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1. Introduction and statement of the problem

A description of wave propagation phenomena in random media is usually based on the

study of stochastically (or randomly) perturbed hyperbolic partial differential equations

(see, e.g., Sobczyk (1984) and the references therein). If these wave phenomena are

temperature dependent or heat generating, then the hyperbolic equations are coupled

with a stochastic parabolic (heat) equation (see, e.g., Chow (1973) or Hori (1973)).

To this respect, the question of how a thermal environment may influence on the long

time dynamics of the system arises. In this paper we consider this question and show
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that, under some conditions, temperature field is a slave variable for wave (master)

variables. In particular this means that the thermal effects at large time scale can

be taken into account by modifying a forcing (nonlinear) term in the corresponding

stochastic hyperbolic equation.

As a model to present our results we consider a system of stochastic differential

equations consisting of the hyperbolic equation

vtt + γvt + Lv = F (v, vt, u) + Ẇ1, in X1, (1)

and the parabolic one

ut + νAu = G(v, vt, u) + K(v, vt) + Ẇ2, in X2, (2)

where X1 and X2 are infinite dimensional separable Hilbert spaces, γ and ν are positive

parameters, and the operators and the noises appearing in (1) and (2) satisfy the

following assumptions:

(A1) L and A are positive linear self-adjoint operators in X1 and X2 respectively with

domains D(L) and D(A).

(A2) F and G are nonlinear mappings,

F : D(L1/2)×X1 ×D(Aα) 7→ X1,

G : D(L1/2)×X1 ×D(Aα) 7→ X2,

where α ∈ [0, 1), and there exist constants MF and MG such that

‖F (v0, v1, u)− F (v̂0, v̂1, û)‖X1

≤ MF

(‖L1/2(v0 − v̂0)‖2
X1

+ ‖v1 − v̂1‖2
X1

+ ‖Aα(u− û)‖2
X2

)1/2
(3)

and

‖G(v0, v1, u)−G(v̂0, v̂1, û)‖X2

≤ MG

(‖L1/2(v0 − v̂0)‖2
X1

+ ‖v1 − v̂1‖2
X1

+ ‖Aα(u− û)‖2
X2

)1/2
. (4)

(A3) The mapping K : D(L1/2)×X1 7→ [D(Aβ)]′ possesses the property

‖A−β (K(v0, v1)−K(v̂0, v̂1)) ‖X2

≤ MK

(‖L1/2(v0 − v̂0)‖2
X1

+ ‖v1 − v̂1‖2
X1

)1/2
(5)

for some 0 ≤ β ≤ 1− α, where MK is a positive constant.
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(A4) For every i = 1, 2, Wi(t), t ∈ R, is a two-sided Xi-valued Wiener process with

covariance operator Ki = K∗
i ≥ 0 such that tr K1 < ∞ and tr K2A

2(α+ε)−1 < ∞
for some ε > 0. We assume for simplicity that W1 and W2 are independent, and

denote by (Ω,F ,P) the corresponding probability space, and by Ẇi the generalized

derivative with respect to t in (1) and (2).

Although it is possible to consider other kinds of randomness to model stochastic wave

phenomena, the main reason which justifies the use of additive noise is that it usually

models background effects and small effects that have been omitted or neglected in a

deterministic modeling procedure. To this respect, from the physical point of view, it

is important to know whether qualitative properties of the simplified (deterministic)

model are robust enough to perturbations by additive noises. Our result in Section 6

answers this question for system (1)–(2).

We also note that system (1)–(2) is an abstract model for a thermoelastic

phenomenon in a random medium which can be described by the following equations

(see, e.g., Chow (1973)):

vtt + γvt − µ∆v − (µ + λ)∇ div v = −κ∇θ + F̃ (v,∇v) + Ẇ1, t > 0, x ∈ O, (6)

θt − ν∆θ = −δ · div vt + G̃(θ,∇θ) + Ẇ2, t > 0, x ∈ O, (7)

where O is a domain in Rd, d = 2, 3, v = v(x, t) ∈ Rd denotes the displacement vector,

θ = θ(x, t) the temperature, and µ, λ, κ, ν, δ are positive constants, where µ and λ are

Lamé moduli. The parameter γ > 0 describes resistance forces, and the functions F̃

and G̃ satisfy suitable conditions. The white noise processes Ẇ1 and Ẇ2 (see below for

more details) model random fluctuations in external loads (Ẇ1) and in thermal sources

(Ẇ2).

System (6)-(7) can be easily set in our abstract formulation. To this end, we first

need to equip these equations with suitable boundary conditions. For example, we can

consider Dirichlet type boundary conditions

v = 0, θ = 0 for t > 0, x ∈ ∂O. (8)

If we assume that F̃ : Rd+d2 7→ Rd and G̃ : R1+d 7→ R are globally Lipschitz, then

(A1)-(A3) hold for our problem (6), (7) and (8), by setting X1 = [L2(O)]d, X2 = L2(O),

α = β = 1/2, K(v, vt) = −δ div vt, L = −µ∆− (µ+λ)∇ div and A = −∆ with Dirichlet

boundary conditions, and finally, F and G are defined in the obvious way.

We note that the asymptotic behaviour of deterministic thermoelastic models has

been receiving increasing attention over the last years (see, e.g., Chandrasekharaiah
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(1998), Chueshov (2004), Jiang and Racke (2000), Munoz Rivera and Barreto (1998),

Munoz Rivera and Racke (1995), and the references therein).

It is also worth mentioning that, as we do not assume any compactness properties

concerning the resolvents of the operators L and A, our problem (6), (7) and (8)

on unbounded domains can be also included within the scope of our theory, after an

appropriate redetermination of the linear and nonlinear terms in the equations.

As far as we know, there are no publications on the dynamics of coupled parabolic-

hyperbolic stochastic partial differential equations, although stochastic parabolic and

wave equations have been widely studied by many authors (see, e.g, the monographs

Cerrai (2001), Da Prato and Zabczyk (1996) and the references therein for the parabolic

case and the papers Barbu and Da Prato (2002), Carmona and Nualart (1993), Dalang

and Frangos (1998), Da Prato and Zabczyk (1992), Millet and Morien (2001), Millet and

Sanz-Solé (2000), Peszat and Zabczyk (2000), Quer-Sardanyons and Sanz-Solé (2004)

for the wave case).

Our main objective in this paper is to prove a reduction principle for the random

dynamical system generated by problem (1)–(2) which will allow us to rewrite our

coupled system as an equivalent problem for a single stochastic hyperbolic equation

with a conveniently modified nonlinear term. To be more precise, we will prove that,

for ν large enough, in the phase space

H0 = D(L1/2)×X1 ×X2

of the random dynamical system generated by (1) and (2), there exists an invariant

exponentially attracting (random) surface of the form

M(ω) =
{
(v, v̄, Φ(ω, v, v̄)) : (v, v̄) ∈ D(L1/2)×X1

} ⊂ H0, (9)

where Φ : Ω × D(L1/2) × X1 7→ X2 is a Lipschitz mapping for each ω ∈ Ω and a

stationary process with respect to t (see Theorem 4.1 for more details). Under some

additional conditions the existence of this surface M makes it possible to prove that the

long-time behaviour of the system (1) and (2) can be described by the reduced problem

vtt + γvt + Lv = F (v, vt, Φ(θtω, v, vt)) + Ẇ1, in X1. (10)

For a similar result in the deterministic framework we refer to Leung (2003) and

Chueshov (2004). We also mention that, in contrast with (1), the reduced system

(10) contains a random nonlinear term of the form F ∗(v, vt, θtω) and, hence, cannot

be considered as a perturbation of a deterministic system by an additive white noise

process.
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The approach which we adopt in this paper relies on some ideas from the theory

of inertial manifolds started by Foias et al. (1988) and developed by many authors (see,

e.g., the monographs by Chueshov (1999), Constantin et al. (1989), Temam (1988)

for the deterministic case and the papers by Bensoussan and Flandoli (1995), Chueshov

(1995), Chueshov and Girya (1995), Chueshov and Scheutzow (2001), Duan et al. (2003)

for the stochastic case and also the references therein). To cover our main case α+β = 1

we invoke the idea of the Lyapunov-Perron method (see, e.g., Chow and Lu (1988) and

Chow et al. (1992)) in the form presented in Miklavčič (1991) for the deterministic

case. To the best of our knowledge, this idea has not been used earlier in the study of

invariance properties of stochastic systems.

