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Abstract. This paper is concerned with the existence of pullback attractors for evolution
processes. Our aim is to provide results that extend the following results for autonomous
evolution processes (semigroups)

i) An autonomous evolution process which is bounded dissipative and asymptotically
compact has a global attractor.

ii) An autonomous evolution process which is bounded, point dissipative and asymptoti-
cally compact has a global attractor.

The extension of such results requires the introduction of new concepts and brings up
some important differences between the asymptotic properties of autonomous and non-
autonomous evolution processes. An application is considered to damped wave problem
with non-autonomous damping.

1. Introduction

One of the central problems in dynamical systems is the study of the asymptotic behavior

of evolution processes associated to the modeling of real world phenomena. When the model

under study is an autonomous differential equation, the study of its asymptotic behavior is

rather well established and many references on the subject are available (cf. Temam [17],

Hale [8], Ladyzhenskaya [10], Babin-Vishik [1], Robinson [13] for example). However, if the

evolution process comes from a non-autonomous differential equation, even though some nice

references are already available (cf. Cheban [4], Chepyzhov-Vishik [6], Kloeden [9], Sell-You

[15]), much is yet to be done.

The subject of this paper is the existence of pullback attractors for evolution processes.

As we will see, even this fundamental question is not as well developed as its autonomous

counterpart. Our aim is to give results that allow us to conclude the existence of pullback
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attractors for pullback asymptotically compact and pullback point (or bounded) dissipative

processes. We also point out the features of non-autonomous evolution processes must be

considered to obtain results which are analogues to those for the autonomous evolution

processes emphasizing the distinction between the autonomous and non-autonomous cases.

To better explain the results in the paper we introduce some basic terminology. Let X be

a metric space and d(·, ·) : X × X → [0,∞) be its metric. Denote by C(X) the set of all

continuous transformations from X into itself. An evolution process in X is a family of

maps {S(t, s) : t > s} ⊂ C(X) with the following properties

1) S(t, t) = I, for all t ∈ R,

2) S(t, s) = S(t, τ)S(τ, s), for all t > τ > s,

3) {(t, s) ∈ R2 : t > s} ×X 3 (t, s, x) 7→ S(t, s)x ∈ X is continuous.

The processes {S(t, s) : t > s} for which S(t, s) = S(t − s, 0) for all t > s are called

autonomous evolution process and the family {T (t) : t > 0} given by T (t) = S(t, 0),

t > 0 is called a semigroup; that is, a family {T (t) : t ≥ 0} which satisfies

1) T (0) = I,

2) T (t + s) = T (t)T (s), for all t, s > 0,

3) [0,∞)×X 3 (t, x) 7→ T (t)x ∈ X is continuous.

Reciprocally, given a semigroup {T (t) : t > 0} the family {T (t− s) : t > s} is an evolution

process.

For an autonomous evolution process {S(t, s) = S(t − s, 0) : t > s}, the behavior of

solutions as t → ∞, which is called the forwards dynamics, is the same as the behavior of

solutions as s → −∞, which is called the pullback dynamics. For general processes, these

two dynamical limits are totally unrelated and can produce entirely different qualitative

properties (see [3]).

The pullback orbit of a subset B of X at time t ∈ R, is defined by γp(B, t) :=
⋃

s6t S(t, s)B,

where S(t, s)B := {S(t, s)x : x ∈ B}. {S(t, s) : t > s} is said pullback bounded if γp(B, t) is

bounded whenever B is a bounded subset of X and for each t ∈ R. A set K(t) ⊂ X pullback

attracts a set C at time t under {S(t, s) : t > s} if

lim
s→−∞

dist(S(t, s)C, K(t)) = 0.

A family {K(t) : t ∈ R} pullback attracts bounded subsets of X under {S(t, s) : t > s}
if K(t) pullback attracts all bounded subsets at t under {S(t, s) : t > s}, for each t ∈ R.

Given t ∈ R, B(t) ⊂ X pullback absorbs bounded subsets of X at time t if, for each bounded

subset B of X, there exists T = T (t, B) 6 t such that

S(t, s)B ⊂ B(t), for all s 6 T (t, B).
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A family {B(t) : t ∈ R} pullback absorbs bounded subsets of X if B(t) pullback absorbs

bounded sets at time t, for each t ∈ R. If there exists a family {B(t) : t ∈ R} of bounded

sets which pullback absorbs bounded subsets of X then we say that the evolution process

{S(t, s) : t > s} is pullback bounded dissipative. In a completely similar way we define the

notions of pullback point dissipative or pullback compact dissipative processes. Let {B(t) :

t ∈ R} a family of subsets of X. We say that this family is invariant with respect to the

process {S(t, s) : t > s} if

S(t, s)B(s) = B(t), for all t > s.

Definition 1.1. A family {A(t) : t ∈ R} of compact subsets of X is said a pullback

attractor for the evolution process {S(t, s) : t > s} if it is invariant, pullback attracts

bounded subsets of X and is minimal; that is, if there is another invariant family {C(t) : t ∈
R} which pullback attracts bounded subsets of X, then A(t) ⊆ C(t), for all t ∈ R.

An autonomous evolution process {S(t−s) : t ≥ s} has a pullback attractor {A(t) : t ∈ R}
if and only if the semigroup {S(t) : t ≥ 0} has a global attractor A (in the sense of [8]) and

in either case A(t) = A for all t ∈ R.

