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Abstract. We establish some results on the existence of pullback attractors

for non–autonomous delay differential equations with multiple delays. In par-

ticular, we generalise some recent works on the existence of pullback attractors
for delay differential equations.

1. Introduction. The state of many real–world problems at a given moment may
depend on their previous state(s). When the rate of change of state variables de-
pends on past values of states, independently of their derivatives at previous in-
stants, delay differential equations are often used in the mathematical modeling of
the process in question. Furthermore, if the dependence on the past is independent
of time and states, the equations take the following form

ẋ = f(xt) (1)

where f : C → Rn, C := C([−h, 0]; Rn), h > 0 is a positive delay, and xt denotes the
segment of the solution defined by xt(θ) := x(t + θ), θ ∈ [−h, 0]. We have quite a
detailed, but far from complete, knowledge about the non–linear dynamics of these
type of equations, see [12, 18, 23]. When equations with many or distributed delays
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are considered, the available knowledge is rather restricted. Even the linear stability
analysis of these equations can be a challenging task. The stability properties of
certain equations with distributed delays compared to associated equations with
one delay were studied in [8, 9]. Using topological fixed point theory, the existence
of periodic solutions to non–linear equations with two delays was studied in [17]. A
recent work, using computer assisted proofs, proved the coexistence of three periodic
solutions to a non–linear equation with two delays [10]. The aforementioned results
are about autonomous equations, i.e. of type (1). The theory to study the long
time behaviour of these systems in terms of attracting sets was established in [6].
One of the most recent works in this direction is presented in [13].

Usually, the assumption on time invariant delays makes the treatment less in-
volved. However, in some cases, mathematical models with time varying delays
can provide better explanations of many real–world phenomena. For example, an
interesting numerical experiment on gravitational force with time varying delays
was reported in [14]. In these cases, equations modeling the phenomena become
explicitly non-autonomous, i.e.,

ẋ = f(t, xt), (2)

where f : R × C → Rn. Although, the theoretical foundation for studying the at-
tracting sets of non–autonomous dynamical systems was laid in [21, 22], our partic-
ular knowledge about the dynamics of non–autonomous delay differential equations
is less developed.

Recently, the concept of pullback attractor was introduced and is being used
to analyse non-autonomous dynamics (see, e.g., Caraballo et al. [1] and Kloeden
[11], and the references therein). Some aspects of the bifurcation theory for non–
autonomous ordinary differential equations were discussed in [19].

The objective of the present work is to contribute to the above mentioned fields
of studies, mainly focusing on the existence of pullback attractors. Namely, we gen-
eralise recent results presented in [2, 3] on attractors for delay differential equations
with time varying delay. We will consider delay differential equations of the form

ẋ(t) = F0(t, x(t)) +
m∑
i=1

Fi(x(t− ρi(t))) (3)

under the following assumption on F0:

(A1): F0 : Rn+1 → Rn is continuous and there exist α0 > 0, β0 ≥ 0 such that

〈F0(t, x), x〉 ≤ −α0|x|2 + β0, x ∈ Rn, t ∈ R.

Here ρi : R → [0, h] are functions representing the variable delays of the model;
additional restrictions are imposed on them in Sections 3.1 and 3.2, as well as on
the terms Fi : Rn → Rn, i = 1, . . . ,m. Furthermore, < ·, · > stands for the inner
product in Rn. Under additional conditions, Section 3.1 generalise a result of [2]
for equations with multiple delays under some sublinearity condition. Section 3.2
generalises a result of [3] for multiple, measurable delays.

The rest of the paper is organised as follows. Section 2 summarizes the necessary
theory of processes. In section 3, we state and prove our main results.
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2. Preliminaries. To start with, recall that C = C([−h, 0]; Rn) denotes the Ba-
nach space of continuous functions φ : [−h, 0]→ Rn equipped with the usual supre-
mum norm. Equation (3) can be rewritten as a non–autonomous differential equa-
tion of form

ẋ(t) = f(t, xt) (4)
where f : R × C → Rn is continuous and maps bounded sets into bounded sets.
Furthermore, given a continuous function x(·) : R → Rn and t ∈ R, we denote by
xt(·) the element in C given by

xt(θ) = x(t+ θ), θ ∈ [−h, 0].

When x(·) is a solution of (4), then xt(·) is said to be the solution segment at time
t.

