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Abstract. We consider the exponential stability of semilinear stochastic evo-

lution equations with delays when zero is not a solution for these equations.
We prove the existence of a non-trivial stationary solution exponentially stable,
for which we use a general random fixed point theorem for general cocycles.

We also construct stationary solutions with the stronger property of attracting

bounded sets uniformly, by means of the theory of random dynamical systems
and their conjugation properties.

1. Introduction. The asymptotic behaviour of stochastic partial differential equa-
tions is an important task which has been receiving much attention during the last
decades. In particular, stochastic evolution equations containing some sort of delay
or retarded argument have also been extensively studied due to their importance in
applications (see, for example, [2], [4], [5], [11], [15], [24] and [25]).
However, even in the non-delay framework, most results in the literature are con-
cerned with the exponential stability of constant stationary solutions, mainly the
trivial one (see [12] and [18] in the finite dimensional context, and [7], [16], [13], [14]
among others in the infinite dimensional framework).
In the recent work [6], the asymptotic behaviour of semilinear stochastic partial
differential equations has been analysed, focusing on the exponential stability of
their non-constant stationary solutions in mean square and pathwise.
Our aim in this work is to prove analogous results in the case in which the non-linear
term can eventually contain some hereditary features. Although it may be possible
to develop a parallel analysis to that one in [6], but with necessary modifications
due to the different nature of the problem, we will use a different technique in this
paper. In fact, our results will be deduced as consequences of a general fixed point
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theorem for general cocycles. In this way, by simply choosing appropriate phase
spaces we can deduce both types of stability (in mean square and pathwise) under
a unified treatment.
These generalized fixed points will provide stationary solutions of our problem hav-
ing different properties, depending on the chosen setup. In the first case, the sta-
tionary solution will be exponentially attracting in mean square, while in the second
it will be pathwise exponentially attracting.
The content of the paper is as follows. In Section 2 we state a general theorem
ensuring the existence of generalized fixed points for cocycles. In Section 3, a
semilinear stochastic evolution equation with finite delay is considered. First, we
construct a cocycle associated to our model and prove the existence of a mean square
exponentially attracting solution. In addition, this stationary solution is proved to
attract with probability one. However, the exceptional set does depend on the
initial value. To overcome this disadvantage we exploit the tools from the theory of
random dynamical systems and construct another cocycle which possesses a random
fixed point exponentially attracting for every path. To do this, we consider a more
specific noisy term in our equation since it is not always possible to generate a
random dynamical system from general stochastic PDEs.

2. A generalized fixed point theorem for cocycles. In this section we will
establish a theorem which ensures the existence and uniqueness of generalized fixed
points for nonautonomous and random dynamical systems. The main property
describing the dynamics of such a system is termed cocycle property, which is a
generalization of the semigroup property for autonomous systems.
Let X = (X(r), ‖ · ‖r) for r ∈ R be a family of Banach spaces.
We say that ψ = ψ(·, ·, ·) is a cocycle on X if, for any t ∈ R+ and r ∈ R, the
mapping ψ(t, r, ·) : X(r) → X(r + t) satisfies

ψ(0, r, ·) = idX(r), (1)

ψ(t+ s, r, ·) = ψ(t, r + s, ψ(s, r, ·)).

Indeed, deleting all the r’s in the above formula one gets the well known semigroup
property. A family ψ∗ = (ψ∗(r))r∈R, where ψ∗(r) ∈ X(r) for all r ∈ R, is called a
generalized fixed point for the cocycle ψ if

ψ(t, r, ψ∗(r)) = ψ∗(t+ r), for all t ≥ 0 and r ∈ R.

Let κ be a positive constant. A family ξ = (ξ(r))r∈R, ξ(r) ∈ X(r) is called κ-growing
if

lim
r→−∞

‖ξ(r)‖re
(κ−ε)r = 0 for every ε > 0.

The following theorem formulates sufficient conditions for the existence of a pullback
attracting generalized fixed point for a cocycle.

Theorem 1. We consider the family of Banach spaces X = (X(r), ‖ · ‖r)r∈R. Let
ψ be a cocycle defined on X and P be some non-empty subset of κ-growing families
on X for a κ > 0. In addition,
(A1) Suppose that there exists a mapping

K : R+ × R → R+

such that

‖ψ(t, r, x)− ψ(t, r, y)‖2
r+t ≤ K(t, r)‖x− y‖2

r for all x, y ∈ X(r),
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and for every ε > 0

lim
t→∞

K(t, r)e(κ−ε)t = 0, lim
t→∞

K(t, r − t)e(κ−ε)t = 0.

(A2) Suppose that (ψ(N, r − N, ξ(r − N)))N∈N is a Cauchy sequence in X(r) for
every r ∈ R and ξ in P. Then the limit family is contained in P.

(A3) We have that for x ∈ P, r ∈ R and for every ε > 0

sup
q∈[0,1]

‖ψ(q, r − q − t, x(r − q − t))− x(r − t)‖r−t = o(e(κ−ε)t)

for t→∞.
Then there exists a generalized fixed point ψ∗ ∈ P for ψ which is the unique one (in
P). Moreover, for all families ξ ∈ P the following convergence

lim
t→∞

‖ψ(t, r − t, ξ(r − t))− ψ∗(r)‖r = 0 (pullback convergence)

holds exponentially fast for all r ∈ R. In addition, we have

lim
t→∞

‖ψ(t, r, ξ(r))− ψ∗(r + t)‖r+t = 0

for all families ξ ∈ P exponentially fast.

Proof. This theorem is a version of similar results in Duan et al. [10], Schmalfuß
[21], [23]. Although we do not prefer to include the complete proof, we would like
to mention that the idea is to show that, for every ξ ∈ P, the Cauchy sequence
{ψ(N, r−N, ξ(r−N))}N∈N has a limit in X(r) where its limit does not depend on
the family ξ. This follows from (A1) and (A2). According to (A3) (ψ(t, r−t, ξ(r−t)))
has the same limit for t → ∞ as the above sequence which causes the existence of
a generalized fixed point.

3. Mean square exponentially attracting stationary solutions for a delay
model. In this section we deal with the concept of exponentially attracting station-
ary solutions for a kind of delay stochastic non-linear evolution equation generated
by random fixed points.

3.1. Preliminaries on a semilinear stochastic evolution equation with de-
lays. We start to describe the noise driving the differential equation.
Let (Ω,F , {Ft}t∈R,P) be a filtered probability space such that

Fs ⊂ Ft ⊂ F for s ≤ t.

In what follows, we consider a two-sided Wiener process W taking values in some
separable Hilbert space U with covariance Q being a trace class symmetric operator
on U . For instance, as it is usual in the literature, the previous probability space
(Ω,F ,P) is to be chosen as the set of continuous paths C0(R, U) which are zero at
zero equipped with the compact open topology. F is supposed to be the associated
Borel σ-algebra and P is the Wiener measure with respect to the covariance Q. We
also set Ft = σ{ω(u)− ω(v) : v, u ≤ t}.
Note that the above probability space is not complete. Its completion is denoted by
(Ω, F̄ , {F̄t}t∈R,P) where {F̄t}t∈R is a normal filtration, see Da Prato and Zabczyk
[8], Page 75. For the extension of P to F̄ we choose the same notation P.
We now introduce a measurable flow θ = {θt}t∈R on the above non-completed
probability space (Ω,F ,P):

θ : (R× Ω,F ⊗ B(R)) → (Ω,F), θt+τ = θt ◦ θτ , θ0 = idΩ, (2)
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where by means of B (S) we denote the Borel σ-algebra of open subsets in the
topological space S.
The Wiener shift operators which form the flow θ

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω

leave the Wiener measure P invariant. More precisely, P is ergodic with respect to
θ and, in addition, we have that

θ−1
u Ft = Ft+u (3)

for any t, u ∈ R, see Arnold [1], Page 72. In particular, we mention that the
quadruple (Ω,F ,P, θ) is called a metric dynamical system.
As this probability space is canonical, we have for a Wiener process W and its shift
operators

W (t, ω) = ω(t), W (t, θsω) = ω(t+ s)− ω(s) = W (t+ s, ω)−W (s, ω).