The paper is organized as follows. In the preliminary Section 2 we represent the

problem as a first order stochastic differential equation, for the reader’s convenience

recall the basic definitions from the theory of random dynamical systems, and collect

several results on stochastic convolutions in a form adapted to our situation. In Section 3

we prove the existence and uniqueness of mild solutions to problem (1) and (2) and

show that this problem generates a filtered random dynamical system (RDS). Section 4

contains our main result which is a type of reduction principle (see Theorem 4.1). In

Section 5 we establish some properties of the reduced system. In Section 6 we estimate

the distance between M(ω) and its deterministic counterpart Mdet in terms of the

covariance operators of W1 and W2 (see Theorem 6.1). In particular, we prove that

M(ω) converges to Mdet when the intensity of the noise tends to zero. Some final

comments and conclusions are presented in the last section.

2. Basic definitions and auxiliary facts

First of all, we will rewrite system (1) and (2) as a first order stochastic partial differential

system and will analyze the corresponding Cauchy problem; in other words, problem

(1)–(2) is equivalent to

dV

dt
+AV = B(V ) + Ẇ , t > s, V | t=s = V0, (11)

where s ∈ R, V = V (t) = (v(t), vt(t), u(t))T , W = (0,W1,W2)
T and

A =




0 −1 0

L γ 0

0 0 νA


 , B(V ) =




0

F (v, vt, u)

G(v, vt, u) + K(v, vt)


 . (12)

We consider now problem (11) in the scale of spaces

Hσ = D(L1/2)×X1 ×D(Aσ), σ ∈ R,



Invariant manifold for parabolic-hyperbolic SPDE 6

which are equipped with the norms

|V |σ =
(‖L1/2v0‖2

X1
+ ‖v1‖2

X1
+ ‖Aσu0‖2

X2

)1/2
, V = (v0, v1, u0).

Recall that if σ < 0, then D(Aσ) is the completion of X2 with respect to the norm

‖Aσ · ‖X2 .

It is straightforward to check that the operator A generates a strongly continuous

semigroup e−At in each space Hσ and

e−At =

(
Tt 0

0 e−νAt

)
, (13)

where Tt is the strongly continuous group in D(L1/2)×X1 generated by the equation

vtt + γvt + Lv = 0, t > 0, in X1. (14)

Let P denote the orthoprojector in Hσ onto the first two components, i.e.

P (v0, v1, u0) = (v0, v1, 0) for (v0, v1, u0) ∈ Hσ, (15)

and Q = I − P . One can easily establish by a direct calculation (see, e.g., Foias et al.

(1998) and also Chueshov (1999) or Temam (1988)) the following dichotomy estimates
∣∣ e−AtPV

∣∣
σ
≤ e−γt|PV |σ, t ≤ 0, V ∈ Hσ, (16)

∣∣ e−AtPV
∣∣
σ
≡ |TtPV |D(L1/2)×X1

≤ |PV |σ, t ≥ 0, V ∈ Hσ, (17)

∣∣ e−AtQV
∣∣
σ
≤

[( σ

νt

)σ

+ λσ
1

]
e−νλ1t|QV |0, t > 0, V ∈ Hσ, σ > 0, (18)

where λ1 > 0 is the minimal point in the spectrum of A. We also note (see, e.g.,

Chueshov (1999, Lemma 5.7.1)) that there exist positive constants C0 and γ0 such that

|Tty|D(L1/2)×X1
≤ C0e

−γ0t |y|D(L1/2)×X1
, t ≥ 0, y ∈ D(L1/2)×X1. (19)

2.1. Random dynamical systems

We recall now some concepts from the theory of random dynamical systems (see, e.g.

Arnold (1998) for more details). As usual, R+ denotes the set of all non-negative

elements of R.

Definition 2.1 Let X be a topological space. A random dynamical system (RDS) with

time R+ and state space X is a pair (θ, φ) consisting of the following two objects:

(i) A metric dynamical system (MDS) θ ≡ (Ω,F ,P, {θt, t ∈ R}), i.e. a probability

space (Ω,F ,P) with a family of measure preserving transformations {θt : Ω 7→
Ω, t ∈ R} such that
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(a) θ0 = id, θt ◦ θs = θt+s for all t, s ∈ R;

(b) the map (t, ω) 7→ θtω is measurable and θtP = P for all t ∈ R.

(ii) A (perfect) cocycle φ over θ of continuous mappings of X with one-sided time R+,

i.e. a measurable mapping

φ : R+ × Ω×X 7→ X, (t, ω, x) 7→ φ(t, ω)x

such that the mapping φ(·, ω) : (t, x) 7→ φ(t, ω)x is continuous for all ω ∈ Ω and

satisfies the cocycle property:

φ(0, ω) = id, φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω) for all t, s ≥ 0 and ω ∈ Ω.

Definition 2.2 Let θ be an MDS, F the P-completion of F , and F = {Ft, t ∈ R} a

family of sub-σ-algebras of F such that (i) Fs ⊆ Ft, s < t; (ii) Fs =
⋂

h>0Fs+h, s ∈ R,

i.e., the filtration F is right-continuous; (iii) Fs contains all P-null sets in F , s ∈ R;

and (iv) θs is (Ft+s,Ft)-measurable for all s, t ∈ R. Then (θ,F) is called a filtered

metric dynamical system (FMDS). If, in addition, (θ, φ) is an RDS such that φ(t, ·)x
is (Ft,B(X))-measurable for every t ≥ 0 and x ∈ X, then (θ,F, φ) is called a filtered

random dynamical system (FRDS).

We note that (θ,F, φ) is an FRDS if and only if (θ, φ) is an RDS, (θ,F) is an FMDS

and φ(·, ·)x is adapted to F for every x ∈ X. Recall that an X-valued stochastic process

Y (t), t ∈ T ⊆ R is called adapted with respect to the filtration F if Y (t) is (Ft,B(X))-

measurable for every t ∈ T .

2.2. Stochastic convolution

We consider a pair of two-sided independent Wiener processes W1(t) and W2(t), t ∈ R,

with values in X1 and X2 respectively on the same probability space (Ω,F ,P) with

covariance operators K1 and K2 possessing the properties

Ki = K∗
i ≥ 0, tr K1 < ∞, tr K2A

2(α+ε)−1 < ∞,

for some ε > 0. For the definitions and properties of such processes see Da Prato

and Zabczyk (1992). The property tr K1 < ∞ implies that W1 has almost surely

strongly continuous trajectories in X1 (see Da Prato and Zabczyk (1992, p.119)).

In the second case, there exists a Hilbert space X2 (containing X2) such that W2

has strongly continuous paths in X2. In addition to the distributional properties of

W = (0,W1,W2)
T , we will assume that there exists a filtered MDS (θ,F) such that
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(a) W(t)−W(s) is Ft-measurable for t ∈ R, s ≤ t and independent of Fs for s < t;

(b) W(t + s, ω)−W(s, ω) = W(t, θsω), s, t ∈ R, ω ∈ Ω (helix property).