If an initial function φ ∈ C is prescribed at the initial time s ∈ R, the basic
theory of delay differential equations (see [7]) implies, under standard assumptions,
the existence of the unique solution x(·; s, φ) of (4) on [s− r,∞), which satisfies, in
addition, the initial condition xs(·) = φ, in other words, xs(θ)=x(s + θ)=φ(θ) for
all θ ∈ [−h, 0].

The unique solution of the initial value problems associated to (4) defines the
solution map U(t, s) : C 3 φ 7→ xt(·; s, φ) ∈ C for t ≥ s, which is, in fact, a process
(also called a two-parameters semigroup), i.e.
• U(t, s) : C → C is a continuous map for all t ≥ s;
• U(s, s) = idC , the identity on C, for all s ∈ R,
• U(t, s) = U(t, τ)U(τ, s) for t ≥ τ ≥ s.
As in the autonomous case, we look for invariant attracting sets. First, we

introduce the Hausdorff semi–distance between subsets A and B in a metric space
(X, d) as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b).

Definition 2.1. Let U be a process on a complete metric space X. A family of
compact sets {A(t)}t∈R is said to be a (global) pullback attractor for U if, for all
s ∈ R, it satisfies
• U(t, s)A(s) = A(t) for all t ≥ s, and
• lims→∞ dist(U(t, t− s)D,A(t)) = 0, for all bounded subsets D of X.

Definition 2.2. {B(t)}t∈R is said to be absorbing with respect to the process U
if, for t ∈ R and D ⊂ X bounded, there exist TD(t) > 0 such that for all τ ≥ TD(t)

U(t, t− τ)D ⊂ B(t).

The following result (see [5, 20]) shows that the existence of a family of compact
absorbing sets implies the existence of a pullback attractor.

Theorem 2.3. Let U(t, s) be a process on a complete metric space X. If there
exists a family {B(t)}t∈R of compact absorbing sets then, there exists a pullback
attractor {A(t)}t∈R such that A(t) ⊂ B(t) for all t ∈ R. Furthermore,

A(t) =
⋃
D⊂X
bounded

ΛD(t)

where
ΛD(t) =

⋂
n∈N

⋃
s≥n

U(t, t− s)D.



4 TOMÁS CARABALLO AND GÁBOR KISS

Theorem 2.4. Suppose that U(t, s) maps bounded sets into bounded sets and there
exists a family {B(t)}t∈R of bounded absorbing sets for U . Then there exists a
pullback attractor for problem (4).

We emphasize that it is possible to consider a more general definition of pullback
attractor which attracts family of sets in a universe instead of only bounded sets
(see [1],[16] for a detailed analysis of this theory). However, the present concept is
enough for our interests.

3. Main results. Sublinear non-linearities. In this section, in addition to
(A1), we assume that the delay terms are sub-linear in the following sense:

(A2): Fi, i = 1, . . . ,m is sublinear, i.e., there exist ki > 0, i = 1, . . . ,m, such
that

|Fi(x)|2 ≤ k2
i (1 + |x|2), x ∈ Rn.

We will split our analysis into two cases. In the first one, we will consider smooth
variable delay functions and uniform (with respect to time) dissipativity on the term
F0 (in order words, independent of t). In the second, we will weaken the hypotheses
on the delay functions requiring only the measurability of them, and will allow the
dissipativity condition not necessarily be uniform. However, we will need to impose
a bit more restrictions on the functions Fi for i = 1, . . . ,m.

3.1. Smooth delay functions. When the delay functions are continuously differ-
entiable we can prove the following result which is a natural extension of Theorem
4.3 in [3]. Although the proof follows the same idea with necessary modifications,
we provide it here to keep our presentation as much self-contained as possible.

Theorem 3.1. Assume that assumptions (A1) and (A2) are satisfied. Furthermore,
suppose that each delay function ρi(·) is continuously differentiable with ρ′i(t) ≤
ρi∗ < 1 for all t ∈ R. Then, if m2 k2

i < α2
0(1 − ρi∗), for all i = 1, . . . ,m, there

exists a family of bounded absorbing sets, {B(t)}t∈R, and consequently, there exists
a pullback attractor for this problem.