Given two real numbers a < b and a separable Banach space H, we denote by
I2(a, b;H) the closed subspace of L2(Ω × [a, b], F̄ ⊗ B ([a, b]) ,dP⊗dt;H) of all sto-
chastic processes (t, ω) → X(t, ω) ∈ H such that X(t) is F̄t-adapted.
We denote by L2

s(Ω;C(a, b;H)) the space of processes u ∈ L2(Ω, F̄ ,dP;C(a, b;H))
such that u(t) is F̄t+s-measurable for each t in [a, b], where s ∈ R and C(a, b;H)
denotes the space of all continuous functions from [a, b] into H equipped with supre-
mum norm, which will be denoted by || · ||C(a,b;H). || · ||L2 is defined to be the norm
in the spaces L2

s(Ω;C(a, b;H)) for all s ∈ R. We also write L2(Ω;C(a, b;H)) instead
of L2

0(Ω;C(a, b;H)).
Let us fix a h > 0 and consider T > 0. For brevity we denote CH = C(−h, 0;H). If
we have a function u ∈ C(−h, T ;H), for each t ∈ [0, T ] we denote by ut ∈ CH the
function defined by ut(s) = u(t+ s), −h ≤ s ≤ 0. Moreover, if y ∈ L2(−h, T ;H) we
also denote by yt ∈ L2(−h, 0;H), for almost every (in the sequel, a.e.) t ∈ (0, T ),
the function defined by yt(s) = y(t+ s), a.e. s ∈ (−h, 0).

For the following letW be the Wiener process on the probability space (Ω, F̄ , {F̄t}t∈R,P)
introduced above. In addition, assume that there exists a Gelfand triplet V ⊂ H ⊂
V ′ of separable Hilbert spaces, where V ′ denotes the dual of V . We denote by
|·| , ‖ · ‖V the norms in H and V respectively. The inner product in H will be
denoted by (·, ·), and the duality mapping between V ′ and V by 〈·, ·〉.
We will study the qualitative behaviour of the following delay stochastic evolution
equations 

du = Audt+ f(ut)dt+B(u)dW, t ≥ 0,

u(t) = ξ(t), t ∈ [−h, 0],

u ∈ I2(0, T ;V ) ∩ L2(Ω;C(−h, T ;H)), for all T > 0.

(P )

We mention that the equation in (P ) has to be satisfied in V ′ so that we consider
our solutions from a variational point of view. The random variable ξ is supposed to
be (F̄0,B(CH))–measurable. Let us denote by a1 > 0 the constant of the injection
V ⊂ H, i.e.

a1 |u|2 ≤ ‖u‖2
V , for v ∈ V,

and let −A : V → V ′ be a positive, linear and continuous operator for which there
exists a constant a2 < 0 such that

〈−Au, u〉 ≥ −a2‖u‖2
V , for all u ∈ V.



STATIONARY SOLUTIONS FOR DELAY SPDE 5

Therefore, −A generates a norm in V which is equivalent to the previous one. In
the sequel, we suppose that ‖ · ‖V denotes this norm in V, which is then defined by
‖u‖2

V = 〈−Au, u〉 , for all u ∈ V. Moreover, it is also well-known (see, for instance,
Dautray and Lions [9]) that A is the generator of a strongly continuous semigroup
{S(t)}t≥0 in H satisfying

‖S(t)‖L(H) ≤ eat,

where a = a1a2 < 0.
Also, suppose that f : CH → H is a mapping satisfying the following properties:

(f.1) there exists a constant Cf > 0 such that for all ξ, ξ̃ ∈ CH

|f(ξ)− f(ξ̃)| ≤ Cf ||ξ − ξ̃||CH
,

(f.2) for any positive continuous function ρ over (−h,+∞) there exists a constant
Kf = Kf (ρ, h) ≥ 0 such that for all u, ũ ∈ C(−h,+∞;H), and all t ≥ 0∫ t

0

ρ(s) |f(us)− f(ũs)|2 ds ≤ K2
f

∫ t

−h

ρ(s) |u(s)− ũ(s)|2 ds.

Assumption (f.2) is often assumed in the context of delay partial differential equa-
tions. See [6], [3], [4], [17] for some particular examples.
Finally, B : H → LQ

2 (U,H) is supposed to be Lipschitz continuous with respect to
the Hilbert-Schmidt norm LQ

2 (U,H) of linear operators from U to H (see Da Prato
and Zabczyk [8] Chapter 4):

trH((B(u)−B(v))Q(B(u)−B(v))∗) := ‖B(u)−B(v)‖2
LQ

2
≤ L2

B |u− v|2

for u, v ∈ H.
We now recall the following theorem on the existence, uniqueness and regularity of
solutions to (P ) (cf. Márquez-Durán [17] and Caraballo et al. [6]).

Theorem 2. For any s ∈ R and ξ ∈ L2
s := L2

s(Ω;CH) there exists a unique
(variational and mild) solution to problem (P ) with continuous trajectories in CH ,
denoted by u(t, s, ξ), defined for t ≥ −h, and such that u(t, s, ξ) = ξ(t) for t ∈
[−h, 0], where the Wiener process is θsW instead of W. Moreover, for any τ ≥
0, s ∈ R it holds that

u(t, s+ τ, u(τ, s, ξ)) = u(t+ τ, s, ξ), P− a.s. for all t ≥ 0. (4)

Notice that the process θsW (·, ω) = W (·, θsω) = W (·+ s, ω)−W (s, ω), for s ∈ R,
is also a Wiener process with covariance Q. For t ≥ 0, this process is adapted to
the filtration {F̄s+t}t≥0 which follows from (3).
Moreover, observe that the following equality holds for ξ ∈ L2

0:

u(·, 0, ξ)(θs·) = u(·, s, ξs), P− a.s., (5)

where ξs(·, ·) := ξ(·, θs·). Indeed, by (3) the random variable ξ(·, θsω) is F̄s-
measurable, and both sides of (5) are driven by the same Wiener process (θsW )
with the same initial condition. Then, the uniqueness of solutions of (P ) proves (5).
As we have already mentioned, the intention of this article is to find mean square
and/or omega-wise exponentially attracting stationary solutions to problem (P ),
which means to find a solution process for which the finite dimensional distributions
do not depend on time shifts. Suppose, we can find an (F̄0,B(CH))-measurable
random variable ξ∗ with values in CH (i.e. a measurable mapping ξ∗ : Ω → CH)
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such that, if we choose the initial condition ξ∗(·, ω), then the mapping ut(·, ω) :=
ξ∗(·, θtω) solves problem (P ). More precisely, the process given by

v(t, ω) =
{
ξ∗(t, ω), if t ∈ [−h, 0]
ξ∗(0, θtω), if t > 0

is a solution of (P ). Then we have for t1 < t2 < · · · < tn

P (ξ∗(·, θt1ω) ∈ B1, · · · , ξ∗(·, θtn
ω) ∈ Bn)

= P(ξ∗(·, θt1+tω) ∈ B1, · · · , ξ∗(·, θtn+tω) ∈ Bn)

for any t ∈ R and Borel sets B1, · · · , Bn from B(CH), which follows directly from
the θt-invariance of P. Hence ξ∗ generates a stationary solution.

