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Using the relatively new concept of a pullback attractor, we present some
results on the existence of attractors for differential equations with variable
delay. We give a variety of examples to which our result applies.

1. INTRODUCTION

The theory of global attractors for autonomous systems as developed
by Hale in [7] owes much to examples arising in the study of retarded
functional differential equations [8] (for slightly different approaches see
Babin and Vishik [1], Ladyzhenskaya [12], or Temam [15]). Although the
classical theory can be extended in a relatively straightforward manner to
deal with time-periodic equations, general non-autonomous equations such
as

ẋ(t) = F (t, x(t), x(t− ρ(t))) (1)

fall outside its scope.
Recently, a theory of ‘pullback attractors’ has been developed (see section

2) which allows many of the ideas for the autonomous theory to be extended
to deal with such examples. However, until now this has only been applied
to ordinary and partial differential equations.

It is our intention here to show how pullback attractors can be used to
investigate the behaviour of non-autonomous delay equations. In particu-
lar, we are able to compare the dynamics of systems of ordinary differential
equations with that of the same system with a small delay, and show that
these are ‘close’ in some global sense.
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2. DELAY DIFFERENTIAL EQUATIONS AS DYNAMICAL
SYSTEMS

We take as our canonical example of a non-autonomous delay equation
a system with one, time-varying delay, ρ(t) where ρ : R→ [0, h] is a con-
tinuous function and h > 0,

d
dt
x(t) = F (t, x(t), x(t− ρ(t))) xs = ψ, ψ ∈ C. (2)

The initial condition xs is specified in C, the space C0([−h, 0]; Rn) of contin-
uous functions from [−h, 0] into Rn, and, for a function x ∈ C0([−h, T ]; Rn),
the notation xs denotes the function in C given by

xs(θ) = x(s+ θ) for all θ ∈ [−h, 0]

(and so makes sense for any 0 ≤ s ≤ T ).
This equation can be written in a more general framework, which allows

one to consider a larger set of problems in a unified way. Rather than make
the delay explicit, we write

f(t, xt) = F (t, x(t), x(t− ρ(t))),

and so can rewrite (2) as

ẋ(t) = f(t, xt) xs = ψ, ψ ∈ C. (3)

In what follows we concentrate on this form of the equation, assuming that
f : R×C → Rn is continuous and ‘a bounded map’ (i.e. maps bounded sets
into bounded sets).

We note here that this formulation immediately includes examples other
than the single, time-varying delay of (2). For example, the integro-
differential equation (see Kuang [11] for more details)

ẋ(t) =
∫ 0

−h
g(t, s, x(t+ s)) ds

also fits into this framework, although we do not develop this theory here.
It is known (Hale [7]) that for any (s, ψ) ∈ R×C there exists a unique so-

lution x(t; s, ψ) for (3) defined on [s−h, αs,ψ). We assume that αs,ψ = +∞,
for all s ∈ R, since we are interested in long-time behaviour of solutions.
We define a solution operator φ(t, s) which gives the solution (in C) at time
t when xs = ψ, via

φ(t, s)ψ = xt(·; s, ψ). (4)
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3. PULLBACK ATTRACTORS

We now discuss the theory of pullback attractors, as developed in Kloe-
den and Stonier [9], Kloeden and Schmalfuss [10], and Crauel et al. [5]). As
is clear above, in the case of non-autonomous differential equations the ini-
tial time is just as important as the final time, and the classical semigroup
property of autonomous dynamical systems is no longer available.

Instead of a family of one time-dependent maps S(t) we need to use a
two-parameter process φ(t, s), as introduced above in (4) (cf. Sell [14]);
φ(t, s)ψ denotes the solution at time t which was equal to ψ at time s.

The semigroup property is replaced by the process composition property

φ(t, s)φ(s, r) = φ(t, r) for all t ≥ s ≥ r,

and, obviously, the initial condition implies φ(s, s) =Id. As with the semi-
group composition S(t)S(s) = S(t+ s), this just expresses the uniqueness
of solutions.

[It is possible to present the theory within the more general framework
of cocycle dynamical systems. In this case the second component of φ is
viewed as an element of some parameter space J , so that the solution can
be written as φ(t, p)ψ, and a shift map θt : J → J is defined so that the
process composition becomes the cocycle property,

φ(t+ τ, p) = φ(t, θτp)φ(τ, p).

