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We study in some detail the structure of the random attractor for the Chafee-Infante
reaction-diffusion equation perturbed by a multiplicative white noise,

du = (−Au + βu− u3) dt + σu ◦ dWt x ∈ D ⊂ Rm.

First we prove, for m ≤ 5, a lower bound on the dimension of the random attractor
which is of the same order in β as the upper bound we derived in an earlier paper,
and is the same as that obtained in the deterministic case. Then we show, for
m = 1, that as β passes through λ1 (the first eigenvalue of the negative Laplacian)
from below, the system undergoes a stochastic bifurcation of pitchfork type. We
believe that this is the first example of such a stochastic bifurcation in an infinite-
dimensional setting. Central to our approach is the existence of a random unstable
manifold.

Keywords: Random attractors, stochastic bifurcation, Hausdorff dimension

1. Introduction

Attractors for infinite-dimensional dynamical systems have proven very useful tool
in the study of the asymptotic behaviour of many partial differential equations
(see for example Hale (1988), Ladyzhenskaya (1991), Temam (1988, 2nd ed. 1997)).
Much attention has been focused on the dimension of these attractors, since in many
cases one can prove that this is finite, and deduce that the long-time behaviour of
the system depends on only a finite number of degrees of freedom.

The definition of an attractor has been generalized to the stochastic case by
Crauel & Flandoli (1994) and Schmalfuß (1992), and has once again been fruitful
in furthering our understanding of the associated random and stochastic differential
equations, in particular in finite dimensions (Arnold 1998).

Roughly speaking, a random attractor is a family of compact random sets, which
are invariant for the stochastic flow and attract all solutions ‘from t = −∞’. Once
again, it is possible to show that certain of these attractors are finite-dimensional,
although the number of examples is much more limited than in the deterministic
case. Debussche (1997) has adapted the most powerful deterministic technique to
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treat the stochastic case, and in a previous paper (Caraballo et al. 2000) we used
his method to obtain an upper bound on the Hausdorff dimension of the random
attractor for the Chafee-Infante reaction-diffusion equation perturbed by a multi-
plicative noise in the sense of Stratonovich,

du = (−Au + βu− u3) dt + σu ◦ dWt x ∈ D ⊂ Rm. (1.1)

Different techniques are required, for both stochastic and deterministic systems,
to obtain lower bounds on the dimension of these attractors. Such bounds are
generally based on finding some invariant manifolds which must be subsets of the
attractor (Babin & Vishik 1983).

Here we adopt this approach, using some ideas due to DaPrato & Debussche
(1996) to show (in §4) that there is an n-dimensional unstable manifold near the
zero solution when λn < β < λn+1 (the λj are the eigenvalues of the negative
Laplacian, see §3). This gives a lower bound on the attractor dimension which is
of the same order as our previous upper bound. Remarkably these bounds do not
depend on the level of the noise (σ in (1.1)), and are of the same order as the
bounds in the deterministic case.

In the last decade there has been some research in stochastic bifurcation theory,
although it still seems to be unclear how this theory can be set up in general (Arnold
1998, 2000). However, to our knowledge there are as yet no studies of bifurcations in
infinite-dimensional stochastic differential equations. We adopt here the dynamical
concept of a stochastic bifurcation, which is understood as a qualitative change in
the invariant sets (or invariant measures) of the system (see §5).

For the one-dimensional case m = 1 we use the manifold structure, which gave
us the lower bound on the dimension, to investigate in more detail what happens
to the random attractor as β passes through λ1 from below. For β < λ1 we showed
previously that the attractor is just the point {0}, and our lower bound show that
for β > λ1 the Hausdorff dimension of the attractor is at least 1. We show that for
λ1 < β < λ2 the unstable manifold is in fact tangent to the space spanned by the
first eigenfunction of the Laplacian, and thus actually has one branch in the cone
of positive solutions and the other one in the cone of negative solutions (§5). It is
only a short step from here to the required pitchfork bifurcation, using the theory
of monotone random dynamical systems developed by Arnold & Chueshov (1998a
& b).

We end with some conclusions and open problems.

2. Formulation of the problem and deterministic results

Let D ⊂ Rm, m ≤ 5, be an open bounded set with regular boundary. We consider
the following Chafee-Infante reaction-diffusion equation in D perturbed by a linear
multiplicative white noise

du = (∆u + βu− u3)dt + σu ◦ dWt, (2.1)

with u(x, t) = 0 for x ∈ ∂D, and where W·(ω) : Ω → C0(R,R) is a one-dimensional
Wiener process on the probability space (Ω,F ,P).