We refer to the monograph Arnold (1998) for the construction of this FMDS and the

corresponding Wiener processes.

Now, let us consider the following stochastic integral

η(t, s) =

∫ t

s

e−(t−τ)AdW(τ) ≡
∫ t

s

e−(t−τ)A




0

dW1(τ)

dW2(τ)


 , t > s. (20)

The integral in (20) exists as an operator stochastic integral (see, e.g., Da Prato and

Zabczyk (1992)). The process η(t, s) has the form η(t, s) = (η1(t, s), η2(t, s))
T , where

η1(t, s) and η2(t, s) are centered (independent) Gaussian processes in D(L1/2)×X1 and

D(Aα) ⊂ X2 respectively, of the form

η1(t, s) =

∫ t

s

Tt−τ

(
0

dW1(τ)

)
, η2(t, s) =

∫ t

s

e−ν(t−τ)AdW2(τ). (21)

One can also prove (see, e.g., Da Prato and Zabczyk (1992)) that

E|η(t, s)|2σ = E|η1(t, s)|2D(L1/2)×X1
+ E‖Aση2(t, s)‖2

X2

and

E|η1(t, s)|2D(L1/2)×X1
=

∫ t

s

tr
{

Tt−τK̂1T
∗
t−τ

}
dτ, (22)

where K̂1 = diag {0, K1} is an operator in D(L1/2)×X1, and

E‖Aση2(t, s)‖2
X2

=
1

2ν
tr

{
K2A

2σ−1(1− e−2ν(t−s)A)
}

, σ ≤ α. (23)

We note that (22) and (19) imply

E|η1(t, s)|2D(L1/2)×X1
≤ C2

0 · tr K1 ·
(
1− e−2γ0(t−s)

)
(24)

and also, since Tt is a strongly continuous contraction semigroup, by Da Prato and

Zabczyk (1992, Theorem 6.10) there exists a constant C > 0 independent of K1 such

that

E sup
t∈[0,1]

|η1(t, 0)|2D(L1/2)×X1
≤ CE|η1(1, 0)|2D(L1/2)×X1

≤ C · tr K1. (25)

We will write Π = {(t, s) : −∞ ≤ s ≤ t < ∞, t > −∞}. By Chueshov and

Scheutzow (2001, Proposition 3.1), there exists a (perfect) modification of the processes

η1(t, s) and η2(t, s) such that the following properties hold.

• Process η1(t, s):
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(i) (t, s) 7→ η1(t, s, ω) is continuous from Π into D(L1/2)×X1, ω ∈ Ω;

(ii) (t, s, ω) 7→ η1(t, s, ω) is measurable from Π× Ω into D(L1/2)×X1;

(iii) quasi-stationarity:

η1(t, s, ω) = η1(t + τ, s + τ, θ−τω), (t, s) ∈ Π, τ ∈ R, ω ∈ Ω; (26)

(iv) evolution relation: for all −∞ ≤ τ < s ≤ t, ω ∈ Ω,

η1(t, s, ω) = η1(t, τ, ω)− Tt−sη1(s, τ, ω); (27)

(v) temperedness: for all β > 0, ω ∈ Ω,

sup
t∈R

{
|η1(t,−∞, ω)|D(L1/2)×X1

e−β|t|
}

< ∞. (28)

• Process η2(t, s):

(i) (t, s) 7→ η2(t, s, ω) is continuous from Π into D(Aα), ω ∈ Ω;

(ii) (t, s, ω) 7→ η2(t, s, ω) is measurable as a map from Π× Ω into D(Aα);

(iii) quasi-stationarity:

η2(t, s, ω) = η2(t + τ, s + τ, θ−τω), (t, s) ∈ Π, τ ∈ R, ω ∈ Ω; (29)

(iv) evolution relation: for −∞ ≤ τ < s ≤ t, ω ∈ Ω,

η2(t, s, ω) = η2(t, τ, ω)− e−ν(t−s)Aη2(s, τ, ω); (30)

(v) temperedness: for all β > 0, ω ∈ Ω,

sup
t∈R

{‖Aαη2(t,−∞, ω)‖X2e
−β|t|} < ∞. (31)

We note that formally Proposition 3.1, as it is stated in Chueshov and Scheutzow (2001),

cannot be applied to the process η1. However the arguments given in the proof of this

proposition rely only on the fact that the corresponding semigroup (this is Tt in our

case) is strongly continuous and exponentially stable and therefore they cover the case

of processes like η1(t, s).

We also recall (see, e.g., Arnold (1998)) that a random variable v(ω) with values in

a Banach space X is said to be tempered iff

sup
t∈R

{
e−β|t|‖v(θtω)‖X

}
< ∞ for all β > 0, ω ∈ Ω.

By (26) and (29) we have that ηi(t,−∞, ω) = ηi(0,−∞, θtω) ≡ η̃i(θtω) for t ∈ R, ω ∈ Ω,

and i = 1, 2, where, due to (28) and (31), the Gaussian random variables η̃1(ω) and η̃2(ω)

are tempered in D(L1/2)×X1 and X2 respectively.

3. Mild solutions and generation of an RDS

For a given σ ∈ R, we denote by C([a, b];Hσ) the space of strongly continuous functions

on the interval [a, b] with values in Hσ, and by L2([a, b];Hσ) the space of measurable
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functions h(·) with values in Hσ such that

|h|2L2([a,b];Hσ) ≡
∫ b

a

|h(t)|2σdt < ∞.

Definition 3.1 Let s ∈ R, T > s and V0 ∈ Hα−1/2. A process V (t) ≡ V (t, s, ω; V0)

which, for each ω ∈ Ω, belongs to the space L2([s, T ];Hα) ∩ C([s, T ];Hα−1/2) is said to

be a mild solution to problem (11) on the interval [s, T ] if V (s) = V0 and

V (t) = R[V ](t) ≡ e−A(t−s)V0 +

∫ t

s

e−A(t−τ)B(V (τ))dτ + η(t, s) (32)

for almost all t ∈ [s, T ] and ω ∈ Ω, where η(t, s) is given by (20).

In this section we prove the existence and uniqueness of mild solutions to (11). One of

the key ingredients in our proof is a fixed point argument in the space L2([s, s+T ];Hα)

which relies on the following assertion.

Lemma 3.2 Let e−At be a strongly continuous semigroup in a Hilbert space H with a

self-adjoint and positive generator A = A∗ > 0 and f ∈ L2([s, s+T ]; H) for some T > 0

and s ∈ R. Then the function

Iβ
s [f ](t) =

∫ t

s

e−A(t−τ)Aβf(τ)dτ, t ∈ [s, s + T ], (33)

belongs to L2([s, s + T ]; D(A1−β)) and the estimate
∫ s+T

s

‖AαIβ
s [f ](t)‖2

Hdt ≤ (2T )2−2(α+β)

∫ s+T

s

‖f(t)‖2
Hdt (34)

holds for any 0 ≤ β ≤ 1, −β ≤ α ≤ 1− β.

This lemma was proved in Chueshov (2004) for the case s = 0. For arbitrary s the

argument is basically the same.

We can now prove our main result in this section.