We do not pursue this approach here, but note that it has proved extremely
fruitful, particularly in the case of random dynamical systems. For various
examples using this general setting, see Kloeden and Schmalfuss [10], or Sell
[14]. For this reason, pullback attractors are often referred to as ‘cocycle
attractors’].

As in the standard theory of attractors, we seek an invariant attracting
set. However, since the equation is non-autonomous this set also depends
on time.

Definition 3.1. Let φ be a process on a complete metric space X. A
family of compact sets {A(t)}t∈R is said to be a (global) pullback attractor
for φ if, for all s ∈ R, it satisfies

i) φ(t, s)A(s) = A(t) for all t ≥ s, and
ii) lims→∞ dist(φ(t, t− s)D,

A(t))=0, forallboundedsubsetsDofX.

In the definition, dist(A,B) is the Hausdorff semidistance between A and
B, defined as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊆ X.
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Property i) is a generalization of the invariance property for autonomous
dynamical systems. The pullback attracting property ii) considers the state
of the system at time t when the initial time t−s goes to−∞ (cf. Chepyzhov
and Vishik [3])

The notion of an attractor is closely related to that of an absorbing set.

Definition 3.2. {B(t)}t∈R is said to be absorbing with respect to the
process φ if, for all t ∈ R and all D ⊂ X bounded, there exists TD(t) > 0
such that for all τ ≥ TD(t)

φ(t, t− τ)D ⊂ B(t).

Indeed, just as in the autonomous case, the existence of compact absorb-
ing sets is the crucial property in order to obtain pullback attractors. For
the following result see Crauel and Flandoli [4] or Schmalfuss [13].

Theorem 3.1. Let φ(t, s) be a two-parameter process, and suppose φ(t, s) :
X → X is continuous for all t ≥ s. If there exists a family of compact ab-
sorbing sets {B(t)}t∈R, then there exists a pullback attractor {A(t)}t∈R,
and

A(t)⊂ B(t) for all t ∈ R. Furthermore,

A(t) =⋃⋃⋃
D⊂X

boundedΛD(t),where

ΛD(t) =
⋂
n∈

⋃
s≥n

φ(s, t− s)D.

4. ATTRACTORS FOR NON-AUTONOMOUS DELAY
DIFFERENTIAL EQUATIONS

We showed above how to define the process associated with the solution
of the delay differential equation

ẋ(t) = f(t, xt) xs = ψ (5)

via

φ(t, s)ψ = xt(·; s, ψ).
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We now prove a simple general result on the existence of pullback at-
tractors for this problem. Proof that the condition of the theorem holds is
significantly more onerous than the proof of the theorem itself.

Theorem 4.1. Suppose that φ(t, s) maps bounded sets into bounded sets,
and that there exists a family {B(t0)}t∈R of bounded absorbing sets for φ.
Then there exists a pullback attractor for problem (5).

Proof. Using theorem 3.1 it suffices to prove that there exists a family
of compact absorbing sets for φ. For each t0 ∈ R, define

K(t0) = φ(t0, t0 − h)B(t0 − h).

K(t0) is clearly absorbing, since for any bounded D ⊂ C we have, for
t ≥ TD(t0) + h, (here TD(t0) denotes the absorption time corresponding to
the family {B(t0)}t∈R)

φ(t0, t0 − t)D = φ(t0, t0 − h)φ(t0 − h, (t0 − h)− (t− h))D
⊂ φ(t0, t0 − h)B(t0 − h) = K(t0).

Also, K(t0) is bounded, since φ maps bounded sets into bounded sets.
Finally, K(t0) is a compact subset of C. This follows using the Arzelà-
Ascoli theorem, since we have just shown that K(t0) is bounded, and the
equicontinuity follows since, for ψ ∈ B(t0 − h) and θ ∈ [−h, 0],∣∣∣∣ d
dθ
φ(t0, t0 − h)ψ(θ)

∣∣∣∣ =
∣∣∣∣ d
dθ
x(t0 + θ; t0 − h, ψ)

∣∣∣∣ = |f(t0 + θ, xt0+θ(·; t0 − h, ψ)|

which is bounded, using the assumption on f .