We rewrite (2.1) as the following differential equation on L2(D),

du = (−Au + βu− u3) dt + σu ◦ dWt (2.2)
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where A = −∆ on D with the appropriate (Dirichlet) boundary conditions. The
operator A is positive, linear, self-adjoint and with compact inverse. Thus there
exists a sequence {λj} of positive eigenvalues, whose associated eigenfunctions wj

(with Awj = λjwj) form an orthonormal basis for H (e.g. Renardy & Rogers 1992).
We order these so that λn+1 ≥ λn.

(a) The deterministic case (σ = 0)

When σ = 0, existence and uniqueness results are proved for the equation in
Marion (1987), Temam (1988), and Robinson (2001). There exists a unique weak
solution

u(t; u0) ∈ L2(0, T ; H1
0 (D)) ∩ L4((0, T )×D) ∩ C([0, T ];L2(D)),

so that in particular we can use the solutions to define a semigroup S(t) on L2(D),
via

S(t)u0 = u(t; u0).

S(t) satisfies the usual semigroup properties,

S(0) = id, S(t)S(s) = S(t + s), and S(t)u0 continuous in t and u0. (2.3)

It is shown in all three of the above references that the equation also enjoys the
existence of a global attractor A, that is, a compact invariant set which attracts
the orbits of all bounded sets, i.e.

S(t)A = A for all t ∈ R (2.4)

and

dist(S(t)B,A) → 0 as t →∞, (2.5)

where B is any bounded subset of L2(D) and dist(A,B) is the Hausdorff semidis-
tance between A and B,

dist(A,B) = sup
a∈A

inf
b∈B

|a− b|. (2.6)

Estimates of the Hausdorff dimension of this attractor in terms of β can also be
obtained, namely

dH(A) ≤ Cβm/2.

(Recall that D ⊂ Rm.) By showing the existence of an unstable manifold near the
origin, Babin & Vishik (1983) show that a similar lower bound holds, so that in
fact there exists a constant c such that

cβm/2 ≤ dH(A) ≤ Cβm/2

(see also Temam 1988). We write this more compactly as

dH(A) = O(βm/2). (2.7)

We will obtain, below, the same behaviour in the stochastic case.
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In the particular case m = 1 the structure of this attractor is extremely well un-
derstood: the attractor consists of a collection of stationary points, which bifurcate
from the origin as β passes through each eigenvalue λj , and the unstable manifolds
joining them (Hale 1988; Henry 1984). In particular, as β passes through λ1 the
attractor changes from a single stable fixed point at u ≡ 0 to a set, homeomor-
phic to an interval, which consists of the one-dimensional unstable manifold of the
origin. This has two distinct components, one of which lies in the cone of positive
solutions and on which all solutions approach a new positive fixed point, and one
which lies in the cone of negative solutions and on which all solutions approach a
new negative fixed point. It is this pitchfork bifurcation that we will seek to mirror
in the stochastic case.

3. Random attractors

We now discuss briefly the definition of a random dynamical system and a random
attractor, unsurprisingly using our equation (2.2) as an illustrative example.

(a) Random dynamical systems

Let (Ω,F ,P) be a probability space and {θt : Ω → Ω, t ∈ R} a family of
measure preserving transformations such that (t, ω) 7→ θtω is measurable, θ0 = id,
and θt+s = θtθs for all s, t ∈ R. The flow θt together with the corresponding
probability space,

(Ω,F ,P, (θt)t∈R)

is called a (measurable) dynamical system.
In our case we take (Ω,F ,P) to be the probability space which generates the

one-dimensional Wiener process dWt. The shift θt acts on Ω so that

Wt(θsω) = Wt+s(ω)−Ws(ω), (3.1)

the additional subtracted term ensuring that W·(θsω) is still a Brownian motion.
For this example it also follows that the shift θt is ergodic (Arnold 1998).

A continuous random dynamical system (RDS) on a Polish space (X, d) with
Borel σ-algebra B over θ on (Ω,F ,P) is a measurable map

ϕ : R+ × Ω×X → X
(t, ω, x) 7→ ϕ(t, ω)x

such that P− a.s.

i) ϕ(0, ω) = id on X

ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ R+ (cocycle property)

iii) ϕ(t, ω) : X → X is continuous.

When σ 6= 0 it is known (Pardoux 1975) that for each u0 ∈ L2(D) and T > 0,
there exists a unique solution u(t;x0) of (2.2), with

u(t;x0) ∈ L2(Ω× (0, T ); H1
0 (D)) ∩ L4(Ω× (0, T )×D) ∩ L2(Ω;C(0, T ;L2(D)).
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In particular, it follows that the solutions of (2.2) can be used to generate a random
dynamical system if we define

ϕ(t, ω)u0 = u(t; ω, u0),

where u(t; ω, u0) is the solution of (2.2) with noise ω and initial condition u(0) = u0.