Proof. Let λ > 0 be a constant to be determined later on, and denote (for the
sake of simplicity) ε = α0

m . Denote x(τ) = x(τ ; t0 − t, ψ), τ ∈ [t0 − t, t0], for any
ψ ∈ C such that ‖ψ‖ ≤ d. Then, by a suitable application of the Young inequality
(2ab ≤ εa2 + ε−1b2), it follows that

d

dτ
eλτ |x(τ)|2 = λeλτ |x(τ)|2 + 2eλτ 〈x(τ), f(τ, xτ )〉

= λeλτ |x(τ)|2 + 2eλτ 〈x(τ), F0(τ, x(τ))〉

+ 2eλτ
m∑
i=1

〈x(τ), Fi(x(τ − ρi(τ)))〉

≤ (λ− 2α0)eλτ |x(τ)|2 + 2β0e
λτ + eλτ |x(τ)|2

m∑
i=1

ε

+ eλτ
m∑
i=1

ε−1|Fi(x(τ − ρi(τ)))|2
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≤ (λ− α0) eλτ |x(τ)|2 +

(
2β0 + ε−1

m∑
i=1

k2
i

)
eλτ

+ eλτε−1
m∑
i=1

k2
i |x(τ − ρi(τ))|2.

Integration on the interval [t0 − t, τ ] yields that

eλτ |x(τ)|2 − eλ(t0−t)|x(t0 − t)|2 ≤ (λ− α0)
∫ τ

t0−t
eλs|x(s)|2ds

+
2β0 + ε−1

∑m
i=1 k

2
i

λ

[
eλτ − eλ(t0−t)

]
+ ε−1

m∑
i=1

k2
i

∫ τ

t0−t
eλs|x(s− ρi(s))|2ds. (5)

Now we compute the integrals for the addends in the last sum.∫ τ

t0−t
eλs|x(s− ρi(s))|2ds ≤

1
1− ρi∗

∫ τ

t0−t−h
eλu+λh|x(u)|2du

≤ eλh

1− ρi∗

[∫ t0−t

t0−t−h
eλu|x(u)|2du+

∫ τ

t0−t
eλu|x(u)|2du

]
≤ eλh

1− ρi∗

[∫ t0−t

t0−t−h
eλu|ψ(u)|2du+

∫ τ

t0−t
eλu|x(u)|2du

]
≤ d2eλh

λ(1− ρi∗)

[
eλ(t0−t) − eλ(t0−t−h)

]
+

eλh

1− ρi∗

∫ τ

t0−t
eλu|x(u)|2du.

It follows that

eλτ |x(τ)|2 ≤eλ(t0−t)d2 +
2β0 + ε−1

∑m
i=1 k

2
i

λ

[
eλτ − eλ(t0−t)

]
+
d2eλh

λ

[
eλ(t0−t) − eλ(t0−t−h)

] m∑
i=1

k2
i ε
−1
i

1− ρi∗

+

(
λ− α0 + eλhε−1

m∑
i=1

k2
i

1− ρi∗

)∫ τ

t0−t
eλs|x(s)|2ds.

Now, observe that

−α0 + ε−1
m∑
i=1

k2
i

1− ρi∗
= −α0 +

m

α0

m∑
i=1

k2
i

1− ρi∗

≤ −α0 +
1

mα0

m∑
i=1

m2k2
i

1− ρi∗

< −α0 +
1

mα0
mα2

0

= 0.
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Consequently, we can choose a positive, but small enough, λ such that

λ− α0 + eλhε−1
m∑
i=1

k2
i

1− ρi∗
< 0.

This implies that

|x(τ)|2 ≤ d2

[
1 +

eλhε−1

λ

m∑
i=1

k2
i

1− ρi∗

]
eλ(t0−t−τ) +

2β0 + ε−1
∑m
i=1 k

2
i

λ
.

Setting τ = t0 + θ, θ ∈ [−h, 0] we get

|x(t0 + θ)|2 ≤ d2

[
1 +

eλhε−1

λ

m∑
i=1

k2
i

1− ρi∗

]
e−λ(t+θ) +

2β0 + ε−1
∑m
i=1 k

2
i

λ

sup
θ∈[−h,0]

|x(t0 + θ)|2 ≤ d2

[
1 +

eλhε−1

λ

m∑
i=1

k2
i

1− ρi∗

]
e−λt+λh +

2β0 + ε−1
∑m
i=1 k

2
i

λ

≤ 1 +
2β0 + ε−1

∑m
i=1 k

2
i

λ

provided that

t ≥ TD = λ−1 log

{[
1 +

eλhε−1

λ

m∑
i=1

k2
i

1− ρi∗

]
d2eλh

}
.