3.2. Mean square exponentially attracting stationary solutions. In this
paragraph we establish the mean square exponential attractivity for the stationary
solutions to problem (P ).
Now, we define an appropriate cocycle and will prove that it possesses a unique
generalized fixed point which generates a mean square exponentially attracting sta-
tionary solution to our problem (P ).

Lemma 1. Consider the Banach space X(r) = L2(Ω, F̄r,P;CH), for r ∈ R, with

its usual norm || · ||L2 =
√

E‖ · ‖2
CH

which is independent of r. For t ≥ 0, r ∈ R,
define ψ(t, r, ·) : X(r) → X(t+ r) by

ψ(t, r, ξ) = ut(·, r, ξ), for ξ ∈ X(r). (6)

Then, ψ satisfies the cocycle property (1).

Proof. The proof follows from Theorem 2, in particular from the equality (4).

Our next aim is to prove the existence of a generalized fixed point for this cocycle
ψ. Let P introduced in Section 2 be given by the families of CH -valued random
variables {ξ(r)}r∈R such that ξ(r) is F̄r−measurable and ‖ξ(r)‖L2 is uniformly
bounded in r. To check that assumptions in Theorem 1 are fulfilled we need some
preliminary results concerning the solutions of problem (P ).
From now on, we denote µ0 = 2a+L2

B +2Kf and suppose it is a negative constant.
We first establish a result concerning the mean square attractivity for the solution
to problem (P ).

Theorem 3. Suppose all the assumptions on A, B and f hold. Then, for each
µ ∈ [µ0, 0] there exists a K1 = K1(µ, h) > 0 such that

E |u(t, s, ξ)− u(t, s, η)|2 ≤ K1||ξ − η||2L2eµt, (7)

for all t ≥ 0, s ∈ R, and ξ, η ∈ L2
s.

Moreover, for each µ ∈ (µ0, 0] there exists a constant K2 = K2(µ, h) > 0 such that
for any solution u of problem (P ) we have that

E
∫ t

0

e−µr |u(r, s, ξ)− u(r, s, η)|2 dr ≤ K2||ξ − η||2L2 , (8)

for all t ≥ 0, s ∈ R, and ξ, η ∈ L2
s.
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Proof. Let µ ∈ [µ0, 0], s ∈ R be fixed and denote u(t) := u(t, s, ξ), v(t) := u(t, s, η).
Then, for any t ≥ 0 it follows from (f.2) that

2
∫ t

0

e−µr(f(ur)− f(vr), u(r)− v(r))dr

≤ 2
(∫ t

0

e−µr |f(ur)− f(vr)|2 dr
)1/2(∫ t

0

e−µr |u(r)− v(r)|2 dr
)1/2

≤ 2Kf

∫ t

−h

e−µr |u(r)− v(r)|2 dr.

Applying now Itô’s formula to the process e−µt |u(t)− v(t)|2, and taking into ac-
count the assumptions on A and B, we obtain for every t ≥ 0

e−µt |u(t)− v(t)|2 = |ξ(0)− η(0)|2 − µ

∫ t

0

e−µr |u(r)− v(r)|2 dr

+ 2
∫ t

0

e−µr 〈A(u(r)− v(r)), u(r)− v(r)〉dr

+ 2
∫ t

0

e−µr(f(ur)− f(vr), u(r)− v(r))dr (9)

+
∫ t

0

e−µr||B(u(r))−B(v(r))||2LQ
2
dr

+ 2
∫ t

0

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω))

≤ |ξ(0)− η(0)|2 + 2Kf

∫ 0

−h

e−µr |u(r)− v(r)|2 dr

+ (−µ+ 2a+ L2
B + 2Kf )

∫ t

0

e−µr |u(r)− v(r)|2 dr

+ 2
∫ t

0

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω))

≤ |ξ(0)− η(0)|2 + 2Kf ||ξ − η||2L2

∫ 0

−h

e−µrdr

+ 2
∫ t

0

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω)) P− a.s.

Then (7) follows easily by taking the expectation after having replaced t by t∧TN ,
where TN is the family of stopping times

TN (ω) = inf{t ≥ 0 : |u(t)|2 + |v(t)|2 ≥ N}

such that

lim
N→∞

(t ∧ TN ) = t, P− a.s.,

since u, v have continuous paths.
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Next, we prove (8). To this end, we consider µ ∈ (µ0, 0]. Thanks to (9) we know
that

e−µtE |u(t, s, ξ)− u(t, s, η)|2

≤ E |ξ(0, ·)− η(0, ·)|2 + 2Kfh||ξ − η||2L2

+ (−µ+ 2a+ L2
B + 2Kf )E

∫ t

0

e−µr |u(r, s, ξ)− u(r, s, η)|2 dr.

Taking into account that −µ+ 2a+ L2
B + 2Kf < 0, we obtain

E
∫ t

0

e−µr |u(r, s, ξ)− u(r, s, η)|2 dr

≤ −(1 + 2Kfh)(−µ+ 2a+ L2
B + 2Kf )−1||ξ − η||2L2 ,

which proves (8).

Now, using this lemma, we can prove the following result.

Lemma 2. For each µ ∈ (µ0, 0) there exists a K3 = K3(µ, h) > 0 such that

||ψ(t, s, ξ)− ψ(t, s, η)||2L2

(
= ||ut(·, s, ξ)− ut(·, s, η)||2L2

)
≤ K3||ξ − η||2L2eµt, (10)

for all t ≥ 0, s ∈ R, and ξ, η ∈ L2
s.

Proof. We use the same notation as in the previous proof. Let us assume that t ≥ h.
Applying Itô’s formula on the intervals [0, t+ σ], for σ ∈ [−h, 0], and [0, t− h], and
then subtracting the obtained equalities, we can deduce that

e−µ(t+σ) |ut(σ)− vt(σ)|2

= e−µ(t−h) |u(t− h)− v(t− h)|2 − µ

∫ t+σ

t−h

e−µr |u(r)− v(r)|2 dr

+ 2
∫ t+σ

t−h

e−µr 〈A(u(r)− v(r)), u(r)− v(r)〉dr

+ 2
∫ t+σ

t−h

e−µr(f(ur)− f(vr), u(r)− v(r))dr

+
∫ t+σ

t−h

e−µr||B(u(r))−B(v(r))||2LQ
2
dr

+ 2
∫ t+σ

t−h

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω)).

Thanks to hypothesis (f.2) and using the assumptions on A, B and the fact that
−µ+ µ0 < 0, we obtain

e−µ(t+σ) |ut(σ)− vt(σ)|2

≤ e−µ(t−h) |u(t− h)− v(t− h)|2

+ 2Kf

∫ 0

−h

e−µr |u(r)− v(r)|2 dr + 2Kf

∫ t−h

0

e−µr |u(r)− v(r)|2 dr

+ 2
∫ t+σ

t−h

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω)).
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Taking into account (8), it follows

e−µtE
[

sup
−h≤σ≤0

|ut(σ)− vt(σ)|2
]

≤ e−µtE |u(t− h)− v(t− h)|2 + 2e−µhKf (h+K2)||ξ − η||2L2

+ 2e−µhE
[

sup
−h≤σ≤0

∫ t+σ

t−h

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω))
]
.