(b) Random attractors

A random set A(ω) is said to be a random attractor for the RDS ϕ if

i) A(ω) is a random compact set, that is, P− a.s., A(ω) is compact and for all
x ∈ X, and the map ω 7→ dist(x,A(ω)) is measurable with respect to F .

ii) P− a.s. ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 (invariance) and

iii) for all B ⊂ X bounded (and non-random), P− a.s.,

lim
t→∞

dist(ϕ(t, θ−tω)B,A(ω)) = 0,

where dist( . , . ) denotes the Hausdorff semidistance in X (cf. (2.6)).

Since ϕ(t, θ−tω)u0 can be interpreted as the position at t = 0 of the trajec-
tory which was at u0 at time −t, this pullback convergence property is essentially
attraction ‘from t = −∞’.

In Caraballo et al. (2000) we proved the existence of a random attractor for our
equation, using a theorem due to Crauel & Flandoli (1994). We also showed that
if β < λ1 then A(ω) = {0}, and more generally (using a result of Debussche 1998)
that if

β <
1
d

d∑

j=1

λj

then dH(A(ω)) < d. Since one can bound
∑d

j=1 λj ≤ Cd(m+2)/m, this implies the
upper bound

dH(A(ω)) ≤ c1β
m/2. (3.2)

Note that this is of the same order as the deterministic bound in (2.7), and of course
is extremely suggestive of the fact that the attractor becomes more complicated as
β increases through λ1.

4. A lower bound on the attractor dimension

We now turn to proving the promised lower bound on the dimension of the random
attractor A(ω). We make use of an idea from the deterministic theory, which is to
show that the attractor must contain an unstable manifold of a certain dimension.
However, this approach usually requires various differentiability properties of the
flow, and such technicalities are by no means straightforward in the stochastic case.
Furthermore, there is currently no well-developed theory of unstable manifolds for
general stochastic PDEs.
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So we proceed in a manner which we believe is slightly unusual, and could prove
useful not only for other stochastic examples but also in the deterministic case, by
proving not the existence of a C1 unstable manifold, but of a Lipschitz manifold
in a neighbourhood of the origin. The theory of inertial manifolds, introduced by
Foias et al. (1988) in the deterministic case, and developed by various authors for
stochastic equations (Bensoussan & Flandoli 1994; Chueshov & Girya 1994), is well
suited to this, and we follow some ideas from a paper of DaPrato & Debussche
(1996) in our proof.

In this way, we prove the following theorem.

Theorem 4.1. If λn < β < λn+1 then there exists a set Mδ(ω), a (locally) in-
variant n-dimensional Lipschitz manifold, which is part of the unstable set of the
origin, i.e.

lim
t→∞

dist(ϕ(−t, ω)u, 0) = 0 (4.1)

for all u ∈M(ω).

In (4.1), ϕ(−t, ω)u is the point v ∈ M(θ−tω) such that ϕ(t, θ−tω)v = u (the
fact that M(ω) is a finite-dimensional invariant manifold ensures that such a point
exists – see proposition 4.6 for more details).

We now appeal to a result of Crauel (1999), which guarantees that the unstable
set of the origin (defined precisely as in (4.1)) must be a subset of the random
attractor, and so obtain the lower bound on the attractor dimension given in the
following theorem.

Theorem 4.2. Provided that m ≤ 5, if λn < β < λn+1 then dH(A(ω)) ≥ n. In
particular, the dimension of the attractor satisfies dH(A(ω)) = O(βm/2).

(a) Truncating the equation

We prove the existence of Mδ(ω) in a series of propositions. We apply a version
of the theory in DaPrato & Debussche (1996) developed to prove the existence
of inertial manifolds for stochastic PDEs with a general multiplicative noise term.
However, here we do not look for an inertial manifold, but in fact an unstable
manifold in a neighbourhood of the origin.

The first task is to truncate the equation in a neighbourhood of the origin, to
ensure that the nonlinear term is globally Lipschitz, with a small Lipschitz constant.
[Our approach is, in fact, similar to that of Boxler (1991) for centre manifolds,
although here we can truncate our equation in a manner which is independent of ω.]
Although this is a standard approach in the deterministic theory, in which one has
a compact absorbing ball, it is perhaps the main weakness of the theory of inertial
manifolds for stochastic equations, where in general the radius of the absorbing ball
will depend on ω, and as yet there is no proof which allows the Lipschitz constant of
the nonlinearity to vary in this way. However, since we require only a local unstable
manifold, we will be able to truncate the equation in a consistent fashion.