We remark that the minimality requirement in Definition 1.1 is additional relative to

the theory of attractors for semigroups. This minimality requirement is essential to ensure

uniqueness of pullback attractors. Its inclusion is related to the weakening of the invariance

property imposed by the non-autonomous nature of general evolution processes. If {S(t) :

t > 0} is a semigroup and {S(t− s) : t > s} is the process associated to it, there may exist

a family {A(t) : t ∈ R} of compact invariant sets that pullback attracts bounded subsets

and is not minimal. Indeed, if S(t − s) = e−(t−s)x0, x0 ∈ R, t > s and c > 0 the family

{[−ce−t, ce−t] : t ∈ R} is invariant, [−ce−t, ce−t] is compact and attracts bounded subsets of

R at time t for each t ∈ R.

Remark 1.2. Recall that, a global solution for an evolution process {S(t, s) : t > s} is a

function ξ : R → X such that S(t, s)ξ(s) = ξ(t) for all t ≥ s. We say that a global solution

ξ : R → X of an evolution process is backwards bounded if there is a τ ∈ R such that

{ξ(t) : t 6 τ} is a bounded subset of X.

If an evolution process {S(t, s) : t > s} has a pullback attractor {A(t) : t ∈ R} and

ξ : R→ X is a backwards bounded solution, then ξ(t) ∈ A(t) for all t ∈ R. If we require, in

addition, that the pullback attractor {A(t) : t ∈ R} has the property that ∪s≤τA(s) is bounded

for each τ ∈ R, the requirement that the pullback attractor is minimal in Definition 1.1 can

be dropped and

A(t) = {ξ(t) : ξ : R→ X is a global backwards bounded solution of {S(t, s) : t > s}}



4 T. CARABALLO, A. N. CARVALHO, J. A. LANGA, AND F. RIVERO

The notion of a pullback asymptotically compact evolution process is naturally associated

with evolution processes which posses a pullback attractor.

Definition 1.3. An evolution process {S(t, s) : t > s} in a metric space X is said pullback

asymptotically compact if, for each t ∈ R, sequence {sk}k∈N in (−∞, t] and bounded sequence

{xk}k∈N in X such that

• sk
k→∞−→ −∞ and

• {S(t, sk)xk : k ∈ N} is bounded,

the sequence {S(t, sk)xk}k∈N has a convergent subsequence.

Next we give two characterizations of autonomous evolution processes which posses global

attractors. Both characterizations are widely used to obtain existence of pullback attractors

for autonomous evolution processes. We will first formulate them in the classical way, and

later we will rewrite them taking into account the framework described above. (See [8] or

[10] for more details of the autonomous formulation).

Theorem 1.4. If {S(t) : t ≥ 0} is a semigroup, the following conditions are equivalent:

i) {S(t) : t ≥ 0} possesses a global attractor.

ii) {S(t) : t ≥ 0} is bounded dissipative and asymptotically compact.

iii) {S(t) : t ≥ 0} is bounded, point dissipative and asymptotically compact.

Condition ii) gives the following characterization of autonomous processes which have

pullback attractors

Theorem 1.5. If {S(t) : t ≥ 0} is a semigroup, the autonomous evolution process {S(t−s) :

t ≥ s} has a pullback attractor if and only if it is pullback asymptotically compact and pullback

bounded dissipative.

On the other hand, condition iii) gives we have that

Theorem 1.6. If {S(t) : t ≥ 0} is a semigroup, the autonomous evolution process {S(t−s) :

t ≥ s} has a pullback attractor if and only if {S(t− s) : t ≥ 0} is pullback bounded, pullback

point dissipative and pullback asymptotically compact.

The decision about which characterization should be used in a given application depends on

the properties of the model under study. The first result is widely used associated to energy

estimates for asymptotically compact autonomous evolution processes and the second is

mostly associated to asymptotically compact gradient autonomous evolution processes with

a bounded set of equilibria.

Our aim is to provide extensions of the above results to the case of general (autonomous or

not) evolution processes. As we will see in Section 2, even the statement of such extensions

in the general case will require the introduction of several new (natural) concepts.
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The paper is organized as follows. In Section 2 we state the main results of the paper,

introduce the necessary definitions and terminology to be able to state and apply them. In

Section 3 we prove the analogues to Theorem 1.5 and prove a result that implies pullback

asymptotic compactness. In Section 4 we prove the analogue of Theorem 1.6.

2. Statement of the results and their applications

Let us start recalling the definition of pullback ω− limit sets.

Definition 2.1. Let {S(t, s) : t > s} be an evolution process in a metric space X and B be

a subset of X. The pullback ω-limit of B is defined by

ω(B, t) :=
⋂
σ6t

⋃
s6σ

S(t, s)B.

For each subset B of X, it holds that

ω(B, t) = {y ∈ X : there are sequences {sk}k∈N in (−∞, t], sk
k→∞−→ −∞

and {xk}k∈N in B, such that y = lim
k→∞

S(t, sk)xk}.
(2.1)

The following theorem gives a characterization of evolution processes with a pullback

attractor. So far, it is the only result available to obtain existence of pullback attractors in

applications (see [8, 10, 12, 13, 17] for the autonomous case).