On the other hand, Burkholder-Davis-Gundy’s inequality yields that

2e−µhE
[

sup
−h≤σ≤0

∫ t+σ

t−h

e−µr(u(r)− v(r), (B(u(r))−B(v(r)))dW (r, θsω))
]

≤ 6e−µhE
[

sup
−h≤σ≤0

(
e
−µ(t+σ)

2 |u(t+ σ)− v(t+ σ)|
)

(∫ t

t−h

e−µr||B(u(r))−B(v(r))||2LQ
2
dr
)1/2

]

≤ 1
2
e−µtE

[
sup

−h≤σ≤0
|ut(σ)− vt(σ)|2

]
+ 18e−2µhL2

BE
∫ t

t−h

e−µr |u(r)− v(r)|2 dr.

Therefore, applying Theorem 3 we obtain

e−µt

2
E
[

sup
−h≤σ≤0

|ut(σ)− vt(σ)|2
]

≤ e−µtE |u(t− h)− v(t− h)|2 + 2e−µhKf (h+K2)||ξ − η||2L2

+ 18e−2µhL2
BE
∫ t+σ

t−h

e−µr |u(r)− v(r)|2 dr

≤ K1e−µh||ξ − η||2L2 + 2Kfe−µh(h+K2)||ξ − η||2L2

+ 18K2e−2µhL2
B ||ξ − η||2L2 .

The case 0 ≤ t < h can be easily deduced from the previous analysis by noticing
that

||ut(·, s, ξ)− ut(·, s, η)||2CH
≤ sup

σ∈[−h,−t]

|u(t+ σ, s, ξ)− u(t+ σ, s, η)|2

+ sup
σ∈[−t,0]

|u(t+ σ, s, ξ)− u(t+ σ, s, η)|2.

Recall that the family P is formed by the families of CH−valued random variables
{ξ(r)}r∈R such that ξ(r) is F̄r− measurable and that ||ξ(r)||L2 is uniformly bounded
in r ∈ R. Then a similar analysis to the one carried out in the previous lemma allows
to prove the following consequence.

Corollary 1. For any given {ξ(r)}r∈R ∈ P it holds that ||ψ(t, r, ξ(r))||2L2 is uni-
formly bounded for t ≥ 0, r ∈ R, and thus {ψ(t, r, ξ(r))}r∈R ∈ P, for t ≥ 0 and
{ξ(r)}r∈R ∈ P.
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Theorem 4. Under the previous assumptions, there exists a generalized fixed point
{ξ∗(r)}r∈R ∈ P for the cocycle ψ defined by (6). This fixed point is the only one
which belongs to P and generates a mean square exponentially attracting stationary
solution of (P ).

Proof. We will apply Theorem 1 to our cocycle. Let us consider a fixed µ ∈ (µ0, 0)
and set K(t, r) := K3eµt, for t ≥ 0, r ∈ R, where K3 is the constant appearing in
(10). Then, conditions in (A1) from Theorem 1 are satisfied by taking κ = −µ.
Condition (A3) follows for any (ξ(r))r∈R ∈ P thanks to Corollary 1. To complete
the proof, consider a random variable ξ ∈ L2

0. Then (ξ(r))r∈R = (ξ(·, θr·))r∈R ∈ P
thanks to the {θt}t∈R-invariance of P. Let us assume that {ψ(N, r−N, ξ(r −N))}N∈N
is a Cauchy sequence in X(r) for every r ∈ R, and let us prove that

ξ∗(r) :=
(

lim
N→∞

ψ(N, r −N, ξ(r −N))
)

r∈R
∈ P.

Then, as ξ∗(r) is obtained as an L2
r limit, it is therefore F̄r− measurable. Moreover,

thanks to Corollary 1, ξ∗(r) is uniformly bounded for r ∈ R and thus (ξ∗(r))r∈R ∈
P.
Notice that this fixed point ξ∗ ∈ P satisfies

ψ(t, r, ξ∗(r)) = ξ∗(t+ r), P-a.s. for all t ≥ 0 and r ∈ R,

which means that

ut(·, r, ξ∗(r)) = ξ∗(t+ r), for all t ≥ 0 and r ∈ R.

Let us finally prove that ξ∗ generates a mean square exponentially attracting station-
ary solution to our problem (P ). Denote by u∗(s, ω) := ξ∗(0, ω)(s), s ∈ [−h, 0], ω ∈
Ω, and let us now prove that

ut(·, 0, u∗(·, ·)) = u∗(·, θt·), P-a.s. in [−h, 0], for any t ≥ 0.

On account of Lemma 2 we have

E
[

sup
−h≤σ≤0

|ut(σ, 0, u∗(·, ·))− u∗(σ, θt·)|2
]

= E
[

sup
−h≤σ≤0

∣∣∣ut(σ, 0, (L2) lim
N→∞

uN (·,−N, ξ(·, θ−N ·)))

−(L2) lim
N→∞

uN (σ, t−N, ξ(·, θt−N ·))
∣∣∣2]

= lim
N→∞

E
[

sup
−h≤σ≤0

|uN (σ, t−N,ut(·,−N, ξ(·, θ−N ·)))− uN (σ, t−N, ξ(·, θt−N ·))|2
]

≤ K3 lim
N→∞

eµN ||ut(·,−N, ξ(·, θ−N ·))− ξ(·, θt−N ·)||2L2

≤ K3 lim
N→∞

eµN ||ut(·, 0, ξ(·, ·))− ξ(·, θt·)||2L2 = 0

since µ < 0 and t is fixed.
The exponential attracting property of the generalized fixed point implies immedi-
ately the mean square exponential attractivity for the stationary solution. Indeed,
from (10) it follows

E||ut(·, 0, ξ(·, ·))− ut(·, 0, u∗(·, ·))||2CH
≤ K1e

µt||ξ − u∗||2L2

for all t ≥ 0, and ξ ∈ L2
0, and, in particular,

E |ut(σ, 0, ξ(·, ·))− u∗(σ, θt·)|2 ≤ K1e
−µh||ξ − u∗||2L2eµt



STATIONARY SOLUTIONS FOR DELAY SPDE 11

for all t ≥ h, σ ∈ [−h, 0].

3.3. Additional almost sure exponential stability of the stationary solu-
tion. In addition to the mean square exponential stability of the stationary solution
to problem (P ) proved in the previous subsection, we can now show the almost sure
exponential convergence. We point out that the exceptional set depends on each
initial datum.

Theorem 5. Under the assumptions in Theorem 4, for any random variable ξ ∈ L2
0

we have that

lim
t→∞

||ut(·, 0, ξ(·, ·))− u∗(·, θt·))||2CH
= 0,

P−almost surely exponentially fast, where u∗ is the stationary solution to (P ) given
by the unique generalized fixed point in P.

Proof. Take ξ ∈ L2
0, and fix a constant µ ∈ (µ0, 0). Let us denote

u(t, 0, ξ(·, ·)) = u1(t), u(t, 0, u∗(·, ·)) = u2(t).

We first prove that there exists a positive constant C such that for any N ∈ N

E
[

sup
N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣2] ≤ C||ξ − u∗||2L2eµN . (11)

Indeed, Itô’s formula, Lemma 3 and the assumptions on A and B imply

E
[

sup
N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣2]

=K1eµN ||ξ − u∗||2L2 + (2a+ L2
B)K1

eµN

−µ
||ξ − u∗||2L2

+ 2E
∫ N+1

N

(f(u1
r)− f(u2

r), u
1(r)− u2(r))dr

+ 2E
[

sup
N≤t≤N+1

∫ t

N

(u1(r)− u2(r), (B(u1(r))−B(u2(r)))dW (r, ω))
]
.