We restrict to the case m ≤ 5, since then we can use the embedding H2α ⊂ L6

with 3/4 < α < 1 to show that F (u) = u3 is Lipschitz from H2α into L2 (we
suppress the D in all our function spaces from now on),

|u3 − v3|L2 ≤ C(‖u‖2H2α + ‖v‖2H2α)‖u− v‖H2α . (4.2)
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Indeed, we have

|u3 − v3|2L2 =
∫

D

(u3(x)− v3(x))2 dx

=
∫

D

(∫ u(x)

v(x)

3s2 ds

)2

dx

≤ 9
∫

D

|u(x)− v(x)|2(u(x)2 + v(x)2)2 dx

≤ 9
(∫

D

|u(x)− v(x)|2p dx

)1/p(∫

D

|u(x)2 + v(x)2|2q dx

)1/q

≤ 9|u− v|2L2p(|u|L4q + |v|L4q )4

≤ 9|u− v|2L6(|u|L6 + |v|L6)4,

taking (p, q) = (3, 3/2).
For a C1 cut-off function θ : R+ → [0, 1], such that

θ(r) =
{

1 r ≤ 1
0 r ≥ 2

with |θ′(r)| ≤ 2, it is straightforward to verify (cf. Temam, 1988) that

F (u) = −θ

(‖u‖H2α

R

)
u3 (4.3)

is globally bounded,

|F (u)| ≤ M0 for all u ∈ H2α,

and globally Lipschitz,

|F (u)− F (v)| ≤ L̃f‖u− v‖H2α for all u, v ∈ H2α. (4.4)

with L̃f ≤ c0R
2 for some constant c0. Note in particular that F (u) = −u3 in

BH2α(0, R), and so the two equations agree in a small H2α-neighbourhood of the
origin.

We will find it more convenient to use the norm equivalence between the H2α

norm and the norm in D(Aα). Writing |Aαu| = |u|α, where A is the negative
Laplacian on D with Dirichlet boundary conditions, we have

‖u‖H2α ≤ c|u|α. (4.5)

We can re-write (4.4) as

|F (u)− F (v)| ≤ Lf |u− v|α for all u, v ∈ D(Aα), (4.6)

where Lf = cL̃f (with c as in (4.5)).
Note that we can make Lf as small as we wish provided that R in (4.3) is chosen

small enough.
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(b) An invariant manifold for the truncated equation

We now work with the truncated equation

du = (−Au + βu + F (u)) dt + σu ◦ dWt, (4.7)

and prove the existence of an invariant manifold of dimension n when λn < β <
λn+1. In the statement of the theorem we write Pn for the orthogonal projection
onto the first n eigenfunctions of A, ordered so that the corresponding eigenvalues
are non-decreasing in n, and Qn for its orthogonal complement, Qn = I − Pn.

Theorem 4.3. If λn < β < λn+1, and R in (4.3) is chosen small enough that Lf

satisfies

β − λn > 4Lfλα
n (4.8)

and

λn+1 − β > (2KLf )1/(1−α), (4.9)

then (4.7) has an n-dimensional invariant manifold M(ω),

ϕ(λ, ω)M(ω) = M(θλω), λ ≥ 0.

Furthermore, M(ω) is given as the graph of a Lipschitz function Φω : PnH →
QnH ∩D(Aα),

|Φω(p1)− Φω(p2)|α ≤ 2|p1 − p2|α. (4.10)

We analyse the equation ω-by-ω. To this end we consider not equation (2.2) for
u, but, setting v = e−σWtu and observing that

dv = e−σWtdu− e−σWtσu ◦ dWt,

we can treat the non-autonomous equation for v,

dv

dt
= −Av + βv + e−σWtF (eσWtv). (4.11)

We write this as
dv

dt
= −Av + βv + Fσ(v),

where
Fσ(v) = e−σWtF (eσWtv).

Note that

|Fσ(u)− Fσ(v)| ≤ e−σWt |F (eσWtu)− F (eσWtv|
≤ e−σWtLf |eσWtu− eσWtv|α
= Lf |u− v|α, (4.12)
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so that the Lipschitz property of F in (4.6) is transferred to Fσ. Furthermore
it follows, since the support of F is contained in a bounded set in D(Aα), and
F (0) = 0, that

|Fσ(u)| ≤ M1

for some constant M1.
The solution operator corresponding to the transformed equation we write as

ψ(t, ω). Clearly,

ψ(t, ω) = e−σWt(ω)ϕ(t, ω). (4.13)

For a function

y : (−∞, 0] → PnH (4.14)

we define a norm

‖y‖E = sup
t∈(−∞,0]

|y(t)|α, (4.15)

and similarly for

z : (−∞, 0] → QnD(Aα). (4.16)

For a pair (y, z), we define

‖(y, z)‖E = max(‖y‖E , ‖z‖E). (4.17)

The space of all functions (y, z) as in (4.14) and (4.16) with finite E norm (the
norm in (4.17)) we denote by E.