Theorem 2.2. Let {S(t, s) : t > s} be an evolution process in a metric space X. Then, the

following statements are equivalent

• {S(t, s) : t > s} has a pullback attractor {A(t) : t ∈ R}.
• There exists a family of compact sets {K(t) : t ∈ R} that pullback attracts bounded

subsets of X under {S(t, s) : t > s}.
In either case

(2.2) A(t) =
⋃
{ω(B, t) : B ⊂ X, B bounded }

and {A(t) : t ∈ R} is minimal in the sense that, if there exists another family of closed

bounded sets {Â(t) : t ∈ R} which pullback attracts bounded subsets of X under {S(t, s) :

t > s}, then A(t) ⊆ Â(t), for all t ∈ R.

This result is proved in [2, 12] and we provide a short proof in Section 3 for completeness.

The application of such result for processes which are not compact may be difficult because

one must find a compact set K(t) which pullback attracts bounded subsets of X for each

t ∈ R. We aim to provide a few alternative results to prove existence of pullback attractors

in order to have a theory as complete as in the autonomous case.

We prove in Section 3 that
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Theorem 2.3. If {S(t, s) : t > s} is pullback bounded dissipative and pullback asymptotically

compact, then A(t) given by (2.2) is closed, invariant, pullback attracts bounded subsets of

X at time t, and the family {A(t) : t ∈ R} is minimal among the families {B(t) : t ∈ R}
such that B(t) is closed and pullback attracts bounded subsets of X at time t.

Observe that the previous result does not give any compactness of A(t). This is not a

restriction in the finite dimensional case, as A(t) is actually bounded and closed. However,

the result shows a first difference with respect to analogous results for autonomous evolution

processes in the infinite dimensional case. Getting the same kind of results requires to adopt

different strategies, any of them imposing new hypotheses on the dynamics of the processes.

Definition 2.4. We say that an evolution process {S(t, s) : t > s} is pullback strongly

bounded dissipative if, for each t ∈ R, there is a bounded subset B(t) of X which pullback

attracts bounded subsets of X at time τ for each τ 6 t; that is, given a bounded subset B of

X and τ 6 t, there exists s0(τ, D) such that S(τ, s)B ⊂ B(t), for all s 6 s0(τ, D).

Note that the family {B(t) : t ∈ R} given in the above definition does not need to have a

bounded union. Nonetheless, we may choose it in such a way that, for each t ∈ R,
⋃

s6t B(s)

is bounded. The following theorem, proved in Section 3, gives a sufficient condition for the

existence of a compact pullback attractor.

Theorem 2.5. If an evolution process {S(t, s) : t > s} is pullback strongly bounded dissi-

pative and pullback asymptotically compact, then {S(t, s) : t > s} has a pullback attractor

{A(t) : t ∈ R} with the property that
⋃

s6tA(s) is bounded for each t ∈ R.

To prove (in applications) that a process is asymptotically compact, we will need to assume

that the evolution process is pullback strongly bounded as defined next

Definition 2.6. We say that an evolution process {S(t, s) : t > s} in X is pullback strongly

bounded if, for each t ∈ R and bounded subset B of X,
⋃

s6t γp(B, s) is bounded.

Remark 2.7. If {S(t) : t > 0} is a semigroup, {S(t−s) : t > s} is pullback strongly bounded

if and only if {S(t− s) : t > s} is pullback bounded if and only if {S(t) : t > 0} is a bounded

semigroup.

For evolution processes which are pullback strongly bounded, the following result (proved

in Section 3) gives sufficient conditions for pullback asymptotic compactness

Theorem 2.8. Let {S(t, s) : s 6 t} be a pullback strongly bounded process such that S(t, s) =

T (t, s) + U(t, s), where U(t, s) is compact and there exits a non-increasing function

k : R+ × R+ −→ R

with k(σ, r) → 0 when σ → ∞, and for all s 6 t and x ∈ X with ‖x‖ 6 r, ‖T (t, s)x‖ 6
k(t− s, r). Then, the process {S(t, s) : s 6 t} is pullback asymptotically compact.
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In Section 4 we pursue a result that would enable us to conclude the existence of pull-

back attractors without having to prove pullback strong bounded dissipativeness but rather

pullback strong point dissipativeness (see Hale [8], Raugel [12]). To that end, the notion

of pullback asymptotic compactness and pullback dissipativeness associated to the elapsed

time presented next is needed.

Definition 2.9. We say that an evolution process {S(t, s) : t > s} is pullback strongly

asymptotically compact if for each t ∈ R, bounded sequence {xk : k ∈ N} in X, sequences

{sk : k ∈ N}, {τk : k ∈ N} with t > τk > sk and τk − sk
k→∞−→ ∞, then {S(τk, sk)xk : k ∈ N}

is relatively compact. If {S(t) : t > 0} is a semigroup, {S(t− s) : t > s} is pullback strongly

asymptotically compact if and only if {S(t− s) : t > s} is pullback asymptotically compact

if and only if {S(t) : t > 0} is asymptotically compact in the sense of [10]. The process

{S(t, s) : s 6 t} is called strongly compact if for each time t and B ⊂ X there exits a TB 6 0

and a compact set K ⊂ X such that U(τ, s)B ⊂ K for all s 6 τ 6 t with τ − s > TB.

Definition 2.10. Let {S(t, s) : t > s} be an evolution process in a metric space X. We

say that a bounded set B(t) of X pullback strongly absorbs points (compact subsets) of X

at time t if, for each x ∈ X (compact subset K of X), there exist σx > 0 (σK > 0) such

that S(τ, s)(x) ∈ B(t) (S(τ, s)(K) ⊂ B(t)) for all s 6 τ 6 t with τ − s > σx (τ − s > σK).