Theorem 3.3 For every V0 ∈ Hα−1/2 and T > 0 problem (11) has a unique mild

solution V (t) on the interval [s, T ] provided either α+β = 1 and ν > MK, where MK is

the constant in (A3), or α + β < 1. Moreover, if α − 1/2 ≤ σ0 ≤ σ < min(1− β, 1/2),

then

V (t) ∈ C((s, T ];Hσ) and |V (t)|σ ≤ CT (ω) · |t− s|−σ+σ0 , t ∈ (s, T ], (35)

for V0 ∈ Hσ0 and ω ∈ Ω, where CT (ω) is a positive random variable. If σ0 = σ, then

V (t) ∈ C([s, T ];Hσ) for all ω ∈ Ω. Furthermore, the process t 7→ V (t, ω) is adapted to

the filtration F.

Define the map φ : R+ × Ω × Hσ 7→ Hσ, where α − 1/2 ≤ σ < min(1 − β, 1/2),

by the formula φ(t, ω)V0 := V (t, 0, ω; V0). Then (i) (θ,F, φ) is a FRDS, and (ii)
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V (t, s, ω; V0) = φ(t − s, θsω, V0) solves (32) for every s ∈ R, every t > s, and every

ω ∈ Ω.

Proof. We split the proof into several steps.

Step 1. We first prove that, for each ω ∈ Ω, there exists a unique solution to Eq.

(32) in the space L2([s, s + T ];Hα) for a small enough T > 0.

Since

2ν

∫ t

s

‖A1/2e−νA(τ−s)u0‖2
X2

dτ ≤ ‖u0‖2
X2

, u0 ∈ X2,

it follows that e−A(t−s)V0 ∈ L2([s, s + T ];Hα) provided that V0 ∈ Hα−1/2. Therefore,

since η(t, s) ∈ C(Π;Hα), the fact that R maps L2([s, s + T ];Hα) into itself for every

ω ∈ Ω can be obtained from the contraction estimate for R given below.

Let P be defined by (15) and Q = I − P . It follows from (17) and (3) that

|PR[V1](t)− PR[V2](t)|α ≤ MF

∫ t

s

|V1(τ)− V2(τ)|αdτ (36)

for any V1, V2 ∈ L2([s, s + T ];Hα). Therefore

|PR[V1]− PR[V2]|L2([s,s+T ];Hα) ≤ MF · T · |V1 − V2|L2([s,s+T ];Hα). (37)

We also have that

QR[V1]−QR[V2] = (0, 0, Is
0 [G(V1)−G(V2)]) +

1

νβ

(
0, 0, Iβ

s [Kβ
∆]

)
,

where Iβ
s is given by (33) with A = νA and H = X2, Vi = (vi, v̄i, ui) are elements from

the space L2([s, s + T ];Hα), and Kβ
∆ = A−β (K(v1, v̄1)−K(v2, v̄2)). Consequently from

(34) and hypotheses (A2) and (A3) we obtain that

|QR[V1]−QR[V2]|L2([s,s+T ];Hα) ≤ q(T, ν) · |V1 − V2|L2([s,s+T ];Hα), (38)

where

q(T, ν) =
MG(2T )1−α

να
+

MK(2T )1−(α+β)

να+β
.

Therefore, it follows from (37) and (38) that

|R[V1]−R[V2]|L2([s,s+T ];Hα) ≤ (MF T + q(T, ν)) · |V1 − V2|L2([s,s+T ];Hα).

Thus, in the case α + β < 1, for every ν > 0 we can choose T0 independent of V0 such

that MF T0 + q(T0, ν) < 1. If α + β = 1, then we can make this choice only if ν > MK .

In any case, equation (32) has a unique solution V (t) defined in the interval [s, s + T0]

and which belongs to L2([s, s + T0];Hα).

Step 2. Now we prove that V (t) satisfies (35) with T = s + T0. To this end,

observe that it is sufficient to prove that

R0[V ](t) := −e−AtV0 − η(t, s, ω) +R[V ](t) ∈ C([s, s + T0];Hσ) (39)
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for σ < min(1− β, 1/2).

Indeed, for t1 > t2 ≥ s, we have that

R0[V ](t1)−R0[V ](t2) =

∫ t1

t2

e−A(t1−τ)B(V (τ))dτ (40)

+

∫ t2

s

e−A(t2−τ)
[
e−A(t1−t2) − 1

]B(V (τ))dτ.

By (17) we obtain that

|PR0[V ](t1)− PR0[V ](t2)|1 ≤ C

∫ t1

t2

(1 + |V (τ)|α) dτ

+

∫ t2

s

∣∣[e−A(t1−t2) − 1
]
PB(V (τ))

∣∣
0
dτ,

where, as before, P is defined by (15). Thus, the Lebesgue convergence theorem implies

that

PR0[V ](t) ∈ C([s, s + T0];H1) for every ω ∈ Ω, (41)

and, consequently, using (13) and (32) we see that

PV (t) ∈ C([s, s + T0];H1) and max
t∈[s,s+T0]

|PV (t)|1 ≤ CT (ω). (42)

Thus, we only need to check the continuity of the functions

Q1(t) =

∫ t

s

e−νA(t−τ)G(V (τ))dτ, and Q2(t) =

∫ t

s

e−νA(t−τ)K(v(τ), v̄(τ))dτ.

Here we keep denoting V = (v, v̄, u). By a similar representation to that in (40) and by

the relation

‖ Aσe−tA ‖≤ max
λ>0

|λσe−tλ| =
( σ

et

)σ

, t > 0, σ > 0,

we obtain that

‖Aσ(Q1(t1)−Q1(t2))‖X2 ≤ C1

∫ t1

t2

(1 + |V (τ)|α)
dτ

|t1 − τ |σ (43)

+ C2

∥∥A−ε
[
e−νA(t1−t2) − 1

]∥∥ ·
∫ t2

s

(1 + |V (τ)|α)
dτ

|t2 − τ |σ+ε

for any σ < 1/2 and 0 < ε < 1/2− σ. Therefore, since

‖ A−ε(1− e−νAt) ‖≤ sup
λ>0

{
1− e−νλt

λε

}
≤ sup

λ>0

{
1 ∧ (νλt)

λε

}
= (νt)ε, t > 0,

from the Hölder inequality it follows that Q1 ∈ C([s, s + T0], D(Aσ)). Similarly, thanks

to (42) and (A3) we have

‖A−βK(v(t), v̄(t))‖X2 ≤ C(ω) for all t ∈ [s, s + T0], ω ∈ Ω,



Invariant manifold for parabolic-hyperbolic SPDE 13

and we then find that

‖Aσ(Q2(t1)−Q2(t2))‖X2 ≤ C1

∫ t1

t2

dτ

|t1 − τ |σ+β

+ C2

∥∥A−ε
[
e−νA(t1−t2) − 1

]∥∥ ·
∫ t2

s

dτ

|t2 − τ |σ+β+ε
.

Thus, as above, we can conclude that Q2 ∈ C([s, s + T0], D(Aσ)) for any σ < 1 − β.

Since QR0[V ](t) = Q1(t) +Q2(t), using (41) we obtain (39).

Consequently, our problem (11) possesses a unique mild solution on the interval

[s, s + T0].

Step 3. Since T0 does not depend on the initial datum V0, we can repeat the same

procedure on the interval [s + T0, s + 2T0] as many times as necessary. This implies the

existence of a unique mild solution on any interval [s, T ].

Step 4. Finally, by the quasi-stationarity relations (26) and (29) we deduce from

the uniqueness of the mild solutions that

V (t, s, ω; V0) = V (t + τ, s + τ, θ−τω; V0), s ≤ t, τ ∈ R, (44)

for all V0 ∈ Hσ, ω ∈ Ω, as well as

V (t, 0, ω; V0) = V (t, s, ω; V (s, 0, ω; V0)), 0 ≤ s ≤ t, V0 ∈ Hσ, ω ∈ Ω.