From (f.2) and (8) it follows

2E
∫ N+1

N

(f(u1
r)− f(u2

r), u
1(r)− u2(r))dr

≤ 2E
∫ N+1

N

e−µ(r−N)(f(u1
r)− f(u2

r), u
1(r)− u2(r))dr

≤ 2eµNE
∫ N+1

0

e−µr
∣∣f(u1

r)− f(u2
r)
∣∣ ∣∣u1(r)− u2(r)

∣∣ dr
≤ 2KfeµNE

∫ N+1

−h

e−µr
∣∣u1(r)− u2(r)

∣∣2 dr

≤ 2KfeµNh||ξ − u∗||2L2 + 2KfK2eµN ||ξ − u∗||2L2 .



12 T. CARABALLO, M.J. GARRIDO-ATIENZA & B. SCHMALFUSS

On the other hand, Burkholder-Davis-Gundy’s inequality yields that

2E
[

sup
N≤t≤N+1

∫ t

N

(u1(r)− u2(r), (B(u1(r))−B(u2(r)))dW (r, ω))
]

≤ 6E

 sup
N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣(∫ N+1

N

||B(u1(r))−B(u2(r))||2LQ
2
dr

)1/2


≤ 1
2

E
[

sup
N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣2]+ 18K1L

2
B

eµN

−µ
||ξ − u∗||2L2 .

Then (11) follows from the previous estimates.
Now, given ε > 0, the Doob-Chebyshev inequality implies

P
[

sup
N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣2 ≥ e(µ+ε)N

]
≤ e−(µ+ε)NE

[
sup

N≤t≤N+1

∣∣u1(t)− u2(t)
∣∣2]

≤ Ce−εN ||ξ − u∗||2L2 ,

and therefore, the Borel-Cantelli lemma can now be applied to assure that there
exist a k = k(µ, h) and a γ > 0, and a subset Ω′ ⊂ Ω with P(Ω′) = 0 such that, for
each ω /∈ Ω′, there exists a positive random variable T (ω) such that

|ut(0, 0, ξ(·, ·))− ut(0, 0, u∗(·, ·))|2 ≤ k||ξ − u∗||2L2e−γt, ∀t ≥ T (ω),

and then

|ut(σ, 0, ξ(·, ·))− ut(σ, 0, u∗(·, ·))|2 ≤ keγh||ξ − u∗||2L2e−γt, ∀t ≥ T (ω) + h,

for all σ ∈ [−h, 0], which finishes this proof.

4. Pathwise exponentially attracting stationary solutions. A disadvantage
of the method used in the last section to prove the pathwise asymptotic stability
of the stationary solution u∗ is that the exceptional set depends on each initial
condition ξ. However, it is a very interesting task to try to prove the existence of
such a stationary solution which attracts exponentially any other solution for all
sample paths, or at least, with a common exceptional (null) set to all the initial
data. We will overcome this disadvantage in this section by exploiting the methods
of the theory of random dynamical systems (a comprehensive presentation can be
found in Arnold [1]). However, we will need to consider a more particular form for
our stochastic partial differential equations. Indeed, although it is a well-known
fact that finite-dimensional stochastic differential equations generate random dy-
namical systems (see Arnold [1] Chapter 1), this is not true in general for infinite
dimensional equations. However, for some especial classes of stochastic partial dif-
ferential equations the existence of random dynamical systems is established (see,
for instance, Mohammed et al. [19] and [20]).

4.1. Preliminaries on random dynamical systems. A random dynamical sys-
tem on a separable Banach space X is given by a measurable mapping

χ : (R+ × Ω×X,B(R+)⊗F ⊗ B(X)) → (X,B(X)),
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satisfying the cocycle property:

χ(t+ τ, ω, ξ) = χ(t, θτω, χ(τ, ω, ξ)), t, τ ∈ R+, ω ∈ Ω, ξ ∈ X,
χ(0, ω, ξ) = ξ,

(12)

where θ is the flow of shift operators (for instance the Wiener shift) previously
introduced. We emphasize that (12) has to be fulfilled for any ω ∈ Ω. However,
it is sufficient to replace Ω by a {θt}t∈R-invariant set of full measure. Outside this
invariant set we can re-define χ by the identity mapping on X. This we will use
later. The measurability of (2) remains true if we replace F by its trace σ-algebra,
see [6].
We will show that the mapping χ is related to the solution of a delay stochastic
or random differential equation. From now on, we will always suppose that the
mapping

X 3 ξ 7→ χ(t, ω, ξ) ∈ X
is continuous for any t, ω.

The next result will be used to obtain a conjugated random dynamical system to a
given random dynamical system. The proof can be found in [1].

Lemma 3. Let χ be a random dynamical system. Suppose that the mapping T :
Ω × X → X has the following properties: For fixed ω ∈ Ω the mapping T (ω, ·)
is a homeomorphism on X. For fixed x ∈ X the mappings T (·, x), T−1(·, x) are
measurable. Then the mapping

(t, ω, x) ∈ R+ × Ω×X → T (θtω, χ(t, ω, T−1(ω, x))) =: φ(t, ω, x) ∈ X (13)

satisfies (12). Hence φ is a random dynamical system.

The measurability of φ follows from the properties of T . Later on, we will transform
our stochastic delay evolution equation containing a noisy term into an evolution
equation without noise but with random coefficients, both of them generating a
random dynamical system on R+ × Ω × CH satisfying the property (13), which
means that φ and χ are conjugated random dynamical systems.
A random variable Y on (Ω,F ,P) with values in X is called tempered if

lim
t→±∞

log+ ||Y (θtω)||X
|t|

= 0, (14)

or equivalently if t→ ||Y (θtω)||X has a subexponential growth for t→ ±∞, in other
words, for ε > 0 and ω ∈ Ω there exists a t0(ε, ω) ≥ 0 such that for |t| ≥ t0(ε, ω) it
holds

||Y (θtω)||X ≤ eε|t|.

Similar to the definition of a generalized fixed point an (F ,B(X))-measurable ran-
dom variable χ∗ is called a random fixed point if

χ(t, ω, χ∗(ω)) = χ∗(θtω) (15)

for t ≥ 0, ω ∈ Ω. χ∗ is an exponentially attracting random fixed point if for any
random variable ξ we have

lim
t→∞

||χ(t, ω, ξ(ω))− χ∗(θtω)||X = 0 for ω ∈ Ω (16)

with exponential speed. If χ is defined by the solution mapping of a delay stochas-
tic/random differential equation then the process (t, ω) 7→ χ∗(θtω) is a stationary
solution of a delay stochastic/random differential equation.
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4.2. Construction of the cocycle for a delay stochastic evolution equation.
In this paragraph we construct the cocycle generated by a delay stochastic partial
differential equation and set the appropriate framework in which we can apply
Theorem 1 to prove the existence of a unique stationary solution exponentially
stable with probability one. For the reasons given above we will consider our delay
stochastic evolution equations in the Stratonovich form. We also suppose that the
diffusion part of this equation is given by

B(u) ◦ dW = B1u ◦ dw1 + · · ·+BNu ◦ dwN ,

where w1, · · · , wN are one-dimensional mutually independent standard Wiener pro-
cesses and W = (w1, · · · , wN ) so that the phase space U for the Wiener process is
given by RN , and Bi ∈ L(H) for i = 1, · · ·N. We will denote bi = ‖Bi‖L(H). This
means that we will consider the equation du = (Au+ f(ut))dt+

N∑
i=1

Biu ◦ dwi,

u(t) = ξ(t), t ∈ [−h, 0].
(17)

In the sequel we consider a deterministic initial condition ξ ∈ CH . The operators
Bi generate C0-groups which will be denoted by SBi