Consequently, the family of bounded sets {B(t)}t∈R given by B(t) := B, for all
t ∈ R, where B denotes the ball in C([−h, 0]; Rn) centered at zero with radius
r = 1 + 2β0+ε−1 Pm

i=1 k
2
i

λ , is absorbing. On the other hand, as the associated process
maps bounded sets of C([−h, 0]; Rn) into bounded sets, then Theorem 2.4 (see also
Theorem 4.1 in [3]) ensures the existence of the pullback attractor.

3.2. Measurable delay functions. Observe that the differentiability assumption
on the delay functions has been a key point in the method used in the previous
section. Our aim now is to relax this hypothesis and prove a similar result on the
existence of pullback attractor. Our analysis will be carried out assuming that the
delay functions ρi(·) are only measurable. But we would like to point out that there
exists another technique which can be used when the variable delays are continuous,
the so-called Razumikhin method (see, for instance [15]). This will be analysed in
a subsequent paper.

In this section, we assume that our non-delay term satisfies a non-autonomous
dissipativity condition, i.e. we impose the following assumption on F0:

(A1’): F0 : Rn+1 → Rn is continuous and there exist α0 > 0, and a non-negative
measurable function β(·) such that

〈F0(t, x), x〉 ≤ −α0|x|2 + β(t), t ∈ R, x ∈ Rn. (6)

As for Fi we assume Lipschitz continuity, i.e.,
(A2’): There exists Li > 0, i = 1, . . . ,m such that for any x, y ∈ Rn

|Fi(x)− Fi(y)| ≤ Li|x− y|,

and Fi(0) = 0.
Now we can establish our main result in this section.
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Theorem 3.2. Assume that assumptions (A1’) and (A2’) are satisfied and that
there exists 0 < λ < α0 such that

eλh
m

α0

m∑
i=1

L2
i < λ and Ct := sup

σ≥0

∫ t

t−σ
eλ(s−t+σ)β(s) ds < +∞,∀t ∈ R. (7)

Then, if ρi, i = 1, . . . ,m, is measurable, there exists a family of bounded absorbing
sets, {B(t)}t∈R, and consequently, there exists a pullback attractor for the process
generated by (3).

Proof. Let us consider the number λ > 0 from (7), for the sake of clarity write
ε =

α0

m
, and denote x(τ) = x(τ ; t0 − t, ψ), τ ∈ [t0 − t, t0], for any ψ ∈ C such that

‖ψ‖ ≤ d, and t0 ∈ R. Then, applying again the Young inequality in the delay terms
below,

d

dτ
eλτ |x(τ)|2 = λeλτ |x(τ)|2 + 2eλτ 〈x(τ), f(τ, xτ )〉

= λeλτ |x(τ)|2 + 2eλτ 〈x(τ), F0(τ, x(τ))〉

+ 2eλτ
m∑
i=1

〈x(τ), Fi(x(τ − ρi(τ)))〉

≤ (λ− 2α0)eλτ |x(τ)|2 + 2eλτβ(τ) + eλτ |x(τ)|2mε

+ eλτε−1
m∑
i=1

|Fi(x(τ − ρi(τ)))|2

≤
(
λ− α0)eλτ |x(τ)|2 + 2eλτβ(τ)

+ eλτε−1
m∑
i=1

L2
i |x(τ − ρi(τ))|2.

Integration on the interval [t0 − t, τ ] yields that

eλτ |x(τ)|2 − eλ(t0−t)|x(t0 − t)|2 ≤ (λ− α0)
∫ τ

t0−t
eλs|x(s)|2ds

+ 2
∫ τ

t0−t
eλsβ(s)ds

+ ε−1
m∑
i=1

L2
i

∫ τ

t0−t
eλs|x(s− ρi(s))|2ds. (8)

The integrand in the third sum can be estimated∫ τ

t0−t
eλs|x(s− ρi(s))|2ds ≤

∫ τ

t0−t
eλs sup

θ∈[−h,0]

|x(s+ θ)|2ds

Thus we have

|x(τ)|2 ≤eλ(t0−t−τ)|x(t0 − t)|2 + (λ− α0)
∫ τ

t0−t
eλ(s−τ)|x(s)|2ds (9)

+ e−λτ

(
2
∫ τ

t0−t
eλsβ(s)ds+ ε−1

m∑
i=1

L2
i

∫ τ

t0−t
eλs sup

θ∈[−h,0]

|x(s+ θ)|2ds

)
.
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Now, since λ− α0 < 0,

|x(τ)|2 ≤
(
eλ(t0−t)d2 + 2

∫ t0

t0−t
eλsβ(s)ds

)
e−λτ

+ ε−1
m∑
i=1

L2
i

∫ τ

t0−t
e–λ(τ−s) sup

θ∈[−h,0]

|x(s+ θ)|2ds.