Therefore

φ(t + s, ω)V0 = V (t + s, 0, ω; V0) = V (t + s, s, ω; V (s, 0, ω; V0))

= V (t, 0, θsω, V (s, 0, ω; V0)) = φ(t, θsω)φ(s, ω)V0,

for t, s ≥ 0, i.e. φ satisfies the cocycle property. The continuity and measurability

properties of φ follow from those of V . It also follows from (44) that

φ(t− s, θsω)V0 = V (t− s, 0, θsω; V0) = V (t, s, ω; V0),

which completes the proof. ¤

Remark 3.4 If α < 1− β, one can then prove that

V (t) ∈ C((s, T ];Hσ) for any σ < 1− β. (45)

The point is that in this case using a Gronwall type argument (see, e.g., Henry (1981,

Sect.7.1)) one can prove that

|V (t)|α ≤ CT · (t− s)−1/2, V0 ∈ Hα−1/2, t ∈ (s, T ].

Using this relation we obtain from (43) that Q1 ∈ C([s, T0], D(Aσ)) for σ < 1. Thus

(45) holds.
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4. Existence of an invariant manifold

Now we can prove our major result in this paper.

Theorem 4.1 Assume that hypotheses (A1)–(A4) hold and ν > ν0, where

ν0 =
γ

λ1

+
2

λ1

[
MF + λα

1MG + λα+β
1 MK

]
(46)

and λ1 > 0 is the minimal point in the spectrum of A. Then, there exists a random

mapping Φ(ω, ·) : D(L1/2)×X1 7→ X2 such that

‖Aσ(Φ(ω, D1)− Φ(ω,D2))‖X2 ≤ Cσ‖D1 −D2‖D(L1/2)×X1
, (47)

for all D1, D2 ∈ D(L1/2)×X1 and for any σ satisfying the inequality

α− 1/2 < σ < min(1− β, 1/2), (48)

where Cσ > 0 is a (deterministic) constant. Moreover, the random surface

M(ω) =
{
(v, v̄, Φ(ω, v, v̄)) : (v, v̄) ∈ D(L1/2)×X1

} ⊂ Hσ, (49)

is positively invariant with respect to the cocycle φ(t, ω), i.e., φ(t, ω)M(ω) ⊆ M(θtω).

This surface M is exponentially attracting in the following sense: for any mild solution

V (t) to Eq. (11) there exists V ∗ ∈M(ω) such that
[∫ ∞

0

e2µt |V (t)− φ(t, ω)V ∗|2α dt

]1/2

< R1(ω) + C|V (0)|σ, (50)

and also

|V (t)− φ(t, ω)V ∗|σ < e−µt (R2(ω) + C|V (0)|σ) , t > 0, (51)

where µ = (γ + νλ1)/2, R1(ω) and R2(ω) are scalar tempered random variables and C

is a deterministic constant.

Remark 4.2 It follows from (51) and from the positive invariance property of M(ω)

with respect to the cocycle φ that

sup {distHσ (φ(t, ω)V0,M(θtω)) : V0 ∈ B} ≤ CB(ω)e−µt, ω ∈ Ω,

for any bounded set B from Hσ, where σ satisfies (48). Since R2(ω) is tempered, relation

(51) also implies that

lim
t→∞

sup
{
eµ̃tdistHσ (φ(t, θ−tω)V0,M(ω)) : V0 ∈ B

}
= 0, ω ∈ Ω,

for any µ̃ < µ. Thus the manifold M(ω) is uniformly exponentially attracting in the

both forward and pullback sense.

The rest of this section is devoted to the proof of Theorem 4.1. We will proceed in

several steps which have been structured in subsections.
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4.1. Construction of the manifold M

According to the standard Lyapunov-Perron procedure (see, e.g., Chow and Lu (1988),

Chow et al. (1992), Chueshov (1999), Miklavčič (1991)) but modified for stochastic

systems (see Chueshov (1995), Chueshov and Girya (1995), Chueshov and Scheutzow

(2001)), in order to construct an invariant manifold we should first solve the integral

equation

V (t, s; ω) = BD[V ; ω](t, s), t ≤ s, (52)

for every s ∈ R, where D ∈ PHα, BD[V ; ω] = ID[B(V ); ω], B(V ) is defined in (12), and

ID[V ; ω] is given by

ID[V ; ω](t, s) = e−A(t−s)D −
∫ s

t

e−A(t−τ)PV (τ, s)dτ

+

∫ t

−∞
e−A(t−τ)QV (τ, s)dτ − e−A(t−s)Pη(s, t, ω) + Qη(t,−∞, ω)

≡ Idet
D [V ](t, s)− e−A(t−s)Pη(s, t, ω) + Qη(t,−∞, ω). (53)

Here as above Q = I − P and P is defined by (15).

For each fixed s ∈ R, we consider Eq. (52) and the operators BD and ID in the

spaces

Yα,s =
{
V (·) : eµ(·−s)V (·) ∈ L2(−∞, s;Hα)

}
, (54)

where µ ∈ (γ, νλ1) will be chosen later, with the norm

|V |Yα,s =

(∫ s

−∞
e2µ(t−s)|V (t)|2αdt

)1/2

.

We first point out some properties of the stochastic term in Eq. (52), which is useful in

our considerations.

From relations (28), (31) and (16) we have that the random function

t 7→ Σ(s, t, ω) ≡ −e−A(t−s)Pη(s, t, ω) + Qη(t,−∞, ω)

= (−Tt−sη1(s, t, ω), η2(t,−∞, ω))T (55)

belongs to the space Yα,s for every ω ∈ Ω and s ∈ R. It is easy to see from (26) and

(29) that

Σ(s, t + s, ω) = Σ(0, t, θsω) for all t ≤ 0, s ∈ R, ω ∈ Ω.

Therefore a simple calculation gives us the following relation between the solutions to

the problem (52) for different values of s:

V (t + s, s; ω) = V (t, 0; θsω) for all t ≤ 0, s ∈ R, ω ∈ Ω. (56)
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Consequently, it is sufficient to prove the existence and uniqueness of solutions to (52)

only for the case s = 0. This observation and also the deterministic argument given in

Chueshov (2004) make it possible to prove the following assertion.

Proposition 4.3 Let s ∈ R and γ < µ < νλ1. Then, for every D ∈ PHα and ω ∈ Ω

the operator BD[·; ω] is continuous from Yα,s into itself and

|BD1 [V1; ω]−BD2 [V2; ω]|Yα,s ≤ |D1 −D2|0 + κα(ν, µ) · |V1 − V2|Yα,s , ω ∈ Ω, (57)

for every D1, D2 ∈ PHα and V1, V2 ∈ Yα,s, where

κα(ν, µ) =
MF

µ− γ
+

λα
1 MG + λα+β

1 MK

νλ1 − µ
. (58)

Now we take µ = (γ + νλ1)/2. In this case κα(ν, µ) < 1 under the condition ν > ν0,

where ν0 is given by (46). Thus BD[·; ω] is a contraction in Yα,s and hence Eq. (52)

has a unique solution V (·, s) ≡ V (·, s; ω, D) in the space Yα,s for each ω ∈ Ω. Using the

same (standard) argument as in the deterministic case (see Chueshov (2004)) one can

show that this solution V (·, s) possesses the properties

V (·) ≡ V (·, s) ∈ C((−∞, s],Hσ), σ < min(1− β, 1/2), (59)

and

sup
t≤s

{
eµ(t−s)|V (t, s; ω, D1)− V (t, s; ω,D2)|σ

} ≤ Cσ|D1 −D2|0 (60)

for any D1, D2 ∈ PHα and ω ∈ Ω, where Cσ is a positive constant. Moreover, it follows

directly from (52) that for every r ∈ (−∞, s) and for almost all t ∈ [r, s] the function

V (·, s) satisfies the relation

V (t, s) = e−A(t−r)V (r, s) +

∫ t

r

e−A(t−τ)B(V (τ, s))dτ + η(t, r). (61)

Now for every s ∈ R we define Φs : Ω×D(L1/2)×X1 → X2 as

Φs(ω, D) =

∫ s

− inf ty

e−νA(s−τ)(G(V (τ, s)) + K(v(τ, s), v̄(τ, s)))dτ + η2(s,−∞), (62)

where V (t, s) = (v(t, s), v̄(t, s), u(t, s)) solves the integral equation (52).