We will need the following standard bound on the operator norm of Aαe−AtQn

from L2 into L2 (see Temam 1988, for example),

‖Aαe−AtQn‖op ≤ K̃(t−α + λα
n+1)e

−λn+1t for all t ≥ 0. (4.18)

We also set

K = K̃

∫ ∞

0

(t−α + 1)e−t dt. (4.19)

¿From now on we write P = Pn and Q = Qn.
Roughly speaking, we follow the proof in DaPrato & Debussche (1996). However,

here the argument is somewhat different, since our particular choice of multiplicative
noise allows us to consider the transformed equation (4.11) ω-by-ω, and we do not
have to deal with the problems which arise when trying to solve a more general
stochastic equation backwards in time. We also need to tailor the analysis to make
sure that the dependence on β remains explicit.

Proposition 4.4. For each ω ∈ Ω, there exists a unique solution (y, z) of the
coupled equations

dy

dt
= −Ay + βy + PFσ(y + z) y(0) = y0

dz

dt
= −Az + βz + QFσ(y + z) z(t) → 0 as t → −∞, (4.20)

on the interval (−∞, 0].
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Proof. We use a contraction mapping argument. For a given pair (η, ξ) ∈ E, we
define

Ty0(η, ξ) = (y, z),

where (y, z) solve the coupled system

dy

dt
= −Ay + βy + PFσ(η + ξ) y(0) = y0

dz

dt
= −Az + βz + QFσ(η + ξ) z(t) → 0 as t → −∞. (4.21)

Note that such a solution is well-defined, since, using the variation of constants
formula on the second equation we have

z(t) = e−(A−βI)(t−τ)z(τ) +
∫ t

τ

e−A(t−s)QFσ(ξ(s) + η(s)) ds.

Since (A−βI) is a positive operator, letting τ → −∞ and using the condition that
z(τ) → 0 we obtain the unique solution

z(t) =
∫ t

−∞
e−A(t−s)QFσ(ξ(s) + η(s)) ds. (4.22)

To show that Ty0 is a contraction on E, first we estimate the difference of two
solutions of the equation

dyi

dt
= −Ayi + βyi + PFσ(ηi + ξi) yi(0) = y0, (4.23)

corresponding to two different choices of (η, ξ) ∈ E in (4.21). Writing y(t) = y1(t)−
y2(t), it follows that y satisfies

dy

dt
= −Ay + βy + PFσ(η1 + ξ1)− PFσ(η2 + ξ2) y(0) = 0. (4.24)

Using the variation of constants formula, we can write, for t < 0,

y(0) = e(A−βI)ty(t) +
∫ 0

t

e(A−βI)(t−s)(PFσ(η1(s) + ξ1(s))−PFσ(η2(s) + ξ2(s))) ds,

and so, since y(0) = 0,

y(t) = −
∫ 0

t

e−(A−βI)s(PFσ(η1(s) + ξ1(s))− PFσ(η2(s) + ξ2(s))) ds. (4.25)

Taking the norm in D(Aα) throughout (4.25) we obtain, since −(A − βI) is a
positive operator on PH, with eigenvalues bounded below by β − λn,

|y(t)|α ≤ Lfλα
n

∫ 0

t

e(β−λn)s(|η(s)|α + |ξ(s)|α) ds,

where η = η1 − η2, and similarly for ξ.
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This becomes

|y(t)|α ≤ 2Lfλα
n

∫ 0

t

e(β−λn)s‖(η, ξ)‖E ds

≤ 2Lfλα
n

β − λn
‖(η, ξ)‖E [1− e(β−λn)t].

Since β > λn,

‖y‖E ≤ 2Lfλα
n

β − λn
‖(η, ξ)‖E . (4.26)

(4.8) now guarantees that ‖y‖E ≤ 1
2‖(η, ξ)‖E .

For a similar choice of (ηi, ξi), we now estimate the difference of solutions of the
two equations

dzi

dt
= −Azi + βzi + QFσ(ηi + ξi) zi(t) → 0 as t → −∞.

Setting z = z1 − z2, we have

dz

dt
= −Az + βz + QFσ(η1 + ξ1)−QFσ(η2 + ξ2).

As before we use the variation of constants formula, and since z(t) → 0 as t → −∞
we have

z(t) =
∫ t

−∞
e−(A−βI)(t−s)Q[Fσ(η1 + ξ1)− Fσ(η2 + ξ2)] ds.

Once more, taking the norm in D(Aα), using the Lipschitz property of Fσ in (4.12),
and the bound on Aαe−A(t−s)Q in (4.18) we have

|z(t)|α ≤ K̃Lf

∫ t

−∞
((t− s)−α + (λn+1 − β)α)e−(λn+1−β)(t−s)(|η(s)|α + |ξ(s)|α) ds.