4.1. The case of strong dissipativity
In this section we suppose a dissipative property for the nonlinear term

of the differential equation which will lead us to the existence of a uniform
(over t ∈ R) bounded absorbing set for the process φ and hence a pullback
attractor.

We will suppose in this section that for some α > 0, β ≥ 0

〈f(t, ψ), ψ(0)〉 ≤ −α |ψ(0)|2 + β for all ψ ∈ Φ(h)C (6)

where 〈·, ·〉 denotes the scalar product in Rn and

Φ(h)C = {χ ∈ C : χ = φ(s+ h, s)ψ, some s ∈ R, ψ ∈ C}.

(Note that Φ(h)C is essentially the set of all those functions in C which are
realisable as solutions of the equation after a time h).
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Although this seems strange at a first view, note that (6) is a consequence
of a more natural set of assumptions in various particular examples. Indeed,
if we consider (2) with F : Rn → Rn uniformly bounded and uniformly
continuous, i.e., for some k ≥ 0 and some function ω : R+ → R+,

|F (x)| ≤ k and |F (x)− F (y)| ≤ ω(|x− y|),

and dissipative in a similar sense to (6), so that, for some α0 > 0 and
β0 ≥ 0

〈F (x), x〉 ≤ −α0|x|2 + β0,

we recover (6). Observe that, in this case, we are assuming that f(t, xt) =
F (x(t−ρ(t)) or, more generally, f(t, ψ) = F (ψ(−ρ(t)), for all ψ ∈ C, t ∈ R.

Indeed, we have

〈F (x(t− ρ(t)), x(t)〉 ≤ 〈F (x(t)), x(t)〉 + 〈F (x(t− ρ(t))− F (x(t)), x(t)〉
≤ −α0|x(t)|2 + β0 + |x(t)| |F (x(t− ρ(t))− F (x(t))|
≤ −α0|x(t)|2 + β0 + |x(t)|ω(|x(t− ρ(t))− x(t)|)
≤ −α0|x(t)|2 + β0 + |x(t)|ω(kh)
≤ −α|x(t)|2 + β

for all t ≥ h, since then x(t) is a solution of (2).
We now show that (6) ensures the existence of a pullback attractor.

Theorem 4.2. Suppose that (6) holds. Then there exists a family of
bounded absorbing sets {B(t0)}t0∈R for (3), and thus we can conclude the
existence of a pullback attractor for this problem.

Proof. We will prove more than the existence of a family of bounded
absorbing sets: in fact, there exists a uniform (in t0) bounded absorbing
set for (3). Indeed, given D ⊂ C bounded, there exists d ≥ 0 such that for
all ψ ∈ D, ‖ψ‖C ≤ d, i.e.

‖ψ‖C = sup
θ∈[−h,0]

|ψ(θ)| ≤ d.

Take now ψ ∈ D and consider

|φ(t0, t0 − t)ψ| = sup
θ∈[−h,0]

|x(t0 + θ; t0 − t, ψ)|

= sup
τ∈[t0−h,t0]

|x(τ ; t0 − t, ψ)| .

Let us write x(τ) = x(τ ; t0 − t, ψ), τ ∈ [t0 − t, t0]. Then, multiplying (5)
by x(τ) we get

d
dτ
|x(τ)|2 = 2 〈x(τ), f(τ, xτ )〉 ≤ 2β − 2α|x(τ)|2,
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for all τ ≥ t0 − t.
Then, by Gronwall’s lemma

|x(τ)|2 ≤ |x(t0 − t)|2e−2α(τ−t0+t) +
β

α
(1− e−2α(τ−t0+t))

≤ |ψ|2e−2α(τ−t0+t) +
β

α

≤ |ψ|2e−2α(θ+t) +
β

α

≤ de2αhe−2αt +
β

α
.

Thus we obtain

sup
θ∈[−h,0]

|x(t0 + θ)|2 ≤ de2αhe−2αt +
β

α
≤ 1 +

β

α

if we take t ≥ 1
2α log(de2αh) = TD. Note that this time TD does not depend

on t0.