. In addition, we suppose the
operators A, B1, · · · , BN mutually commute, what implies that these groups and
the semigroup generated by A are also mutually commuting. A has been introduced
in Section 3.
Now we want to transform (17) into a partial differential equation whose right-
hand side contains ω as a parameter. For fixed ω this equation can be solved as a
deterministic nonautonomous differential equation. We will be able to construct a
cocycle mapping.
For what follows, we will fix a one-dimensional Wiener process with U = R and
E|w(1)|2 = 1. We consider the one-dimensional stochastic differential equation

dz = −λ z dt+ dw(t) (18)

for some λ > 0. This equation has a random fixed point z∗ in the sense of ran-
dom dynamical systems generating a stationary solution known as the stationary
Ornstein-Uhlenbeck process.
The proof of the following result can be found, for instance, in Caraballo et al. [6]:

Lemma 4. Let λ be a positive number and consider the probability space as in
Section 3 with U = R. There exists a {θt}t∈R-invariant set Ω′ ∈ F of full measure
such that, for w(t, ω) = ω(t) in the canonical interpretation

lim
t→±∞

|ω(t)|
t

= 0,

and, for such ω, the random variable given by

z∗(ω) := −λ
∫ 0

−∞
eλτω(τ)dτ

is well defined. Moreover, for ω ∈ Ω′, the mapping

(t, ω) → z∗(θtω) = −λ
∫ 0

−∞
eλτθtω(τ)dτ

= −λ
∫ 0

−∞
eλτω(t+ τ)dτ + ω(t)
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is a stationary solution of (18) with continuous trajectories. In addition, for ω ∈ Ω′

lim
t→±∞

|z∗(θtω)|
|t|

= 0, lim
t→±∞

1
t

∫ t

0

z∗(θτω)dτ = 0,

lim
t→±∞

1
t

∫ t

0

|z∗(θτω)|dτ = E|z∗| <∞.

(19)

Let λ1, · · · , λN be a set of positive numbers. For any pair λj , wj we have a sta-
tionary Ornstein-Uhlenbeck process generated by a random variable z∗j (ω) on Ω′j ,
with properties formulated in Lemma 4, defined on the metric dynamical system
(Ω′j ,Fj ,Pj , θ). We set

(Ω̃,F ,P, θ), (20)
where

Ω̃ = Ω′1 × · · · × Ω′N , F =
N⊗

i=1

Fi, P = P1 × P2 × · · · × PN ,

and θ is the flow of Wiener shifts.
To find random fixed points for (17) we will transform this equation into an evolution
equation with random coefficients but without white noise by means of the operators
T and T̃ defined in the following way. For every ω ∈ Ω̃ let

T (ω) := SB1(z
∗
1(ω)) ◦ · · · ◦ SBN

(z∗N (ω))

be a family of random linear homeomorphisms on H. The inverse operator is well
defined by

T−1(ω) := SBN
(−z∗N (ω)) ◦ · · · ◦ SB1(−z∗1(ω)).

These operators can be easily extended to linear homeomorphisms T̃ (ω) and T̃−1(ω)
on CH . Indeed, for any ξ ∈ CH , let us define(

T̃ (ω)ξ
)

(s) := T (ω)ξ(s), for s ∈ [−h, 0].

Because of the estimate

‖T−1(ω)‖ ≤ e‖B1‖|z∗1 (ω)| · . . . · e‖BN‖|z∗N (ω)|

and (19), it follows that ‖T−1(θtω)‖ has a subexponential growth as t → ±∞ for
any ω ∈ Ω̃ (we will also denote || · || for the norm || · ||L(H) when no confusion is
possible). Hence ‖T−1‖ is tempered. Analogously, ‖T‖ is also tempered. On the
other hand, since z∗j , j = 1, · · · , N, are independent Gaussian random variables, by
the ergodic theorem we still have a {θt}t∈R-invariant set Ω̄ ∈ F of full measure such
that

lim
t→±∞

1
t

∫ t

0

‖T (θτω)‖2dτ = E‖T‖2 ≤
N∏

j=1

E(‖SBj
(z∗j )‖2) <∞, (21)

lim
t→±∞

1
t

∫ t

0

‖T−1(θτω)‖2dτ = E‖T−1‖2 ≤
N∏

j=1

E(‖SBj(−z∗j )2‖) <∞.

Remark 1. We now consider θ defined in (2) on Ω̃∩ Ω̄ instead of Ω. This mapping
has the same properties as the original one if we choose for F the trace σ-algebra
with respect to Ω̃ ∩ Ω̄ denoted also by F for a metric dynamical system defined on
Ω̃ ∩ Ω̄ for which we use the old notation (Ω,F ,P, θ).
Sometimes, in other publications (14), (15), (16) only have to be satisfied for ω
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contained in a {θt}t∈R–invariant set of full measure. However, by our definition of
the metric dynamical system we can state that these properties will hold for every
ω ∈ Ω.

We now formulate an evolution equation with random coefficients but without white
noise 

dv

dt
=
(
A+

N∑
i=1

λiz
∗
i (θtω)Bi

)
v + T−1(θtω)f(T̃ (θtω)vt),

v(t) = ξ(t), t ∈ [−h, 0],
(22)

where ξ belongs to CH , which will be our phase space.

Lemma 5. Suppose that A, B1, · · · , BN , λ1, . . . , λN satisfy the preceding assump-
tions. Then
i) the random evolution equation (22) possesses a unique solution, and this solution
generates a random dynamical system χ : R+ × Ω × CH → CH defined for t ≥ 0,
ω ∈ Ω and ξ ∈ CH by

χ(t, ω, ξ) = vt(·, ω, ξ).
ii) the process φ : R+ × Ω× CH → CH defined for t ≥ 0, ω ∈ Ω and ξ ∈ CH by

φ(t, ω, ξ) = T̃ (θtω)χ(t, ω, T̃−1(ω)ξ)

is another random dynamical system such that

φ(t, ω, ξ) = ut(·, ω, ξ),
being u a solution version to problem (17), unique modulo P.

Proof. i) We mention only that by the continuity and linearity of T and T̃ the
mapping ξ ∈ CH → T−1(θtω)f(T̃ (θtω)ξ) ∈ H is Lipschitz continuous, where the
Lipschitz constant is uniformly bounded on any interval [0, T ]. Hence we can prove
the existence of a mild solution of (22) for every ω. The proof of measurability is
straightforward.
ii) This part follows in a standard way by applying the chain rule to the function
yt defined as

yt(s) :=
(
T̃ (θtω)vt(·, ω, T̃−1(ω)ξ)

)
(s) = T (θt+sω)v(t+ s, ω, T̃−1(ω)ξ), s ∈ [−h, 0],

and taking into account the commutativity of the operators involved (see [6] for a
similar situation in the non-delay case).
On account of Lemma 3, φ and χ are conjugated random dynamical systems.

4.3. Existence of exponentially stationary solutions. In the following let us
apply the general method from Section 2 to find an exponentially attracting random
fixed point ξ∗.

Theorem 6. Suppose A, B1, · · · , BN mutually commute and W = (w1, · · · , wN )
satisfies the assumptions at the beginning of this section. In addition, there are
positive constants λ1, · · · , λN such that

a+
N∑

i=1

biλiE|z∗i |+
Kf

2

(
N∏

i=1

E||SBi
(z∗i )||2 +

N∏
i=1

E||SBi
(−z∗i )||2

)
< 0 (23)

holds.
Then the random dynamical systems χ and φ possess, respectively, a tempered ran-
dom fixed point χ∗ and φ∗, which are unique under all tempered random variables
in CH and which attract exponentially fast every random variable in CH .
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Proof. First of all, we point out that to prove the theorem it is sufficient to show that
(22) has a unique exponentially attracting generalized fixed point. The conjugation
technique then gives the existence of a fixed point for (17).