It is easy to see from (56) that Φs(ω,D) = Φ0(θsω,D) ≡ Φ(θsω, D), i.e. s 7→
Φs(ω, D) is a stationary process. Therefore, it follows from (52) and (61) that the

random surface M(ω) given by (49) is positively invariant with respect to the cocycle

φ. Moreover, the relation (60) implies the Lipschitz property (47).
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4.2. Tracking properties

We will use the method developed in Miklavčič (1991) for the proof of a tracking property

for inertial manifolds in the deterministic case.

Let V0 = (v0, v1, u0) ∈ Hσ, where σ satisfies (48), and let V (t) ≡ V (t, 0, ω; V0) be a

mild solution to (11) for s = 0. We extend V (t) on the semi-axis (−∞, 0] by the formula

V (t) = (v0, v1, (1 + |t|A)−1u0). It is easy to see that

V (·) ∈ Yα,0 ∩ C((−∞, 0],Hσ)

and

|V |2Yα,0
≡

∫ 0

−∞
e2µt|V (t)|2αdt ≤ C|V0|2σ. (63)

Now we consider the following space

Z =

{
Z(·) : |Z|2Z ≡

∫ ∞

−∞
e2µt|Z(t)|2αdt < ∞

}

and define the random function

Z0(t, ω) =





−V (t) + BPV0 [V ; ω](t, 0), for t ≤ 0;

e−At [−V0 + BPV0 [V ; ω](0, 0)] , for t > 0,

(64)

where B is the same as in (52). Below we need the following properties of the random

function Z0(t, ω).

Lemma 4.4 For every ω ∈ Ω the random function Z0(t, ω) belongs to Z. Moreover

for every σ satisfying (48) there exist a deterministic constant C and scalar tempered

random variables R̃1(ω) and R̃2(ω) such that

|Z0|Z ≤ R̃1(ω) + C|V0|σ and sup
t∈R

{
eµt|Z0(t)|σ

} ≤ R̃2(ω) + C|V0|σ. (65)

Proof. We split Z0(t, ω) into deterministic and stochastic parts, Z0(t, ω) = Zdet
0 (t) +

Zst
0 (t, ω), where

Zdet
0 (t) =





−V (t) + IPV0 [B(V )](t, 0), for t ≤ 0;

e−At [−V0 + IPV0 [B(V )](0, 0)] , for t > 0,

and

Zst
0 (t, ω) =





(−Ttη1(0, t), η2(t, 0))T , for t ≤ 0;

(
0, 0, e−νAtη2(0,−∞)

)T
, for t > 0,

(66)
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Since, by (16) and (18)

R∗
1(ω) ≡ |Zst

0 (ω)|2Z ≤
∫ 0

−∞
e2(µ−γ)t

[
|η1(0, t)|2D(L1/2)×X1

+ ‖Aαη2(t,−∞)‖2
X2

]
dt

+‖Aαη2(0,−∞)‖2
X2

and

R∗
2(ω) ≡ sup

t∈R

{
eµt|Zst

0 (t, ω)|σ
}

≤ c0 sup
t∈R

{
e(µ−γ)t

[|η1(0, t)|D(L1/2)×X1
+ ‖Aση2(t,−∞)‖X2

]}
,

it follows from (27), (28) and (31) that R∗
1(ω) and R∗

2(ω) are tempered random variables.

Therefore, estimating the deterministic part Zdet
0 (t) by the standard method we arrive

at the estimates (65) with R̃i(ω) = C1 + C2R
∗
i (ω), where C1 and C2 are deterministic

constants. ¤

Now we define an integral operator R : Z 7→ Z by the formula

R[Z](t) = Z0(t) +

∫ t

−∞
e−A(t−τ)Q [B(Z(τ) + V (τ))− B(V (τ))] dτ

−
∫ ∞

t

e−A(t−τ)P [B(Z(τ) + V (τ))− B(V (τ))] dτ. (67)

Let us prove that R is a contraction in Z.

By (3) and (16) we have that

eµt|P (R[Z1](t)−R[Z2](t)) |α ≤ MF

∫ ∞

t

e(µ−γ)(t−τ) · eµτ |Z1(τ)− Z2(τ)|α dτ

≡
∫ ∞

−∞
e(t− τ)f(τ)dτ, (68)

where e(t) = 0 for t > 0, e(t) = MF e(µ−γ)t for t ≤ 0 and f(t) = eµt |Z1(t)− Z2(t)|α,

t ∈ R. Thus, using the Fourier transformation and the Plancherel formula (cf. Lemma

2.2 in Chueshov (2004)) we obtain that

|P (R[Z1]−R[Z2]) |Z ≤ MF

µ− γ
· |Z1 − Z2|Z .

Similarly,

Q (R[Z1](t)−R[Z2](t)) = (0; 0;Q1(t) +Q2(t)), (69)

where

Q1(t) =

∫ t

−∞
e−νA(t−τ) [G(Z1(τ) + V (τ))−G(Z2(τ) + V (τ))] dτ,

Q2(t) =

∫ t

−∞
(e−νA(t−τ)AβQ

[
A−β (K(P [Z1(τ) + V (τ)])−K(P [Z2(τ) + V (τ)]))

]
)dτ.

To estimate Q1 and Q2 we use the following result from Chueshov (2004).
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Lemma 4.5 Let e−At be a strongly continuous semigroup in a Hilbert space H with a

self-adjoint and positive generator A = A∗ > 0. Let λmin > 0 be the minimal point in

the spectrum of A. The following assertions hold: For any 0 ≤ β ≤ 1 and µ ≥ 0 the

mapping f ∈ L2(R; H) 7→ Iβ[f ] ∈ L2(R; D(A1−β)), where

Iβ[f ](t) =

∫ t

−∞
e−A(t−τ)(A+ µ)βf(τ)dτ, t ∈ R,

is continuous, and the estimate
∫

R
‖(A+ µ)αIβ[f ](t)‖2

Hdt ≤ (λmin + µ)2(α+β)

λ2
min

∫

R
‖f(t)‖2

Hdt

holds for any 0 ≤ β ≤ 1, −β ≤ α ≤ 1− β and µ ≥ 0.

Applying Lemma 4.5 with A = νA− µ we obtain that

|Q1|Z ≤ λα
1 MG

νλ1 − µ
|Z1 − Z2|Z and |Q2|Z ≤ λα+β

1 MK

νλ1 − µ
|Z1 − Z2|Z .

Since µ = (γ + νλ1)/2, we have that

|R[Z1]−R[Z2]|Z ≤ q · |Z1 − Z2|Z for every Z1, Z2 ∈ Z. (70)

Here q = κα(ν, (γ + νλ1)/2) < 1 under the condition ν > ν0, where κα and ν0 are given

by (58) and (46). Thus by the contraction principle there exists a unique solution Z ∈ Z
to the equation Z = R[Z] in Z.