4.2. A more general case
In the previous section we considered differential equations which only

depended on the delay term, and had no explicit dependence of the current
state (in other words, f(t, xt) = F (x(t), x(t − ρ(t))) = F (x(t − ρ(t)))).
However, a dependence on both the current and retarded state is more usual
in applications, and often the equation can be interpreted as a perturbation
of an ordinary differential equation.

In this section we will assume that F can be written as the following
sum:

F (x(t), x(t− ρ(t))) = F0(x(t)) + F1(x(t− ρ(t))).

In this situation, we shall show that if a dissipative hypothesis for the term
F0 holds, then the assumptions on the other term can be relaxed.

Let us assume that F0 : Rn → Rn is a continuous functions satisfying
the dissipative assumption as above:

〈F0(x), x〉 ≤ −α0|x|2 + β0, for all x ∈ Rn. (7)

Firstly, if we suppose that F1 : Rn → Rn is a continuous and bounded
function, i.e. there exists k ≥ 0 such that

|F1(x)| ≤ k, for all x ∈ Rn,
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then it is easy to prove that (6) holds. Indeed, for every ψ ∈ Φ(h)C and a
fixed ε < α0,

〈f(t, ψ), ψ(0)〉 = 〈F0(ψ(0)), ψ(0)〉+ 〈F1(ψ(−ρ(t))), ψ(0)〉

≤ −α0|ψ(0)|2 + β0 + k|ψ(0)|

≤ −(α0 − ε)|ψ(0)|2 + β0 + k2

4ε .

Secondly, it is still possible to weaken this boundedness on F1, although
now it is necessary to assume more regularity for the delay function. Instead
of proving that (6) holds, we prove the existence of a family of bounded
absorbing sets directly.

Theorem 4.3. Assume F0 satisfies (7). Assume that F1 is sublinear,
i.e. there exists k > 0 such that

|F1(x)|2 ≤ k2(1 + |x|2), for all x ∈ Rn,

and suppose that the delay function ρ is continuously differentiable with
ρ′(t) ≤ ρ∗ < 1. Then, if k2 < α2

0(1 − ρ∗), there exists a family of bounded
absorbing sets, {B(t0)}t0∈R for (3), and consequently there exists a pullback
attractor for this problem.

Proof. Choose a positive λ (small enough) and another positive ε which
will be fixed later. As in the last theorem, let us write x(τ) = x(τ ; t0−t, ψ),
τ ∈ [t0 − t, t0], for ψ in a given bounded set D ⊂ C, i.e. ‖ψ‖C ≤ d, for all
ψ ∈ D. Then, it follows

d
dτ e

λτ |x(τ)|2 = λeλτ |x(τ)|2 + 2eλτ 〈x(τ), f(τ, xτ )〉

= λeλτ |x(τ)|2 + 2eλτ 〈x(τ), F0(x(τ))〉

+2eλτ 〈x(τ), F1(x(τ − ρ(τ)))〉

≤ (λ− 2α0)eλτ |x(τ)|2 + 2β0e
λτ

+εeλτ |x(τ)|2 + eλτε−1 |F1(x(τ − ρ(τ)))| 2

≤ (λ− 2α0 + ε)eλτ |x(τ)|2 + (2β0 + k2ε−1)eλτ

+k2ε−1eλτ |x(τ − ρ(τ))|2 .

By integration on the interval [t0 − t, τ ],

eλτ |x(τ)|2 − eλ(t0−t)|x(t0 − t)|2 ≤ 2β0+k
2ε−1

λ

[
eλτ − eλ(t0−t)

]
+(λ− 2α0 + ε)

∫ τ
t0−t e

λs|x(s)|2ds
+k2

ε

∫ τ
t0−t e

λs|x(s− ρ(s))|2ds.
(8)
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Evaluating the term containing the delay function by making the change
of variable s− ρ(s) = u in the integral, we obtain∫ τ
t0−t e

λs|x(s− ρ(s))|2ds ≤ 1
1−ρ∗

∫ τ
t0−t−h e

λu+λh|x(u)|2du

≤ eλh

1−ρ∗

[∫ t0−t
t0−t−h e

λu|x(u)|2du+
∫ τ
t0−t e

λu|x(u)|2du
]