Using the definition of the norm in E (4.17) now gives

|z(t)|α ≤ K̃Lf

∫ t

−∞
((t− s)−α + (λn+1 − β)α)e−(λn+1−β)(t−s)‖(η, ξ)‖E ds

≤ K̃Lf‖(η, ξ)‖E

∫ 0

−∞
(|τ |−α + (λn+1 − β)α)e(λn+1−β)τ dτ

≤ K̃Lf‖(η, ξ)‖E

∫ 0

−∞
(|τ |−α + (λn+1 − β)α)e(λn+1−β)τ dτ

≤ K̃Lf

λn+1 − β
‖(η, ξ)‖E(λn+1 − β)α

∫ 0

−∞
[|u|−α + 1]eu du.

It follows that
‖z‖E ≤ KLf

(λn+1 − β)1−α
‖(η, ξ)‖E ,

where the constant K is defined in (4.19).
The condition on Lf in (4.9) now ensures that ‖z‖E ≤ 1

2‖(η, ξ)‖E . It follows
that ‖(y, z)‖E ≤ 1

2‖(η, ξ)‖E , and so Ty0 is a contraction, and we obtain the unique
solution of our coupled pair of equations.
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We now define
Φω(y0) = z(0),

where z is the solution of (4.20) with y(0) = y0 and noise Wt(ω). Observe in
particular that Φω(0) = 0 for all ω ∈ Ω.

Proposition 4.5. For almost every ω ∈ Ω,

|Φω(y0
1)− Φω(y0

2)|α ≤ 2|y0
1 − y0

2 |α,

and the graph M(ω) of Φω is invariant for ϕ,

ϕ(λ, ω)M(ω) = M(θλω) λ ≥ 0,

i.e for any y0 ∈ PH and λ ≥ 0 we have

ϕ(λ, ω)(y0 + Φω(y0)) = yλ + Φθλω(yλ), (4.27)

P− a.s., where
yλ = Pϕ(λ, ω)(y0 + Φω(y0)).

Proof. First we show the Lipschitz property of Φω, by estimating

‖Ty1
0
(η, ξ)− Ty2

0
(η, ξ)‖E .

We will write
(yi, zi) = Ty0

i
(η, ξ).

Since z1 = z2, we need only estimate the difference y = y1 − y2 between two
solutions of

dyi

dt
= −(A− βI)yi + PFσ(η + ξ) yi(0) = yi

0,

but with the same pair (η, ξ) ∈ E. So,

dy

dt
= −(A− βI)y.

Thus
y(0) = e(A−βI)ty(t),

and so, for t < 0,
|y(t)|α ≤ e(β−λn)t|y1

0 − y2
0 |α.

It follows, since β > λn, that

‖Ty1
0
(η, ξ)− Ty2

0
(η, ξ)‖E ≤ |y1

0 − y2
0 |α.

So we have

‖(y1, z1)− (y2, z2)‖E = ‖Ty1
0
(y1, z1)− Ty2

0
(y2, z2)‖E

≤ ‖Ty1
0
(y1, z1)− Ty2

0
(y1, z1)‖E

+‖Ty2
0
(y1, z1)− Ty2

0
(y2, z2)‖E
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≤ |y1
0 − y2

0 |α +
1
2
‖(y1, z1)− (y2, z2)‖E ,

and so
‖(y1, z1)− (y2, z2)‖E ≤ 2|y1

0 − y2
0 |α.

Since Φω(yi
0) = zi(0), the Lipschitz bound follows.

To show the invariance, observe that Φω(y0) is defined as the solution at time
0 of the z component of (4.20) when y(0) = y0. Solving (4.11) with the initial
condition y0 + Φω(y0) produces a solution of the coupled equations

dy

dt
= −Ay + βy + PFσ(y + z) y(λ) = Pψ(λ, ω)[y0 + Φω(y0)]

dz

dt
= −Az + βz + QFσ(y + z) z(t) → 0 as t → −∞,

which is unique, by proposition 4.4. Now, observe that z(λ) is the same as the z(0)
produced as the solution of (4.11) with Wt(ω) replaced by

Wt+λ(ω) = Wt(θλω) + Wλ(ω).

With this change we obtain the solution of (4.11) with ω replaced by θλω, but
multiplied by an additional factor of eσWλ(ω).

We therefore obtain not invariance of M(ω) for the transformed equation, but
rather

ψ(λ, ω)M(ω) = eσWλ(ω)M(θλω).

The required invariance property for the untransformed equation is now immediate
using (4.13).

(c) A local unstable manifold for the original equation

Finally, we show that the inertial manifold found in the previous section is in
fact part of the unstable set of the origin, within the small neighbourhood on which
the truncated and original equations agree.

Proposition 4.6. There exists a δ(ω) such that Mδ(ω), the intersection of M(ω)
with the ball BH2α(0, δ(ω)), is part of the unstable set of the origin for the original
equation.

