2X , X = L2 (O) ,

Au = ∆u,

F (u) = {y ∈ X : y (x) ∈ f (u (x)) + h (x)} ,

with D (A) = H2 (O) ∩ H1
0 (O). It is assumed that φi ∈ D (A) . The map −A is the

subdifferential of a proper, convex, lower semicontinuous function ϕ and the map F

satisfies (F1)− (F2). Moreover, condition (H) is satisfied and D(ϕ) = X (see Melnik and

Valero [19], Section 3.2.2.). Hence, (24) is a particular case of (18).

We shall assume that there exist M ≥ 0, δ > 0 such that ∀s ∈ R, ∀z ∈ f(s),

zs ≤ (λ1 − 2δ) |s|2 + M1, (25)

where λ1 is the first eigenvalue of −∆ in H1
0 (Ω).

We obtain the following theorem:

Theorem 17 Let (25) hold. Then, the MRDS generated by (24) has the minimal global

invariant random attractor A(ω), which is measurable with respect to F .

Proof. We have to check that (14) holds. In our case ε = λ1. In view of (25) for any

y ∈ D (A) = H2(O) ∩H1
0 (O), ξ ∈ F (y),

(ξ, y) ≤ (λ1 − 2δ) ‖y‖2 + M1µ(O) + 〈h, y〉

≤ (λ1 − δ) ‖y‖2 + M,

for some M ≥ 0, so that (14) holds. The statement follows from Theorem 16.

5 Conclusions and final remarks

We have introduced the concept of MRDS by showing the cocycle property and the

measurability of the stochastic flows associated to some stochastic differential inclusions

with additive noise. Some other examples, also for the existence of random attractors, as

linear multiplicative white noise, could have been written. However, this is the subject of

a subsequent work. A generalization of the theory of random attractors to this kind of

equations has been established, adding some light to a better understanding on the long

time behaviour of some stochastic multivalued partial differential equations.

One of the most interesting properties of global attractors for infinite dimensional

dynamical systems is that of being compact sets with finite fractal or Hausdorff dimen-

sion, as this implies some results on the dependence of the asymptotic behaviour of the

systems with only a finite number of degrees of freedom (cf. Robinson [20]). However,
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for deterministic multivalued partial differential equations is difficult to prove this finite

dimensionality of attractors, and we can also find counterexamples where this is not true

(cf. Valero [25]). Thus, it would be very interesting to study the dimension of random at-

tractors for MRDS and the relation with the dependence on a finite number of parameters

of the long time behaviour of these systems.

Acknowledgements

The authors would like to thank the referees for many helpful and valuable suggestions

which allowed to improve the paper.

This work was begun while the third author was visiting the University of Sevilla. He

wish to thank Tomás Caraballo and José A. Langa for their kind hospitality.
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