≤ eλh

1−ρ∗

[∫ t0−t
t0−t−h e

λu|ψ(u)|2du+
∫ τ
t0−t e

λu|x(u)|2du
]

≤ eλh

1−ρ∗

∫ τ
t0−t e

λu|x(u)|2du
+ d2eλh

λ(1−ρ∗)
[
eλ(t0−t) − eλ(t0−t−h)

]
,

and, consequently,

eλτ |x(τ)|2 ≤ eλ(t0−t)d2 +
(
2β0 + k2ε−1

)
λ−1

[
eλτ − eλ(t0−t)

]
+d2eλhk2ε−1

λ(1−ρ∗)
[
eλ(t0−t) − eλ(t0−t−h)

]
+
[
λ− 2α0 + ε+ eλhk2ε−1

(1−ρ∗)

] ∫ τ
t0−t e

λs|x(s)|2ds.

Now, taking ε = α0 and noticing that for λ small enough we can assure
that λ− 2α0 + ε+ eλhk2ε−1

(1−ρ∗) is negative, it immediately follows that

|x(τ)|2 ≤ d2
[
1 + eλhk2ε−1

λ(1−ρ∗)

]
eλ(t0−t−τ) +

(
2β0 + k2ε−1

)
λ−1,

and setting τ = t0 + θ, for θ ∈ [−h, 0],

|x(t0 + θ)|2 ≤ d2

[
1 +

eλhk2ε−1

λ(1− ρ∗)

]
e−λ(t+θ) +

(
2β0 + k2ε−1

)
λ−1,

and, thus

sup
θ∈[−h,0]

|x(t0 + θ)|2 ≤ d2
[
1 + eλhk2ε−1

λ(1−ρ∗)

]
e−λt+λh +

(
2β0 + k2ε−1

)
λ−1

≤ 1 +
(
2β0 + k2ε−1

)
λ−1

if

t ≥ TD = λ−1 log d2

[
1 +

eλhk2ε−1

λ(1− ρ∗)

]
eλh.
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Remark 4.1. Notice that we have chosen the best ε in the proof of the
theorem. Indeed, as

lim
λ↓0

[
λ− 2α0 + ε+

eλhk2ε−1

(1− ρ∗)

]
= −2α0 + ε+

k2ε−1

(1− ρ∗)
,

this value will be negative iff

k2ε−1

(1− ρ∗)
< 2α0 − ε⇔ k2 < ε(2α0 − ε)(1− ρ∗),

and the maximum of the function v(ε) = ε(2α0 − ε) is achieved at ε = α0.

4.3. The case of weak dissipativity
We now prove a similar result, but in this case the dissipativity condition

need not be uniform in t. We suppose that f(·, ·) : R×C →Rn satisfies the
following three conditions, where γi(t) are positive continuous functions:

(i) A Lipschitz condition, local in time,

|f(t, ψ1)− f(t, ψ2)| ≤ γ1(t)‖ψ1 − ψ2‖C , for all ψ1, ψ2 ∈ C, (9)

(ii) A local dissipativity condition,

〈f(t, ψ), ψ(0)〉 ≤ (−α+ γ1(t)) |ψ(0)|2 + γ2(t), for all ψ ∈ Φ(h)C, (10)

and
(iii) Some integrability conditions,∫ t

−∞
γ1(s)ds <∞ and

∫ t

−∞
eεsγ2(s)ds <∞, for all ε > 0. (11)

We now show, as in section 4.1, that these conditions can be derived
for F (t, x(t − ρ(t))) given similar properties of F (t, x). Of course, these
conditions could be relaxed following the arguments in section 4.2, but
to avoid too many technical computations we content ourselves with the
consideration of the case below.

We note that (9–11) are satisfied by f if, for example, we impose on F
in (2) the following conditions

|F (t, x)− F (t, y)| ≤ γ1(t)|x− y|
〈F (t, x), x〉 ≤ (−α+ γ1(t))|x|2 + γ2(t),
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with γi(t) as above. Additionally, once again we require F to be bounded,
|F (x)| ≤ k.