Taking the supremum after substituting τ + θ, θ ∈ [−h, 0], we obtain

sup
θ∈[−h,0]

|x(τ + θ)|2 ≤eλh
(
eλ(t0−t)d2 + 2

∫ t0

t0−t
eλsβ(s)ds

)
e−λτ

+ eλhε−1
m∑
i=1

L2
i e
−λτ

∫ τ

t0−t
eλs sup

θ∈[−h,0]

|x(s+ θ)|2ds.

That is

eλτ sup
θ∈[−h,0]

|x(τ + θ)|2 ≤eλh
(
eλ(t0−t)d2 + 2

∫ t0

t0−t
eλsβ(s)ds

)
+ eλhε−1

m∑
i=1

L2
i

∫ τ

t0−t
eλs sup

θ∈[−h,0]

|x(s+ θ)|2ds.

Thanks to the Gronwall lemma, we have that

sup
θ∈[−h,0]

|x(τ + θ)|2 ≤eλh
(
eλ(t0−t)d2 + 2

∫ t0

t0−t
eλsβ(s)ds

)
ee
λhε−1 Pm

i=1 L
2
i (τ−t0+t)e−λτ

The substitution τ = t0 and the fact that eλhε−1
∑n
i=1 L

2
i < λ imply that

sup
θ∈[−h,0]

|x(t0 + θ)|2

≤ eλh
(
eλ(t0−t)d2 + 2

∫ t0

t0−t
eλsβ(s)ds

)
ee
λhε−1 Pm

i=1 L
2
i (t−t0)

≤ eλh
(
e−(λ−eλhε−1 Pm

i=1 L
2
i )(t−t0)d2 + 2eλ(t−t0)

∫ t0

t0−t
eλsβ(s)ds

)
≤ eλh

(
e−(λ−eλhε−1 Pm

i=1 L
2
i )(t−t0)d2 + 2 sup

t≥0

∫ t0

t0−t
eλ(s−t0+t)β(s)ds

)
Thus, we finally obtain that

sup
θ∈[−h,0]

|x(t0 + θ)|2 ≤ eλh
(
e−(λ−eλhε−1 Pm

i=1 L
2
i )(t−t0)d2 + 2Ct0

)
≤ (1 + 2Ct0) eλh

provided

t ≥ TD =

(
λ− eλhε−1

m∑
i=1

L2
i

)−1

log
(
d2e(λ−e

λhε−1 Pm
i=1 L

2
i )t0
)
.

Consequently, the family of bounded sets {B(t)}t∈R in C([−h, 0]; Rn) given by
B(t) := B(0; r(t)), for all t ∈ R, where B(0; r(t)) denotes the ball centered at
zero with radius r(t) = (1 + 2Ct) eλh, is absorbing. Taking into account again that
the associated process maps bounded sets into bounded sets of C([−h, 0]; Rn), the
existence of the pullback attractor is ensured again by Theorem 2.4.
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Remark 1. It is worth noticing that, although assumption (7) may seem rather
artificial, it is somehow quite natural since it holds provided that either the de-
lay parameter h or the Lipschitz constants Li are small in comparison with the
dissipativity constant α0.

4. Conclusion. In this paper we presented two non–trivial extensions of previous
results on the asymptotic behaviour of solutions to non–linear delay differential
equations. These earlier results established existence of pullback attractors for
delay differential equations with one delay function. Our work generalises these
results to the case of multiple delay functions and also weakened the assumptions
on the delays. Thus our study contributes to the available knowledge on the long–
time behaviour of delay differential equations. To proceed even further, we intend
to study the structure of existing attractors to the above studied equations.

Acknowledgments. We would like to thank the referee for his/her suggestion
which led to the final, a significantly improved, version of Theorem 3.3.
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