We say that {S(t, s) : t > s} is pullback strongly point dissipative (compact dissipative) if,

for each t ∈ R, there is a bounded subset B(t) ⊂ X which pullback strongly absorbs points

(compact subsets) of X at time t.

Remark 2.11. If a set B(t) pullback strongly absorbs points (compact subsets/bounded sub-

sets) of X at t, then it pullback strongly absorbs points (compact subsets/bounded subsets)

of X at τ for all τ 6 t. Also, if {S(t) : t > 0} is a semigroup then {S(t − s) : t > s} is

pullback strongly point dissipative (compact dissipative) if and only if {S(t − s) : t > s} is

pullback point dissipative (compact dissipative) if and only if {S(t) : t > 0} is point dissipative

(compact dissipative) in the sense of [8].

With these concepts we can prove the following result on existence of pullback attractors.

Theorem 2.12. Let {S(t, s) : t > s} be an evolution process with the property that, for

each t ∈ R and τ > 0, {S(s, s − τ) : s 6 t}, is equicontinuous at x for each x ∈ X.

If {S(t, s) : t > s} is pullback strongly point dissipative, pullback strongly bounded and

pullback strongly asymptotically compact, then {S(t, s) : t > s} is pullback strongly bounded

dissipative. Consequently, {S(t, s) : t > s} has a pullback attractor {A(t) : t ∈ R} with the

property that
⋃

s6tA(s) is bounded for each t ∈ R.

In applications, to prove the pullback strong asymptotic compactness property we use the

following result
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Theorem 2.13. Let {S(t, s) : s 6 t} be a pullback strongly bounded process such that

S(t, s) = T (t, s) + U(t, s), where U(t, s) is strongly compact and there exits a non-increasing

function

k : R+ × R+ −→ R

with k(σ, r) → 0 when σ → ∞, and for all s 6 t and x ∈ X with ‖x‖ 6 r, ‖T (t, s)x‖ 6
k(t− s, r). Then, the process {S(t, s) : s 6 t} is pullback strongly asymptotically compact.

2.1. A pullback strongly bounded dissipative wave equation. In this section we give

an application of Theorem 2.5. Let us consider the following nonautonomous wave equation

(2.3)

{
utt + β(t)ut = ∆u + f(u) in Ω

u(x, t) = 0 in ∂Ω

where Ω ⊂ Rn is a bounded smooth domain Rn. For f : R→ R we assume that:

f ∈ C2(R), |f ′(s)| 6 c(1 + |s|p−1), lim sup
|s|→∞

f(s)

s
6 0,(2.4)

with c > 0 and p < n
n−2

Assume that β : R→ R is a bounded, globally Lipschitz function and that there are

(2.5) β0 6 β(t) 6 β1 for some β0, β1 ∈ (0,∞).

We will prove that the nonautonomous process associated to (2.3) has a pullback attractor

by applying Theorem 2.8. Let X = H1
0 (Ω) × L2(Ω), for ut = v and w = ( u

v ), we rewrite

(2.3) as

(2.6) wt = C(t)w + F (w)

where

(2.7) C(t) =

(
0 I

−A −β(t)I

)
and F (w) =

(
0

f(u)

)

A = −∆ with Dirichlet boundary condition.

For each initial value w0 ∈ X and initial time s ∈ R, system (2.6) possesses a unique

solution which can be written as

(2.8) S(t, s)w0 = L(t, s)w0 + U(t, s)w0,

where L(t, s) is the solution operator for wt = C(t)w, and

U(t, s)w0 =

∫ t

s

L(t, τ)F (S(τ, s)w0)dτ.

Let us prove that {S(t, s) : t > s} is pullback asymptotically compact using Theorem 2.8.
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Proposition 2.14. There are positive constants K > 0, α > 0, such that:

‖L(t, s)‖ 6 Ke−α(t−s), t > s.

Proof: Consider the following function

(2.9) V (ϕ, φ) =
1

2
|ϕ|2H1

0 (Ω) + 2b(ϕ, φ)L2(Ω) +
1

2
|φ|2L2(Ω), (ϕ, φ) ∈ X

For suitably small b0 > 0 and b ≤ b0 we have that

1

4
[|ϕ|2H1

0 (Ω) + |φ|2L2(Ω)] 6 1

2
|ϕ|2H1

0 (Ω) + 2b(ϕ, φ) +
1

2
|φ|2L2(Ω)

6 3

4
[|ϕ|2H1

0 (Ω) + |φ|2L2(Ω)].

(2.10)

If (u(t, s), ut(t, s)) is a solution of
{

utt + β(t)ut −∆u = 0 in Ω

u(x, t) = 0 in ∂Ω,

then

d

dt
V (u, ut)=(u, ut)H1

0 (Ω)+2b(ut, ut)L2(Ω)+2b(u, utt)L2(Ω)+(ut, utt)L2(Ω).

Therefore,

d

dt
V (u(t, s), ut(t, s))

= −(β(t)− 2b)|ut|2L2(Ω) − 2b|u|2H1
0 (Ω) − 2β(t)(u, ut)L2(Ω)

6 −(β0 − 2b− bβ1

ε
)|ut|2L2(Ω) + (bβ1ε− bλ1)|u|2L2(Ω) − b|u|2H1

0 (Ω),

with ε = λ1

β1
and b0 > 0 small enough. Then we have that, for all 0 < b ≤ b0,

(2.11)
d

dt
V (u(t, s), ut(t, s)) = −αV (u(t, s)ut(t, s)).