Now using the same calculation as in Chueshov (2004) and Miklavčič (1991) we

can conclude that the function Ṽ (t) = Z(t) + V (t), where Z ∈ Z solves the equation

Z = R[Z], satisfies the relation

Ṽ (t) =





BP eV (0)[Ṽ , ω](t, 0), if t ≤ 0;

φ(t, 0, ω)Ṽ (0), if t > 0.

(71)

In particular, Ṽ (0) = BP eV (0)[Ṽ , ω](0, 0) and, therefore, by the definition of the operator

B we obtain that

Ṽ (0) = PṼ (0) +

∫ 0

−∞
eAτQB(Ṽ (τ))dτ + Qη(0,−∞).

By (62) this implies that Ṽ (0) =
(
PṼ (0), Φ(ω, P Ṽ (0))

)
. Therefore

Ṽ (t) = φ(t, 0, ω)Ṽ (0) ∈M(θtω) for t ≥ 0.

Thus to complete the proof we only need to establish (50) and (51).

Since Ṽ (t) = Z(t) + V (t) and

Z(t) = R[Z](t) = Z0(t) + R[Z](t)−R[0](t), (72)
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from (65) and (70) we obtain the relation

|Z|Z ≤ (1− q)−1 · |Z0|Z ≤ (1− q)−1 ·
(
R̃1(ω) + C|V0|σ

)
, (73)

which implies (50).

Now we prove (51). Since |PU |σ = |PU |α, from (68) we have that

eµt|P (R[Z](t)−R[0](t)) |σ ≤ MF

∫ ∞

t

e(µ−γ)(t−τ) · eµτ |Z(τ)|α dτ

≤ MF

[∫ ∞

t

e2(µ−γ)(t−τ)dτ

]1/2

· |Z|Z =
MF√

2(µ− γ)
· |Z|Z .

Thus

sup
t∈R

{
eµt|P (R[Z](t)−R[0](t)) |σ

} ≤ MF√
2(µ− γ)

cdot |Z|Z . (74)

Similarly, using (69) we have that

|Q (R[Z](t)−R[0](t)) |σ
≤ MG

∫ t

−∞
‖Aσe−νA(t−τ)‖ · |Z(τ)|αdτ

+ MK

∫ t

−∞
‖Aσ+βe−νA(t−τ)‖ · |PZ(τ)|0dτ

≤ a1 · e−µt · |Z|Z + a2 · e−µt · sup
t∈R

{
eµt|PZ(t)|σ

}
,

where

a1 = MG sup
t∈R

[∫ t

−∞
‖Aσe−(νA−µ)(t−τ)‖2dτ

]1/2

< ∞,

a2 = MK sup
t∈R

∫ t

−∞
‖Aσ+βe−(νA−µ)(t−τ)‖dτ < ∞,

(the finiteness of a1 and a2 follows from (18) by a straightforward computation). From

(72) and (74) we have that

sup
t∈R

{
eµt|PZ(t)|σ

} ≤ sup
t∈R

{
eµt|Z0(t)|σ

}
+

MF√
2(µ− γ)

· |Z|Z .

Therefore

sup
t∈R

{
eµt|Q (R[Z](t)−R[0](t)) |σ

}

≤ a2 sup
t∈R

{
eµt|Z0(t)|σ

}
+

[
a1 +

a2MF√
2(µ− γ)

]
· |Z|Z . (75)

Consequently, using relations (72), (74) and (65) we obtain that

sup
t∈R

{
eµt|Z(t)|σ

} ≤ (1 + a2)R̃2(ω) +

[
a1 +

(1 + a2)MF√
2(µ− γ)

]
· |Z|Z .
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Thus by (73) we have

sup
t∈R

{
eµt|Z(t)|σ

} ≤ c0(R̃1(ω) + R̃2(ω)) + c1|V0|σ.

with appropriate (deterministic) constants c0 and c1. This implies (51) and completes

the proof of Theorem 4.1.

Remark 4.6 The existence of a positively invariant manifold of the form (49) can be

also established in the case γ = 0 under the the condition ν > ν0, where ν0 is given by

(46) with γ = 0. The point is that we can introduce artificial small damping in problem

(1) with γ = 0 by the considering the equation

vtt + εvt + Lv = Fε(v, vt, u) + Ẇ1, in X1, (76)

where Fε(v, vt, u) = F (v, vt, u)+ εvt. We choose ε such that the relation ν > ν0 remains

true, where ν0 is defined by (46) with γ = ε and with the term MF + ε instead of MF .

Now we can apply Theorem 4.1 to problem (76) and (2).

5. The reduced system

Assume the hypotheses of Theorem 4.1 hold and let Φ ≡ Φ0 be given by (62) with s = 0.

Consider the problem{
vtt + γvt + Lv = F (v, vt, Φ(θtω, v, vt)) + Ẇ1, t > s, in X1,

v|t=s = v0, vt|t=s = v1,
(77)

and define its mild solution on the interval [s, T ] as a random function

D(t, ω) ≡ D(t, s; ω, v0, v1) = (v(t, ω), vt(t, ω)) ∈ C([s, T ], D(L1/2)×X1) (78)

such that ∫ T

s

‖AαΦ(θt, v(t, ω), vt(t, ω))‖2
X2

dt < ∞, ω ∈ Ω, (79)

and[
v(t, ω)

vt(t, ω)

]
= Tt−s

[
v0

v1

]
+

∫ t

s

Tt−τ

[
0

F (v(τ), vt(τ), Φ(ω, v(τ), vt(τ)))

]
dτ + η1(t, s)

for almost all t ∈ [s, T ] and ω ∈ Ω, where Tt is the evolution group generated by (14)

and η1(t, s) is given by (21).

Proposition 5.1 Let v0 ∈ D(L1/2) and v1 ∈ X1. Then under the conditions of

Theorem 4.1 problem (77) has a mild solution on any interval [s, T ]. If α < min(1 −
β, 1/2), then this solution is unique and any mild solution (v̂(t), v̂t(t)) to problem (77)

generates a mild solution to problem (1) and (2) by the formula

(v(t), vt(t), u(t)) = (v̂(t), v̂t(t), Φ(θtω, v̂(t), v̂t(t))). (80)
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Moreover, in this case the manifoldM is invariant with respect to the cocycle φ generated

by (1) and (2).

Proof. Let V (t) = (v(t), vt(t), u(t)) be a mild solution to problem (11) with the initial

data V0 = (v0, v1, Φ(ω, v0, v1)). Since M given by (49) is positively invariant, we have

that

PV (t) = (v(t), vt(t), 0) ≡ (D(t), 0) and QV (t) = (0, 0, Φ(θtω,D(t))).

Thanks to Theorem 3.3 D(t) possesses the property (78). We also have that
∫ T

s

|QV (t)|2αdt ≤
∫ T

s

|V (t)|2αdt < ∞.

Thus (79) holds. Consequently D(t) is a mild solution to (77).

If α < min(1− β, 1/2), then by Theorem 4.1 with σ = α we have that

‖Aα(Φ(ω, D1)− Φ(ω, D2))‖X2 ≤ C‖D1 −D2‖D(L1/2)×X1
,

for Di ∈ D(L1/2)×X1. This implies that the function

D 7→ FΦ(ω, D) := F (v0, v1, Φ(ω, v0, v1)), D = (v0, v1) ∈ D(L1/2)×X1,

is globally Lipschitz, i.e.

‖FΦ(ω, D1)− FΦ(ω, D2))‖X1 ≤ C‖D1 −D2‖D(L1/2)×X1
, (81)

with Di ∈ D(L1/2) ×X1. Therefore a Gronwall type argument gives us the uniqueness

of solutions to (77). Relation (80) easily follows from the uniqueness theorem for (77).