Then,

〈F (t, x(t− ρ(t))), x(t)〉 ≤ (−α+ γ1(t))|x(t)|2 + γ2(t)
+〈F (t, x(t))− F (t, x(t− ρ(t))), x(t)〉

≤ (−α+ γ1(t))|x(t)|2 + γ2(t)
+γ1(t)|x(t)− x(t− ρ(t))||x(t)|

≤ (−α+ γ1(t))|x(t)|2 + γ2(t) + γ1(t)kh|x(t)|
≤ (−α+ γ1(t))|x(t)|2 + γ2(t)

+
1
2
|x(t)|2γ1(t) +

1
2

(kh)2γ1(t)

≤ (−α+
3
2
γ1(t))|x(t)|2 +

1
2

(kh)2γ1(t) + γ2(t).

Under (9)–(11), equation (3) is well-posed, and as before we denote by
x(t; s, ψ) the value at time t of the unique solution to (3) with xs = ψ ∈ C:

φ(t, s)ψ(θ) = x(t+ s+ θ; s, ψ)

Theorem 4.4. Under the above conditions, there exists a pullback at-
tractor for problem (3).

The proof also shows that under these conditions, in general there does
not exist an absorbing set for the evolution forwards in time.

Proof. We will prove the existence of a time-dependent bounded ab-
sorbing ball. It is not difficult to check that for t ≥ s, s ∈ R, and ψ ∈ C,

φ(s, s− t)ψ(θ) = x(s+ θ;−t+ s, ψ).

Now, setting x(τ) = x(τ ;−t + s, ψ) for τ ≥ −t + s, and taking the scalar
product in the equation (3) with x(τ), by virtue of (10), we obtain

1
2

d
dτ
|x(τ)|2 ≤ −α|x(τ)|2 + γ1(τ)|x(τ)|2 + γ2(τ)

and, therefore

d
dτ
|x(τ)|2 ≤ −2α|x(τ)|2 + 2γ1(τ)|x(τ)|2 + 2γ2(τ)
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Applying Gronwall’s lemma in the interval [−t+ s, τ ], it follows that

|x(τ)|2 ≤ ‖ψ‖2C exp
(∫ τ
−t+s(−α+ 2γ1(r))dr

)
+2
∫ τ
−t+s γ2(r) exp

(∫ τ
r

(−α+ 2γ1(ξ))dξ
)
dr

≤ ‖ψ‖2Ceαh exp
(∫ s
−t+s 2γ1(r)dr

)
e−αt

+2
∫ s
−∞ γ2(r) exp

(
−α(s− h− r) +

∫ s
−∞ 2γ1(ξ)dξ

)
dr

≤ ‖ψ‖2CeMse−αt + 2eαh+2Ms
∫ s
−∞ γ2(r)eαrdr,

with Ms =
∫ s
−∞ γ1(ξ)dξ. Thus, if we set

r2(s) = 1 + 2eαh+2Ms

∫ s

−∞
γ2(r)eαrdr,

it is clear that BC(0, r(0)) is a bounded absorbing set for the cocycle φ(t, s)
associated to (3). Theorem 3.1 now ensures the existence of a pullback
attractor A(s) for (3).

5. PULLBACK ATTRACTORS FOR PERIODIC EQUATIONS

In this section we compare our results with those in Hale [7] and Hale
and Verduyn Lunel [8], and show that when we have a periodic nonlinear
term we recover their results: the pullback attractor reduces to a periodic
uniform forward attractor.

Suppose there exists T > 0 such that

f(t+ T, ψ) = f(t, ψ), for all t ∈ R, ψ ∈ C.

Then it is not difficult to prove that the process φ(t, s) is also periodic.
Indeed, if we define X(t) = x(t+ T ; s+ T, ψ), it satisfies

dX(t)
dt

=
dx(t+ T )
d(t+ T )

=
dx(τ)

dτ
= f(τ, xτ )
= f(t+ T, xτ )
= f(t,Xt),

and so we get that

φ(t+ T, s+ T )ψ = φ(t, s)ψ.
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From this expression we also conclude the periodicity of the pullback
attractor, since, for the omega limit set of any bounded D ⊂ C we have
that

ΛD(t0) =
⋂
τ≥0

⋃
t≥τ

φ(t0, t0 − t)D

=
⋂
τ≥0

⋃
t≥τ

φ(t0 + T, t0 + T − t)D

= ΛD(t0 + T ),

and then

A(t0) =
⋃
D⊂C

bounded

ΛD(t0) =
⋃
D⊂C

bounded

ΛD(t0 + T ) = A(t0 + T ).