Hence,

V (L(t, s)(ϕ, φ)) 6 V (ϕ, φ)e−α(t−s)

and, consequently, ‖L(t, s)(ϕ, φ)‖2
X 6 Ke−α(t−s)‖(ϕ, φ)‖ proving the result.

Theorem 2.15. {S(t, s) : t > s} is pullback strongly bounded dissipative.

Proof: Consider the energy functionals

(2.12) V(ϕ, φ) =
1

2
|ϕ|2H1

0 (Ω) + 2b(ϕ, φ) +
1

2
|φ|2L2(Ω) −

∫

Ω

G(ϕ),
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where G(s) =
∫ s

0
f(θ)dθ. As in (2.11) we obtain

(2.13)
d

dt
V(u(t, s), ut(t, s)) 6 −αV(u, ut).

From this we have that,

‖S(t, s)(ϕ, φ)‖2
X 6 C(B)e−α(t−s) + K,(2.14)

for some constant K and the result is proved.

Theorem 2.16. {U(t, s) : t ≥ s} is compact.

Proof: Let B ⊂ X be bounded and w0 = ( u0
v0 ) ∈ B. Let t 7→ S(t, s)w0 be the solution of

(2.6) which at time s is w0, and consider

U(t, s)w0 =

∫ t

s

T (t, θ)F (S(θ, s)w0)dθ.

The compactness of U follows easily from the fact that f is bounded from H1
0 (Ω) into W 1,p(Ω)

for some 2 > p > 2n
n+2

and consequently into compact subsets of L2(Ω).

Hence, applying Theorem 2.8 and Theorem 2.5, we can conclude that system (2.6) has a

pullback attractor in X.

2.2. A pullback strongly point dissipative wave equation. We consider the damped

wave equation in (2.3) with all the assumptions over f(s) and β(t) as follow

(2.15) β(t) =

{
β0 if t 6 0

b(t) in t > 0,

where b(t) is a bounded and globally Lipschitz function with b(0) = β0.

We already know that the process {S(t, s) : s 6 t} associated to this problem is pullback

strongly asymptotically compact and pullback strongly bounded. We want to verify that it

is also pullback strongly point dissipative and equicontinuous.

When β(t) is constant we have an autonomous equation, so the semigroup associated

S(t, s) = S̃0(t − s) is point dissipative (see for example [8] or [17]), i.e. if β(t) ≡ β0, there

exists a set B0 ⊂ X such that for each x ∈ X, S̃0(t)x ⊂ B0 for all t > σx. We now define

the following bounded sets

(2.16) B(t) =
⋃
τ6t

γp(B0, τ).

We take a fixed t ∈ R, x ∈ X and consider S(τ, s)x with s 6 τ 6 t. If t 6 0 we

know that there exits a σx > 0 such that S(τ, s)x = S̃0(τ − s)x ∈ B0 ⊂ B(t) for all

τ − s > σx. Otherwise if t > 0 we can take a fixed τ̃ < 0 such that s 6 τ̃ < τ and

S(τ, s)x = S(τ, τ̃)S(τ̃ , s)x. Therefore there exits a σx > 0 such that S(τ̃ , s)x ∈ B0 for all

τ̃ − s > σx. Therefore S(τ, s)x ⊂ B(t) for all τ − s > τ̃ − s > σx. So {S(t, s) : s 6 t} is

pullback strongly point dissipative.
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Let be ε > 0. By Hale ([8]) we have that F (ϕ, φ) is locally Lipschitz with constat λ and

(ϕ, φ) ∈ X. Therefore, if we take x, y ∈ X we have

‖S(s, s− τ)x−S(s, s− τ)y‖ 6

6 Ke−ατ‖x− y‖+

∫ s−τ

s

K2‖S(θ, s)x− S(θ, s)y‖e−αθdθ,

and using the Gronwall lemma and taking ‖x − y‖ < (Ke−ατ+Kλ
α )−1we can conclude that

‖S(s, s − τ)x − S(s, s − τ)y‖ < ε. So for each t ∈ R and τ > 0, {S(s, s − τ) : s 6 t}, is

equicontinuous. Therefore we can apply Theorem 2.12.

3. Pullback asymptotically compact processes

In this section we prove the theorems associated to the extension of Theorem 1.5 (Theo-

rems 2.3 and 2.5) and to the verification of its hypothesis (Theorem 2.8). We also give an

application of Theorem 2.5.

We start the section with some basic results and with the proof of Theorem 2.2.

Lemma 3.1. Let {S(t, s) : t > s} be an evolution process in a metric space X. If B ⊂ X,

then S(t, s)ω(B, s) ⊂ ω(B, t). If B is such that ω(B, s) is compact and pullback attracts B

at time s, then S(t, s)ω(B, s) = ω(B, t). Furthermore, if ω(B, t) pullback attracts C at time

t and C is a connected set which contains
⋃

s6t ω(B, s), then ω(B, t) is connected.

Proof: If ω(B, t) = ∅, there is nothing to show. If ω(B, s) 6= ∅, from the continuity of S(t, s)

and from (2.1) one immediately sees that S(t, s)ω(B, s) ⊂ ω(B, t).