First step: Let us consider, for δ > 0 small enough, the mapping

γ(ω) = −2a− 2
N∑

i=1

biλi|z∗i (ω)| − (1 + δ)
1
2Kf

(
||T (ω)||2 + ||T−1(ω)||2

)
,

which satisfies, by (23) and (21), Eγ =: γ̄ > 0. According to Remark 1 where we
introduced the metric dynamical system (Ω,F ,P, θ) we have that

lim
t→±∞

1
t

∫ t

0

γ(θτω)dτ = γ̄, for all ω ∈ Ω.

We are interested in calculating a priori estimate for the solution of (22). Denote
v(t) = vt(0, ω, ξ), t ∈ R+. On account of the properties of the coefficients of (22)
and the chain rule the following estimate holds:

e
∫ t
0 γ(θlω)dl|v(t)|2 ≤ |v(0)|2

−
∫ t

0

(1 + δ)
1
2Kf

(
||T (θsω)||2 + ||T−1(θsω)||2

)
e
∫ s
0 γ(θlω)dl|v(s)|2ds

(24)

+ 2
∫ t

0

e
∫ s
0 γ(θlω)dl(T−1(θsω)f(T̃ (θsω)vs), v(s))ds.

The terms in the above integrals are locally integrable in s, l such that these integrals
exist. Now we evaluate the last term in (24) by means of condition (f.2).

2
∫ t

0

e
∫ s
0 γ(θlω)dl(T−1(θsω)f(T̃ (θsω)vs), v(s))ds (25)

≤ ε

∫ t

0

||T−1(θsω)||2e
∫ s
0 γ(θlω)dl|v(s)|2ds

+ ε−1(1 + δ)K2
f

∫ t

−h

||T (θsω)||2e
∫ s
0 γ(θlω)dl|v(s)|2ds

+ ε−1(1 + δ−1)|f(0)|2
∫ t

0

e
∫ s
0 γ(θlω)dlds,

where ε > 0. Choosing ε = (1 + δ)
1
2Kf in the last inequality, if we suppose t ≥ σ

we obtain from (24), (25)

e
∫ t+σ
0 γ(θlω)dl|v(t+ σ)|2 ≤ |v(0)|2

+ (1 + δ)
1
2Kf ||ξ||2CH

∫ 0

−h

||T (θsω)||2e
∫ s
0 γ(θlω)dlds

+ (1 + δ−1)(1 + δ)−
1
2K−1

f |f(0)|2
∫ t+σ

0

e
∫ s
0 γ(θlω)dlds.
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Now, if we take the supremum in the last inequality, we have

sup
σ∈[−h,0]

|v(t+ σ)|2 (26)

≤e−
∫ t
0 γ(θlω)dl

[
‖ξ‖2

CH

(
e−2ah + cδ

∫ 0

−h

||T (θsω)||2e
∫ s
0 γ(θlω)dlds

)
+ c̃δ

∫ t

0

e
∫ s
0 γ(θlω)dlds

]
,

for all t ≥ h, where we have denoted cδ = e−2ah(1 + δ)
1
2Kf and c̃δ = e−2ah(1 +

δ−1)(1 + δ)−
1
2K−1

f |f(0)|2. A similar estimate is true for t ∈ [0, h).
Second step: We check the contraction condition which we need to get (A1) from
Theorem 1. Consider ξ1, ξ2 ∈ CH . Let ω ∈ Ω and denote vi(t) = vt(0, ω, ξi), for
i = 1, 2, and v(t) = v1(t)− v2(t), t ∈ R+.
Taking into account that vi(t) is a solution to the equation

dvi(t)
dt

=

(
A+

N∑
i=1

λiz
∗
i (θtω)Bi

)
vi(t) + T−1(θtω)f(T̃ (θtω)vi

t),

we have that

d|v(t)|2

dt
=2

〈(
A+

N∑
i=1

λiz
∗
i (θtω)Bi

)
v(t), v(t)

〉
+ 2(T−1(θtω)(f(T̃ (θtω)v1

t )− f(T̃ (θtω)v2
t )), v(t))

≤

(
2a+ 2

N∑
i=1

λibi|z∗i (θtω)|+Kf ||T−1(θtω)||2
)
|v(t)|2

+
1
Kf

|f(T̃ (θtω)v1
t )− f(T̃ (θtω)v2

t )|2.

Therefore, using condition (f.2),

e−2at|v(t)|2

≤|v(0)|2 +Kf

∫ 0

−h

||T (θsω)||2e−2as|v(s)|2ds

+
∫ t

0

(
2

N∑
i=1

λibi|z∗i (θsω)|+Kf (||T−1(θsω)||2 + ||T (θsω)||2)

)
e−2as|v(s)|2ds,

and by Gronwall’s lemma,

|v(t)|2 ≤
(

1 +Kf

∫ 0

−h

||T (θsω)||2ds
)
||ξ1 − ξ2||2CH

× e2at exp

(∫ t

0

2
N∑

i=1

λibi|z∗i (θsω)|+Kf

(
||T−1(θsω)||2 + ||T (θsω)||2

)
ds.

)
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Now, setting t ≥ h and σ ∈ [−h, 0], taking supremum,

sup
σ∈[−h,0]

|v(t+ σ)|2

≤
(

1 +Kf

∫ 0

−h

||T (θsω)||2ds
)
||ξ1 − ξ2||2CH

× e−2ah exp

(∫ t

0

2a+ 2
N∑

i=1

λibi|z∗i (θsω)|+Kf

(
||T−1(θsω)||2 + ||T (θsω)||2

)
ds

)
,

since sup
σ∈[−h,0]

e2a(t+σ) = e−2ahe2at. Therefore, if we set

K(t, ω) := e−2ah

(
1 +Kf

∫ 0

−h

||T (θsω)||2ds
)

× exp

(∫ t

0

2a+ 2
N∑

i=1

λibi|z∗i (θsω)|+Kf

(
||T−1(θsω)||2 + ||T (θsω)||2

)
ds

)
,

(27)

then, for t ≥ h it holds

||vt(·, ω, ξ1)− vt(·, ω, ξ2)||2CH
≤ K(t, ω)||ξ1 − ξ2||2CH

.

Third step:
Now we apply Theorem 1. For each fixed ω ∈ Ω, we consider the family of Banach
spaces given by X(r) = CH for r ∈ R. In particular, we fix some ω̄ ∈ Ω and define

ψ(t, r, ξ(r)) := χ(t, θrω̄, ξ(θrω̄)).

Then (A1) from Theorem 1 follows from the second step, since by the definition of
Ω (see (19) and (21)) we can set

κ = −a−
N∑

i=1

biλiE|z∗i | −
Kf

2

(
N∏

i=1

E||SBi
(z∗i )||2 +

N∏
i=1

E||SBi
(−z∗i )||2

)

and K(t, r) := K(t, θrω̄) from (27). To see that K(t, r − t) := K(t, θr−tω̄) has
the growth condition from (A1) we need that

∫ 0

−h
||T (θsω)||2ds is tempered what

follows from the methods in the proof of Lemma 6.

For the fixed ω̄ we choose P to be the families ξ = (ξ(r))r∈R with values in CH

such that ‖ξ(r)‖CH
has a subexponential growth for r → ±∞. These families are

κ-growing. In particular, let Ξ be the set of random variables with values in CH

such that ‖ξ‖CH
is tempered for ξ ∈ Ξ. Then the orbits ξ = (ξ(θrω̄))r∈R are ele-

ments from P.