Furthermore, from the attraction property

lim
t→+∞

dist(φ(t0, t0 − t)D,A(t0)) = 0, (12)

and the periodicity of A(·), we can conclude an uniform pullback attraction
to Ã = ∪

t∈[0,T ]
φ(t, 0)A(0). Indeed, from (12),

lim
t→+∞

sup
0≤t0≤T

dist(φ(t0, t0 − t)D, Ã) = 0

and then

lim
t→+∞

sup
0≤t0≤T

sup
k∈Z

dist(φ(t0 + kT, t0 + kT − t)D, Ã) = 0,

so that

lim
t→+∞

sup
t0∈R

dist(φ(t0, t0 − t)D, Ã) = 0. (13)

But the uniform pullback convergence in (13) implies uniform forward con-
vergence to Ã, since, for τ = t0 − t (t fixed)

sup
t0∈R

dist(φ(t0, t0 − t)D, Ã) = sup
τ∈R

dist(φ(τ + t, τ)D, Ã),

and thus

lim
t→+∞

sup
τ∈R

dist(φ(τ + t, τ)D, Ã) = 0.
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Note that Ã coincides with the global attractor obtained in Hale [7]
(Theorem 4.1.11). Indeed, he writes M ⊂ R × C for the global attractor
associated to (3), which is, in our case, precisely the set

A = {(t0, ψ) : ψ ∈ A(t0), t0 ∈ R}.

6. EQUATIONS WITH ‘SMALL’ DELAYS

Now consider a family of retarded differential equations parametrised by
ε,

ẋ = F (x(t− ρε(t))) (14)

for which the delay ρε(t) is constrained to lie within an interval [0, ε], and
where (for the sake of this discussion) we assume (cf. section 4.1.1) that

〈F (x), x〉 ≤ −α|x|2 + β (15)

along with global boundedness and Lipschitz conditions for F ,

|F (x)| ≤ k and |F (x)− F (y)| ≤ L|x− y| (16)

It is natural to consider the relationship between the pullback attractor
which we can find for ε > 0, and the standard global attractor obtained
when ε = 0.

To this end, we recall a general result from Caraballo and Langa [2].

Theorem 6.1. Let φε be a family of processes on a space X. Suppose
that the following conditions are satisfied:

1.Existence of attractors for ε > 0: for ε ∈ (0, ε0] there exists a pullback
attractor {Aε(t)},

2.Convergence of processes to a semiflow: for each s ∈ R, t ∈ [0,∞) we
have

φε(s+ t, s)x→ S(t)x as ε ↓ 0,

uniformly for x in bounded sets of X,
3.Existence of an attractor for the semiflow: S(t) has an attractor A
4.Compactness property: there exists a compact set K such that, for each

t,

lim
ε→0

dist(Aε(t),K) = 0.
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Then for each t,

lim
ε→0

dist(Aε(t),A) =0. (17)

Note that the comparison of the attractors in the theorem occurs in one
fixed phase space X. Therefore, in order to apply the theorem to (14), we
choose one ε0, and consider the equation on the phase space

C0 = C0([−ε0, 0]; Rn)

whatever the value of ε ∈ [0, ε0]. In particular, we have to consider the
attractor of the autonomous equation

ẋ = F (x) (18)

as a collection of functions in C0.
If we denote the semigroup on Rn corresponding to (18) as S(t), then

clearly, if A is the usual global attractor in Rn for (18) the attractor in C0
is given by

A = {x ∈ C0 : x(t) = S(t)u0, t∈ [−ε0, 0], u0 ∈ A} (19)

Furthermore, the semigroup S(t) on C0 generated by (18) is given by

[S(t)ψ](s) = S(t)ψ(s).

In this sense, we prove the following theorem.