It remains to show that, if ω(B, s) is compact and pullback attracts B, then ω(B, t) ⊂
S(t, s)ω(B, s). For x ∈ ω(B, t), there are sequences σk → −∞, σk 6 t and xk ∈ B such that

S(t, σk)xk
k→∞−→ x. Since σk → −∞ we have that there exists k0 ∈ N such that σk 6 s for

all k > k0. Hence S(t, s)S(s, σk)xk = S(t, σk)xk → x for k > k0. Since ω(B, s) is compact

and pullback attracts B at time s, we have that dist(S(s, σk)xk, ω(B, s))
k→∞−→ 0. It is then

easy to see that {S(s, σk)xk}k∈N has a convergent subsequence (which we again denote by

S(s, σk)xk) to some y ∈ ω(B, s). It follows from the continuity of S(t, s) that S(t, s)y = x.

Hence ω(B, t) = S(t, s)ω(B, s).

Now we prove the assertion about the connectedness of ω(B, t). Suppose that ω(B, t) is

disconnected, then ω(B, t) is a disjoint union of two compact sets (hence separated by a

positive distance), but ω(B, t) pullback attracts C and this is in contradiction with the fact

that S(t, s)C is connected and contains ω(B, t).

Lemma 3.2. Let {S(t, s) : t > s} be an evolution process in a metric space X. If B is a

nonempty subset of X such that
⋃

s6s0
S(t, s)B is compact, for some s0 ∈ R, s0 6 t, then

ω(B, t) is nonempty, compact, invariant and ω(B, t) pullback attracts B at time t.
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Proof: Since
⋃

s6σ S(t, s)B is nonempty and compact for each σ 6 s0, we have that ω(B, t)

is nonempty and compact.

Let us show that ω(B, t) pullback attracts B at time t. Suppose not, then there ex-

ists ε > 0 and sequences {xk}k∈N in B, {σk}k∈N in R with σk 6 t, σk
k→∞−→ −∞, such

that dist(S(t, σk)xk, ω(B, t)) > ε for all k ∈ N. Since
⋃

s6s0
S(t, s)B is compact and

{S(t, σk)xk, k > k0} ⊂
⋃

s6s0
S(t, s)B for some k0 ∈ N, {S(t, σk)xk : k ∈ N} has a con-

vergent subsequence to some y ∈ ω(B, t). This leads to a contradiction and shows that

ω(B, t) pullback attracts B at time t.

From Lemma 3.1, ω(B, t) is invariant and the proof is complete.

Proof of Theorem 2.2: If {S(t, s) : t ≥ s} has a pullback attractor {A(t) : t ∈ R}, each

A(t) is compact and pullback attracts bounded subsets of X.

To prove the converse we proceed as follows. First note that, as an immediate consequence

of (2.1) we have that ω(B, t) ⊂ K(t), for all B ⊂ Z bounded and all t ∈ R. Moreover, we

also have that ω(B, t) attracts B. Indeed, if not there exists ε > 0, a sequence {sn}n∈N of real

numbers with sn → −∞ and a sequence {xn}n∈N in B such that dist(S(t, sn)xn, ω(B, t)) > ε

for all n ∈ N. Since K(t) pullback attracts B we have that dist(S(t, sn)xn, K(t))
n→∞−→ 0.

Consequently, {S(t, sn)xn}n∈N has a convergent subsequence to some x0 ∈ K(t). Hence

x0 ∈ ω(B, t) which leads to a contradiction.

Note that we are now in the hypotheses of Lemma 3.1, which imply the invariance of

ω(B, t).

Thus, definingA(t) by (2.2), A(t) is clearly compact and pullback attracts bounded subsets

of X. The invariance of A(t) holds from the invariance of each set ω(B, t). Indeed, given

x0 ∈ A(s), there exists xn ∈ ω(Bn, s) with xn → x0 as n → +∞. Then, S(t, s)xn = yn ∈
ω(B, t), and by the continuity of the process S(t, s) we have that S(t, s)xn = yn → S(t, s)x0,

which implies that S(t, s)x0 ∈ A(t). Now, take y0 ∈ A(t). Then, there exists yn ∈ ω(Bn, t)

with yn → y0 as n → +∞. But then, again by the invariance of the family ω(Bn, t), there

exists xn ∈ ω(Bn, s) with S(t, s)xn = yn. But each S(t, s)xn ∈ S(t, s)ω(Bn, s) ⊂ S(t, s)A(s).

As this last set is compact and does not depend on n, we get that limn→+∞ S(t, s)xn = y0 ∈
S(t, s)A(s).

Given that Â(t) is bounded and pullback attracts bounded sets at t we have that ω(B, t) ⊆
Â(t), for all bounded subset B of X. Hence A(t) ⊆ Â(t).

Now we prove Theorems 2.3 and 2.5. To that end we need the following auxiliary result

Lemma 3.3. If {S(t, s) : t > s} is a pullback asymptotically compact evolution process

and B is a nonempty bounded subset of X such that
⋃

τ6s0
S(t, τ)B is bounded, for some

s0 ∈ (−∞, t], then ω(B, t) is nonempty, compact, invariant and pullback attracts B at time

t.
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Proof: First, note that, for any sequences {xk : k ∈ N} in B and {sk : k ∈ N} in (−∞, s0],

sk
k→∞−→ −∞, we have that {S(t, sk)xk : k ∈ N} is bounded. It follows from the fact that

{S(t, s) : t > s} is pullback asymptotically compact that there exists y ∈ X and subsequence

of {S(t, sk)xk : k ∈ N} (which we denote the same) such that y = limk→∞ S(t, sk)xk. It

follows that y ∈ ω(B, t) and ω(B, t) is nonempty.