Proof. We consider the stochastic “inertial form”, i.e. the equation on the inertial
manifold for the P components of u, and show that there exists a δ(ω) < R such
that, for all p0 with |p0|α ≤ δ

(i) |p(t)|α ≤ R for all t ≤ 0, and

(ii) p(t) → 0 as t → −∞.
Point (i) shows that the trajectory “backwards” from p0+Φω(p0) remains within

BH2α(0, R), so that it is fact a solution of the original (untruncated) equation, while
(ii) shows that p0 + Φω(p0) is an element of the unstable set of the origin.

Note that we can consider trajectories “backwards in time” since M(ω) is in-
variant: ϕ(t, θ−tω)M(θ−tω) = M(ω), and so for u ∈ M(ω) there exists at least
one point v in M(θ−tω) such that ϕ(t, θ−tω)v = u. Since the governing equation
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14 T. Caraballo, J.A. Langa, & J.C. Robinson

reduces to a finite-dimensional random ordinary differential equation on M(ω) (see
below) this point is unique.

The inertial form is

dp =
{−(A− βI)p + PF (p + Φθtω(p))

}
dt + σp ◦ dWt.

Writing x(t) = e−σWtp(t) this becomes

dx

dt
= −(A− βI)x + e−σWtPF (eσWtx + Φθtω(eσWtx)).

Now, we have

|AαPF (u)| ≤ λα
n|F (u)| ≤ Lfλα

n|u|α,

since F is Lipschitz and F (0) = 0. Therefore we have, noting that the Lipschitz
constant of Φω in (4.10) is independent of ω,

1
2

d
dt
|x(−t)|2α ≤ −(β − λn)|x(−t)|2α + e−σW−tλα

n3LfeσW−t |x(−t)|2α,

or
d
dt
|x(−t)|α ≤ −(β − λn − 3λα

nLf )|x(−t)|α.

Note that it follows from (4.8) that

γ ≡ β − λn − 3λα
nLf > λα

nLf ,

and in particular is positive. We therefore have, for t < 0,

|x(t)|α ≤ eγt|x0|α, (4.28)

which gives, for p(t),

|p(t)|α ≤ eγteσWt |p0|α.

Now, for each fixed ω, given ε > 0 there exists a constant Cε(ω) such that

eσWt ≤ Cεe−εt for all t ≤ 0. (4.29)

Therefore we have

|p(t)|α ≤ eγte−εtCε(ω)|p0|α,

and so if we choose δ(ω) = min(R,R/Cε(ω)) the result follows.

5. A bifurcation of pitchfork type

We now make further use of the unstable manifold to help us prove the existence
of a stochastic bifurcation as β increases through λ1.
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(a) A definition of a stochastic pitchfork bifurcation

To motivate our definition we briefly recall a simple example in which such a
bifurcation has been studied by Arnold & Boxler (1992).

The stochastic ordinary differential equation

dx = (βx− x3) dt + σx ◦ dWt,

can be solved explicitly. As β passes through zero from below, behaviour similar to
that in the deterministic case can be observed. A random fixed point is a random
set which, for almost all ω, consists of just one point, a(ω), and is invariant,

ϕ(t, ω)a(ω) = a(θtω).

Arnold & Boxler (1992) show that for β < 0 the random attractor is just the fixed
point {0}, whereas for β > 0 two new random fixed points appear, ±a(ω). The
random attractor now consists of the interval [−a(ω), +a(ω)].

Crauel et al. (1999) discuss such bifurcations in one-dimensional systems in more
detail, and give a definition of a stochastic pitchfork bifurcation in terms of random
invariant measures. They define a stochastic pitchfork bifurcation as the appearance
of two new invariant measures, associated with new random fixed points, which are
stable in an appropriate sense.

Below, we adopt a definition of a pitchfork bifurcation based on the appearance
of new random fixed points rather than in terms of invariant measures.

Definition 5.1. Let (ϕβ)β∈R a family of RDS parametrized by β. We say that (ϕβ)
undergoes a stochastic pitchfork bifurcation at β = β0 if

i) For β ≤ β0, the random attractor consists solely of one (random) fixed point,
{0}, and

ii) for β > β0, the random attractor contains {0} and two new random fixed
points, a+(ω) and a−(ω), and P-a.s. a±(ω) → 0 as β ↓ β0.

Although, unlike Crauel et al. (1999), we do not include a criterion of stability
for the new fixed points, we believe that this type of bifurcation still merits the
title “pitchfork”, and we now prove that, in the case of a one-dimensional domain,
such a bifurcation occurs as β passes through λ1. Some discussion of the stability
of the new fixed points is given at the end of §5.