Theorem 6.2. Suppose that F : Rn → Rn satisfies (15) and (16).Then,
for every 0 < ε ≤ ε0 there exists a pullback attractor {Aε(t)} for (14) in the
space C0. Furthermore, ẋ = F (x) has a global attractor in C0 in the sense
of (19), and the upper semicontinuity property (17) holds

Of course, (17) holds with the distance measured in C0.

Proof. We discuss the four conditions of theorem 6.1 in order.
1. This is simply theorem 4.2 for each ε > 0. Adapting the result to

treat the longer time interval [−ε0, 0] for ε < ε0 is essentially trivial.
2. We define S(t), as above, to be the semiflow on C0 arising from the

autonomous problem

ẋ = F (x),

and compare the solution of this with

ẏ = F (y(t− ρ(t))).
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Given an initial condition xs = ψ, with ‖ψ‖C0 ≤M , consider

d
dt

(x(t)− y(t)) = F (x(t))− F (y(t− ρ(t))).

Taking the inner product with x(t)− y(t) gives

1
2

d
dt
|x(t)− y(t)|2 = 〈F (x(t))− F (y(t)), x(t)− y(t)〉

+ 〈F (y(t))− F (y(t− ρ(t))), x(t)− y(t)〉
≤ L|x(t)− y(t)|2 + L|y(t)− y(t− ρ(t))||x(t)− y(t)|

≤ 2L|x(t)− y(t)|2 +
{

2M 0 ≤ t ≤ ε
kL|ρ(t)| t ≥ ε

≤ 2L|x(t)− y(t)|2 +
{

2M 0 ≤ t ≤ ε
kLε t ≥ ε.

On [0, ε] we can deduce that

|x(t)− y(t)|2 ≤ (eLt − 1)
2M
L
,

and so, in particular,

|x(t)− y(t)|2 ≤ (eLε − 1)
2M
L

for all t ∈ [0, ε].

Now, starting from t = ε we have

|x(t)− y(t)|2 ≤ 1
L

[2M(eLε − 1) + kLε]eL(t−ε),

and, therefore,

|x(t)− y(t)|2 ≤ C(ε, t),

where C(ε, t) → 0 as ε ↓ 0+ uniformly on bounded time intervals. In
particular, it follows that

sup
s∈R
‖φ(t+ s, s)ψ − S(t)ψ‖C0 → 0 for all t ≥ 0. (20)

3. This follows immediately from (15), since the proof of the existence
of an absorbing set in Rn under this condition is simple. There is then a
global attractor A ⊂Rn, and we can define A as in (19).

4. Finally, note that the radius of the absorbing set B in theorem 4.2
depends on α and β, and using the calculations from section 4.1.1 it follows
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that α and β can be taken uniform over ε ∈ (0, ε0]. It then follows that the
compact absorbing set in theorem 4.2 is given by

φε(t0, t0 − ε0)B.

It follows from (20) that for every ε ∈ (0, ε0] this is a subset of a fixed
compact set K. Since Aε(t) ⊂ Bε(t) (see theorem 3.1) the final condition
is satisfied, and an application of theorem 6.1 gives the result as stated.

Remark 6.1. Note that one could also compare the attractors by con-
sidering the subsets of Rn

Aε(t) = {y ∈ Rn : y = x(t), t ∈ [−ε, 0], x ∈ Aε(t)}.

It then follows that

dist(Aε(t),A)→ 0

as ε→ 0, where now the distance is measured in Rn.

7. CONCLUSIONS

By using the cocycle attractor we have extended the classical treatment
of attractors for delay differential equations to the general nonautonomous
case, and in particular we have recovered results on periodic equations.
Furthermore, by using the upper semicontinuity result from Carballo and
Langa [2], we have shown that the introduction of a small delay has little
effect on the asymptotic dynamics.

Finally, we note that these ideas should be applicable to a wider class of
equations. In particular, equations with distributed delays, such as

ẋ(t) =
∫ 0

−h
f(t, s, x(t+ s)) ds,

and even equations with infinite delays, such as

ẋ(t) =
∫ 0

−∞
f(t, s, x(t+ s)) ds.

For the second of these the phase space needs to be chosen much more
carefully than above, and we have not presented results for this system
here to avoid too much notation. For details of the standard theory see
Kuang [11].
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