Now, given a sequence {yk : k ∈ N} in ω(B, t), there are xk ∈ B and sk ∈ (−∞, s0],

sk 6 −k, such that d(S(t, sk)xk, yk) 6 1
k
. Since {S(t, sk)xk : k ∈ N} has a convergent

subsequence, it follows that {yk : k ∈ N} has a convergent subsequence and ω(B, t) is

compact.

We now show that ω(B, t) pullback attracts B. If not, there exists ε > 0 and sequences xk ∈
B and sk

k→∞−→ −∞, such that dist(S(t, sk)xk, ω(B, t)) > ε. From the pullback asymptotic

compactness, there is a y ∈ X and a subsequence of {S(t, sk)xk : k ∈ N} (which we denote

the same) such that S(t, sk)xk
k→∞−→ y. Clearly y ∈ ω(B, t) and that leads to a contradiction.

It follows that ω(B, t) attracts B.

The invariance of ω(B, t) now follows from Lemma 3.1 and the result is proved.

Proof of Theorem 2.3: Observe that we are in the hypotheses of Lemma 3.3, so that, given

a bounded subset B of X, ω(B, t) is nonempty, compact, invariant and pullback attracts

B at time t. Hence, if A(t) is defined by (2.2), {A(t) : t ∈ R} is closed, invariant and

pullback attracts bounded subsets of X. If B(t) is closed and pullback attracts bounded sets

at time t, it is clear that ω(B, t) ⊂ B(t) for each bounded subset B of X and consequently

A(t) ⊂ B(t). This completes the proof.

Proof of Theorem 2.5: If A(t) is given by (2.2), it follows from Theorem 2.3 that A(t) is

closed, invariant, pullback attracts bounded subsets of X at time t and that A(t) is minimal

among the closed sets that pullback attract bounded subsets of X at time t. From the fact

that {S(t, s) : t > s ∈ R} is pullback strongly bounded dissipative, there exists a bounded

subset B(t) of X that pullback absorbs bounded subsets of X at time τ , for each τ 6 t.

Since ω(B(t), t) pullback attracts B(t) at time t (considered as a fixed bounded subset of X),

it pullback attracts every bounded subset of X at time t. Indeed, it is enough to prove that,

given a bounded subset D of X, ω(D, t) ⊂ ω(B(t), t). If x0 ∈ ω(D, t), there are sequences

{sk}k∈N in (−∞, t] with sk
k→∞−→ −∞, and {xk}k∈N in D such that S(t, sk)xk

k→∞−→ x0. Since

{S(t, s) : t > s} is pullback strongly bounded dissipative, given a sequence {τn}n∈N with

τn
n→∞−→ −∞, there exists a sequence {σn}n∈N with σn 6 τn such that S(τn, s)D ⊂ B(t),

for all s 6 σn(τn). Given that sk
k→∞−→ −∞, for each τn there exists kn > n such that

S(τn, skn)xkn ∈ B(t). Thus,

S(t, skn)xkn = S(t, τn)S(τn, skn)xkn ∈ S(t, τn)B(t),



14 T. CARABALLO, A. N. CARVALHO, J. A. LANGA, AND F. RIVERO

which implies x0 ∈ ω(B(t), t). This proves that A(t) ⊂ ω(B(t), t) and consequently A(t) is

compact. Since clearly ω(B(t), t) ⊂ A(t) we have that A(t) = ω(B(t), t).

Finally, since {S(t, s) : t > s} is pullback strongly bounded dissipative, for each bounded

subset D of X, ω(D, τ) ⊂ B(t), for all τ 6 t. In fact, for any x0 ∈ ω(D, τ) there is a sequence

{sn}n∈N in (−∞, t] with sn
n→∞−→ −∞ and {xn}n∈N in D such that limn→+∞ S(τ, sn)xn = x0.

Hence, S(τ, sn)xn ∈ B(t) for all suitably large n and so x0 ∈ B(t). This implies A(τ) ⊂ B(t)

for all τ 6 t and completes the proof.

In [8, Lemma 3.2.6] a sufficient condition for a semigroup to be asymptotically compact is

given. Next we prove Theorem 2.8 which is its analogue for evolution processes. Let us briefly

recall the definition and basic properties of the Kuratowski measure of non-compactness (see

[7] for details).

Definition 3.4. Let X be a metric space and A ⊂ X. The Kuratowski measure of non-

compactness is defined as:

(3.1) α(A) = inf{δ > 0 : A has a finite cover of diameter < δ}.
Lemma 3.5. Let X be a metric space and α the Kuratowski measure:

(1) α(B) = 0 ⇔ B is compact;

(2) If X is a Banach space and B1, B2 ⊂ X ⇒ α(B1 + B2) 6 α(B1) + α(B2);

(3) If B1 ⊂ B2 ⇒ α(B1) 6 α(B2);

(4) α(B1 ∪B2) 6 max{α(B1), α(B2)};
(5) α(B) = α(B);

(6) α(kB) = |k|α(B) for all k ∈ R.

Lemma 3.6. Let X be a complete metric space and {Fn} a decreasing sequence of non-

empty, bounded and closed sets such that α(Fn)
n→∞−→ 0. Then

⋂
n∈N Fn is nonempty and

compact.