Property (81) makes it also possible to solve (77) backwards in time and, hence,

one can prove that M is invariant with respect to the cocycle φ(t, ω). ¤

Observe now that Theorem 4.1 implies that for any mild solution V (t) =

(v(t), vt(t), u(t)) to problem (1) and (2) with initial data V0 ∈ Hσ, where σ satisfies

(48), there exists a mild solution D(t) = (v̂(t), v̂t(t)) to reduced problem (77) such that

‖L1/2(v(t)− v̂(t)‖2
X1

+‖vt(t)− v̂t(t)‖2
X1

+‖Aσ [u(t)− Φ(ω, v̂(t), v̂t(t))] ‖2
X2
≤ Ce−µ(t−s)

for any t ≥ s with positive constants C and µ. Thus under the conditions of Theorem 4.1,

the long-time behaviour of solutions to (1) and (2) can be described completely by

solutions to problem (77). Moreover, under the condition α < min(1 − β, 1/2), due to

relation (80), every limiting regime of the reduced system (77) is realized in the coupled

system (1) and (2).
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6. Distance between random and deterministic manifolds

Theorem 4.1 can be also applied to the deterministic version of problem (1) and (2):

vtt + γvt + Lv = F (v, vt, u), in X1, (82)

ut + νAu = G(v, vt, u) + K(v, vt), in X2. (83)

In this case Theorem 4.1 give us the existence of a (deterministic) invariant exponentially

attracting manifold Mdet in the space Hσ of the form

Mdet =
{
(v, v̄, Φdet(v, v̄)) : (v, v̄) ∈ D(L1/2)×X1

}
, (84)

where Φdet : D(L1/2) × X1 7→ D(Aσ) ⊂ X2 is a globally Lipschitz mapping and σ

satisfies (48).

Our goal in this section is to estimate the mean value distance between the

deterministic (Mdet) and random (M(ω)) manifolds.

Theorem 6.1 There exist a positive constant C such that

E

{
sup

D∈D(L1/2)×X1

‖Aσ(Φ(·, D)− Φdet(D))‖2
X2

}
≤ C

(
tr K1 + tr K2A

2α−1
)
, (85)

where σ satisfies (48). Thus, the random manifold M(ω) is close to its deterministic

counterpart when tr K1 + tr K2A
2α−1 becomes small.

Proof. It follows from the definition (see (62)) of the functions Φ and Φdet that

Φ(ω,D)− Φdet(D) =

∫ 0

−∞
eνAτ

[
G(V st(τ))−G(V det(τ))

]
dτ

+

∫ 0

−∞
eνAτ

[
K(vst(τ), v̄st(τ))−K(vdet(τ), v̄det(τ))

]
dτ + η2(0,−∞),

where V st(t) ≡ (vst(t), v̄st(t), ust(t)) and V det(t) ≡ (vdet(t), v̄det(t), udet(t)) are defined on

the semi-axis (−∞, 0] and solve the equations

V st(t) = ID[B(V st); ω](t, 0) and V det(t) = Idet
D [B(V det)](t, 0), (86)

where ID and Idet
D are defined as in (53).

Using the same method as in the proof of relation (75) we can conclude that

‖Aσ(Φ(·, D)− Φdet(D))‖X2 ≤ ‖Aση2(0,−∞)‖X2 + a1|V st − V det|Yα,0

+ a2 sup
t≤0

{
eµt|P (V st(t)− V det(t))|0

}
, (87)

where a1 and a2 are deterministic constants.
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Now using (86) and the structure of the operators ID and Idet
D we can write the

following estimate

|P (V st(t)− V det(t))|0

≤ MF

∫ 0

t

e−γ(t−τ)
∣∣V st(τ)− V det(τ)

∣∣
α
dτ + eγt |η1(0, t)|D(L1/2)×X1

for t ≤ 0, which implies that

sup
t≤0

{
eµt|P (V st(t)− V det(t))|0

}

≤ C|V st − V det|Yα,0 + sup
t≤0

{
e(µ−γ)t |η1(0, t)|D(L1/2)×X1

}
.

Therefore from (87) we have that

‖Aσ(Φ(·, D)− Φdet(D))‖2
X2

≤ b1|V st − V det|2Yα,0
+ b2∆1(ω; η1, η2) + 2‖Aση2(0,−∞)‖2

X2
, (88)

where b1 and b2 are deterministic constants and

∆1(ω; η1, η2) = sup
t≤0

{
e2(µ−γ)t |η1(0, t)|2D(L1/2)×X1

}
. (89)

By (86) we have that

|V st − V det|Yα,0 ≤ |BD[V st; ω](·, 0)−BD[V det; ω](·, 0)|Yα,0 + |Σ(0, ·)|Yα,0 ,

where BD[V ; ω](t, 0) is the same as in (52) and Σ(s, t) is given by (55). Thus by

Proposition 4.3 we have that

|V st − V det|Yα,0 ≤ (1− q)−1|Σ(0, ·)|Yα,0 ,

where q = κα(ν, (γ + νλ1)/2) < 1. Therefore, using (88) we obtain the estimate

‖Aσ(Φ(·, D)− Φdet(D))‖2
X2

≤ 2‖Aση2(0,−∞)‖2
X2

+
b1

(1− q)2
|Σ(0, ·)|2Yα,0

+ b2∆1(ω; η1, η2). (90)

It easily follows from relations (23) and (24) and from the definition of Σ(s, t) (see (55))

that

E‖Aση2(0,−∞)‖2
X2
≤ C1 · tr K2A

2α−1 (91)

and

E|Σ(0, ·)|2Yα,0
≤ C2

(
tr K1 + tr K2A

2α−1
)
. (92)
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Now we calculate E∆1(ω; η1, η2). From (27) and (17) we obtain that

|η1(0, t)|2D(L1/2)×X1
≤ 2 |η1(0,−∞)|2D(L1/2)×X1

+ 2 |η1(t,−∞)|2D(L1/2)×X1
.

Hence by (24) we have that

E∆1(·; η1, η2) ≤ Ctr K1 + 2E sup
t≤0

{
e2(µ−γ)t |η1(t,−∞)|2D(L1/2)×X1

}
.

Since

E sup
t≤0

{
e2(µ−γ)t |η1(t,−∞)|2D(L1/2)×X1

}

≤
∞∑

n=1

e−2(µ−γ)(n−1)E sup
0≤t≤1

{
|η1(−n + t,−∞)|2D(L1/2)×X1

}

and, by (26), η1(−n+ t,−∞, ω) = η1(t,−∞.θ−nω), we obtain from the invariance of the

probability measure with respect to θt that

E sup
t≤0

{
e2(µ−γ)t |η1(t,−∞)|2D(L1/2)×X1

}
≤ CE sup

0≤t≤1

{
|η1(t,−∞)|2D(L1/2)×X1

}
.

Using (27) we have that η1(t,−∞) = η1(t, 0) + Ttη1(0,−∞). Consequently, by (24) and

(25) we obtain that

E sup
t≤0

{
e2(µ−γ)t |η1(t,−∞)|2D(L1/2)×X1

}
≤ Ctr K1

and hence E∆1(·; η1, η2) ≤ Ctr K1. Therefore (85) follows from (90) and (91). ¤

Conclusions

We have proved in this paper that the long time behaviour of coupled non-linear

parabolic-hyperbolic partial differential equations perturbed by additive noise can be

reduced to the analysis of a corresponding hyperbolic random equation with a modified

nonlinear term. The main tool is the construction of an invariant random manifold for

the coupled system which is given by the graph of a suitable Lipschitz mapping. Of

course, one could consider other different expressions for the noisy terms in the equations

(multiplicative, cylindrical, etc). We plan to investigate the possibility of doing a similar

reduction in the future.
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