Define the random variable

R(ω) := 2c̃δ
∫ 0

−∞
e−

∫ 0
s

γ(θlω)dlds. (28)
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From (26) we obtain

‖ψ(t, r − t, ξ(r − t))‖2
CH

≤e−
∫ 0
−t

γ(θr+lω̄)dl‖ξ(θr−tω̄)‖2
CH
×

×
(
e−2ah + cδ

∫ 0

−∞
‖T (θs+r−tω̄)‖2e

∫ s
0 γ(θl+r−tω̄)dlds

)
+

1
2
R(θrω̄) ≤ R(θrω̄)

for |t| sufficiently large and r ≥ 0 and ξ ∈ Ξ because

t→ e−
∫ 0
−t

γ(θl+rω̄)dl

tends to zero exponentially fast for t→∞. R and the infinite integral are tempered
what follows from Lemma 6 below. The Cauchy sequence has a limit by the com-
pleteness of the phase space. Its norm is bounded by

√
R(θrω̄). Hence the limit

family is in P which gives (A2).

To see (A3) we note that from (26) by some straightforward integral transforms

sup
q∈[0,1]

‖ψ(q, r − q, ξ(r − q))‖2
CH

≤ e−2ah sup
q∈[0,1]

e−
∫ q
0 γ(θr+l−qω̄)dl sup

q∈[0,1]

‖ξ(θr−qω̄)‖2
CH

(29)

+ cδ sup
q∈[0,1]

e−
∫ q
0 γ(θr+l−qω̄)dl

∫ 0

−∞
‖T (θr+s−qω̄)‖2e

∫ s
0 γ(θr+l−qω̄)dlds+R(θrω̄)

≤e−2ahe
∫ 0
−1 2

∑N
i=1 biλi|z∗i (θl+rω̄)|+(1+δ)

1
2 Kf(||T (θr+lω̄)||2+||T−1(θr+lω̄)||2)dl

× sup
q∈[0,1]

‖ξ(θr−qω̄)‖2
CH

+ cδ

∫ 0

−∞
‖T (θr+sω̄)‖2e

∫ s
0 γ(θr+lω̄)dlds+R(θrω̄).

The sum/product of tempered random variables is tempered. In addition, it is easy
to see that supp∈[−1,0] ‖ξ(θpω)‖CH

is tempered if ‖ξ(ω)‖CH
is.

Moreover, the first term on the right hand side of (29) is tempered by the Birkhoff
ergodic theorem:

lim
t→∞

1
t

∫ 0

−2

2
N∑

i=1

biλi|z∗i (θl−[t]ω)|+(1+δ)
1
2Kf

(
||T (θl−[t]ω)||2 + ||T−1(θl−[t]ω)||2

)
dl = 0

for ω ∈ Ω, being [t] the integer part of t.
The integral and the last term on the right hand side of (29) is defined by a tem-
pered random variable what follows by Lemma 6 below.
Hence we can apply Theorem 1 which gives us a generalized fixed point ψ∗.

Fourth step: We set

χ∗(ω̄) := ψ∗(0) = ψ∗(0, ω̄) ∈ BCH
(0, R(ω̄))

for every ω̄ ∈ Ω. Note that by the cocycle property, this definition is correct. Hence
χ∗ satisfies the fixed point relation

χ(t, ω, χ∗(ω)) = χ∗(θtω) for t ≥ 0 and ω ∈ Ω.
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According to the contraction condition given in the Second step we obtain (16) for
every random variable ξ ∈ CH . In particular, χ∗ can be generated as a pointwise
limit of random variables such that χ∗ is a random variable.

If we define φ∗(ω) := T̃ (ω)χ∗(ω), as φ and χ are conjugated random dynamical
systems, it follows

φ(t, ω, φ∗(ω)) = T̃ (θtω)χ(t, ω, T̃−1(ω)φ∗(ω))

= T̃ (θtω)χ(t, ω, χ∗(ω))

= T̃ (θtω)χ∗(θtω) = φ∗(θtω).

Since ‖T̃‖L(CH) and ‖T̃−1‖L(CH) are tempered we have for φ∗ the same uniqueness
and convergence conclusion as for χ∗.

Now we prove the temperedness statements formulated in the proof of the last
theorem.

Lemma 6. Under the assumptions of Theorem 6 the random variable R defined in
(28) and ∫ 0

−∞
‖T (θsω)‖2e

∫ s
0 γ(θlω)dlds

are tempered.

Proof. We note that by the definition of Ω in Remark 1 we have∣∣∣∣ ∫ t

0

(γ(θτ+rω)− γ̄)dτ
∣∣∣∣ ≤ ε|t|, log+(‖T (θtω)‖2 + 1) ≤ ε|t|

for every ω ∈ Ω, r ∈ R, ε > 0 if |t| ≥ t0(ω, r, ε). It is clear that it is sufficient to
prove that ∫ 0

−∞
(‖T (θτω)‖2 + 1)e−

∫ 0
−τ

γ(θlω)dlds

is tempered. For every ω ∈ Ω and c < 0, consider ε ∈ (0,min(− c
6 ,

γ̄
4 )). Then,

lim
s→−∞

e−cs

∫ 0

−∞
(‖T (θτ+sω)‖2 + 1)e−

∫ 0
τ

γ(θl+sω)dldτ

= lim
s→−∞

e−cs

∫ 0

−∞
(‖T (θτ+sω)‖2 + 1)e−

∫ s
τ+s

γ(θlω)dldτ

= lim
s→−∞

e−cs

∫ 0

−∞
e
∫ 0

τ+s
(−γ(θlω)+γ̄)dl+γ̄(τ+s)−

∫ 0
s

(−γ(θlω)+γ̄)dl−γ̄s+log+(‖T (θτ+sω)‖2+1)dτ

≤ lim
s→−∞

e−
c
2 s

∫ 0

−∞
e−

c
2 s−ε(τ+s)−εs+γ̄τ−ε(τ+s)dτ

≤ lim
s→−∞

e−
c
2 s

∫ 0

−∞
e

γ̄
2 τdτ = 0.

We consider now the case s→ +∞. First of all, note that

ec|s|
∫ 0

−∞
(‖T (θτ+sω)‖2 + 1)e−

∫ 0
τ

γ(θl+sω)dldτ
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can be written as

ecs

(
e−

∫ s
0 γ(θlω)dl

(∫ s

0

(‖T (θτω)‖2+1)e
∫ τ
0 γ(θlω)dldτ+

∫ 0

−∞
(‖T (θτω)‖2+1)e

∫ τ
0 γ(θlω)dldτ

))
.

We obtain that

lim
s→+∞

ecse−
∫ s
0 γ(θlω)dl

∫ 0

−∞
(‖T (θτω)‖2 + 1)e

∫ τ
0 γ(θlω)dldτ = 0.

On the other hand, for every ω ∈ Ω and c < 0 there exists a K(ω, c) > 0 such that
for q > 0

(γ̄ +
c

6
)q −K(ω, c) ≤

∫ q

0

γ(θτω)dτ ≤ (γ̄ − c

6
)q +K(ω, c),

(‖T (θtω)‖2 + 1) ≤ e−
c
6 t, t ≥ t0(ω, c)

and then the term

ecse−
∫ s
0 γ(θlω)dl

(∫ t0

0

(‖T (θτω)‖2 + 1)e
∫ τ
0 γ(θlω)dldτ + e−

c
6 s

∫ s

t0

e
∫ τ
0 γ(θlω)dldτ

)
can be estimated by

ecseK(ω,c)e(−γ̄− c
6 )s

(∫ t0

0

(‖T (θτω)‖2+1)e
∫ τ
0 γ(θlω)dldτ+

e
−c
6 seK(ω,c)

γ̄ − c
6

(e(γ̄−
c
6 )s−e(γ̄− c

6 )t0)
)
,

if s is sufficiently large, which gives the asserted convergence for s→ +∞. We also
note that t→ ‖T (θtω)‖2 is locally integrable.
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