Proof of Theorem 2.8: Let {xn} ⊂ B with B ⊂ X bounded and tn, sn ∈ R with tn−sn →
∞. We denote

(3.2) Bt =
⋃
τ6t

γp(B, τ),

where r > 0 is such that ∀x ∈ Bt, ‖x‖ 6 r (observe that Bt is a bounded set, so there exists

r > 0 such that Bt ⊂ B(0, r) = Br). We define the sets

Jj = {S(tn, sn)xn : n > j}.
For each xn we can write

S(tn, sn)xn = S(tn, τn)S(τn, sn)xn ⊂ S(tnτn)Br,

with τn = tn−sn

2
.
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Let TB be as in Definition 2.9. Then, for all j ∈ N such that tj − τj > TB we have

α(Jj) 6 α({T (tn, τn)Br + U(tn, τn)Br : n > j})
6 α({T (tn, τn)Br : n > j})
6 k(tj − τj, r) → 0 when j →∞.

Since α(J1) = α(Jj) we conclude that {S(tn, sn)xn} is a precompact set in X.

4. Pullback strong point dissipativeness

This section is devoted to the proof of Theorem 2.12. Our main task is to prove that, under

certain smoothing properties of the evolution processes, strong pullback point dissipativeness

implies strong pullback bounded dissipativeness. The following lemma plays an important

rol in that procedure.

Lemma 4.1. Let {S(t, s) : t > s} be a pullback strongly point dissipative, pullback asymptot-

ically compact and pullback strongly bounded evolution process. If, for each t ∈ R and σ > 0,

the family {S(τ, τ − σ) : τ 6 t} is equicontinuous at each x ∈ X, then {S(t, s) : t > s} is

pullback strongly compact dissipative.

Proof: Fix t ∈ R and let B(t) be a bounded subset of Z which strongly absorbs points of

X at time t.

For τ 6 t, let B1(t) = {x ∈ X : d(x, y) < 1 for some y ∈ B(t)} and C(τ) = γp(B1(t), τ).

Then C(τ) is a bounded subset of X which strongly absorbs points of X at time τ . Indeed,

given x ∈ X let σx be such that S(r, s)x ∈ B(t), s+σx 6 r 6 τ 6 t. Then, since B(t) ⊂ C(τ),

it follows that C(τ) pullback strongly absorbs points at time τ .

Due to the equicontinuity of the process, if K is a compact subset of X and x ∈ K there

are νx ∈ N and εx > 0 such that S(r, r − νx)Bεx(x) ⊂ B1(t), for all r 6 τ . It follows that

S(τ, r−νx)(Bεx(x)) ⊂ C(τ) for all r 6 τ . Since K is compact there is a p ∈ N∗ and x1, · · · , xp

in K such that K ⊂ ∪p
i=1Bεxi

(xi) and for σK = max{σxi
: 1 6 i 6 p}, S(τ, r−σK)K ⊂ C(τ)

for all r 6 τ . Then, from the fact that {S(t, s) : s 6 t} is pullback strongly bounded, it

follows that
⋃

τ6t C(τ) is bounded and pullback strongly absorbs compact subsets of X at

time t.

Theorem 4.2. If a process {S(t, s) : t > s} is pullback strongly compact dissipative and

pullback strongly asymptotically compact, then {S(t, s) : t > s} is pullback strongly bounded

dissipative.

Proof: From the fact that S(t, s) is pullback strongly compact dissipative there is a B(t)

closed and bounded which pullback strongly absorbs compact subsets of X at time t. First we

prove that, for each bounded subset D of X, ω(D, τ) ⊂ B(t) for each τ 6 t. If y ∈ ω(D, τ),

there is a sequence {sk : k ∈ N} with sk 6 τ and sk
k→∞−→ −∞ and a sequence {xk}k∈N ⊂ D
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such that dist(S(τ, sk)xk, ω(D, τ))
k→∞−→ 0. Taking {rk : k ∈ N} with τ > rk > sk and

min{τ − rk, rk − sk} k→∞−→ ∞ and using the fact that {S(t, s) : t > s} is pullback strongly

asymptotically compact (taking subsequences if necessary), there is a z ∈ X such that

zk := S(rk, sk)xk
k→∞−→ z. From the compactness of the set K = {zk : k ∈ N} ∪ {z}, there is

a σK ∈ N such that S(τ, rk)K ⊂ B(t) whenever τ − rk > σK . Thus, for all suitably large k,

S(τ, sk)xk = S(τ, rk)S(rk, sk)xk ⊂ S(τ, rk)K ⊂ B(t).

This completes the proof that ω(D, τ) ⊂ B(t) for each τ 6 t.

Since ω(D, τ) pullback attracts D at time τ , it follows that B(t) pullback attracts bounded

subsets of X at time τ for each τ 6 t; that is, {S(t, s) : t > s} is pullback strongly bounded

dissipative.

As an immediate consequence of Theorem 2.5 we have that

Theorem 4.3. If a process {S(t, s) : t > s} is pullback strongly compact dissipative and

pullback strongly asymptotically compact, then {S(t, s) : t > s} has a pullback attractor

{A(t) : t ∈ R} with the property that
⋃

s6tA(s) is bounded for each t ∈ R.

The proof of Theorem 2.12 is now a direct application of Lemma 4.1 and Theorem 4.3.

Final Remark Although, for simplicity, the results given in this work concern the pullback

attractor of bounded sets, they can be generalized in such way that other classes of sets can be

attracted. In that case, the introduced definitions of dissipation and asymptotic compactness

should be changed accordingly to cope with these other classes (see [2] for more details).
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