We showed in a previous paper (Caraballo et al. 2000) that for β < λ1 the
random attractor consists solely of the fixed point u ≡ 0. To study the structure of
the attractor for β > λ1, we argue as follows. First we show that the manifoldM(ω)
is tangent to the linear space spanned by the first eigenfunction of the Laplacian,
and with a little care it follows that this manifold intersects the cone K+ of positive
functions. Since K+ is in fact invariant for the cocycle (e.g. Kotelenez 1992) the
restriction of the cocycle to K+ has a non-trivial attractor A+(ω). Now, since the
cocycle is order-preserving, the theory developed by Arnold & Chueshov (1998)
shows that functions in A+(ω) are bounded above and below by random fixed
points: below by zero, and above by a new random fixed point a+(ω). The same
argument applies in K− and proves the presence of a pitchfork bifurcation.
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(b) Differentiability of M(ω) at 0

First we prove the differentiability property of the manifold. In particular, the
cubic bound (5.1) will be used to show that a portion of M(ω) lies in K+.

Proposition 5.2. The manifold M(ω) is tangent to PnH at the origin, and more-
over

|Φω(p)|α ≤ Cω|p|3α. (5.1)

Proof. First, observe that

Fσ(u) = −e−σWtθ

( |ueσWt |α
R

)
(ueσWt)3

is essentially cubic, so that

|Fσ(u)| ≤ e2σWt

(∫
u6 dx

)1/2

≤ e2σWt‖u‖3L6

≤ Ce2σWt |u|3α.

Now, Φω(y0) is z(0) from the coupled equations in proposition 4.4, so we know
(cf. (4.22)) that

z(0) =
∫ 0

−∞
e(A−βI)sQFσ(y(s) + z(s)) ds,

and hence

|z(0)|α ≤ K̃

∫ t

−∞
((−s)−α + (λn+1 − β)α)e(λn+1−β)sCe2σWs |u|3α ds.

Since
|u|3α ≤ (|y|α + |z|α)3 ≤ 8(|y|3α + |z|3α),

we have, using (4.29),

|z(0)|α ≤ Kω[‖y‖3E + ‖z‖3E ]. (5.2)

Now, we know that

z(t) =
∫ t

−∞
e−(A−βI)(t−s)QFσ(y + z) ds,

and we can estimate |z(t)|α as in the proof of proposition 4.4, using the fact that
Fσ(0) = 0,

|z(t)|α ≤ K̃Lf

∫ t

−∞
((t− s)α + (λn+1 − β)α)e−(λn+1−β)(t−s)|y + z|α ds

≤
(

K̃Lf

∫ t

−∞
((t− s)α + (λn+1 − β)α))e−(λn+1−β)(t−s) ds

)
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× (‖y‖E + ‖z‖E).

Now, we saw in proposition 4.4 that the integral expression here is bounded by 1
2 ,

and so we have ‖z‖E ≤ 1
2 (‖y‖E + ‖z‖E), i.e. ‖z‖E ≤ ‖y‖E .

Equation (5.2) now becomes

|z(0)|α ≤ 2Kω‖y‖3E , (5.3)

so it only remains to estimate ‖y‖E . However, this is the solution of the governing
equation which has y(0) = y0 and z(0) = Φω(y0), and so which lies on M(ω). The
inequality (4.28) from proposition 4.6 shows that in fact

|y(t)|α ≤ |y0|α for all t ≤ 0,

and so ‖y‖E ≤ |y0|α. Combining this with (5.3) gives the required bound.

(c) The bifurcation theorem

We now prove our second main result.

Theorem 5.3. Let m = 1. Then (2.2) undergoes a stochastic pitchfork bifurcation
at β = λ1. In particular, for β > λ1 there exist positive and negative random fixed
points ±a(ω), and a(ω) → 0 as β ↓ λ1.

Note that one could easily recast this result in terms of the appearance of two
new invariant measures, namely the random Dirac measures concentrated at ±a(ω).

Proof. Choose and fix β > λ1. Since the first eigenfunction of the Laplacian is
positive, we use the cubic estimate to show that Mδ(ω) must contain a positive
function. More precisely, we let

K+ = {u ∈ L2(D) : u(x) ≥ 0 almost everywhere},

and
K− = {u ∈ L2(D) : u(x) ≤ 0 almost everywhere}.

The main idea is to show that one portion of the unstable manifold must be a
subset of K+, and another a subset of K−.

On a one-dimensional domain [0, L] we know that the eigenfunctions of the
Laplacian with Dirichlet boundary conditions are proportional to

wn(x) = sin(nπx/L).

Since the manifold Mδ(ω) is given as a graph over the space spanned by the first
eigenfunction, for each fixed ω the manifold consists of a family of functions (here
parametrised by ε) given in the form

u(x, ε) = ε sin(πx/L) +
∞∑

j=2

cj sin(jπx/L),

where cj = cj(ε, ω).
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Since ∣∣∣∣
sin(jπx/L)
sin(πx/L)

∣∣∣∣ ≤ j

(simply rewrite the sine terms using complex exponentials) we have

u(x, ε) ≥ sin(πx/L)
[
ε−

∞∑

j=2

|cj |j
]
.

Using the cubic bound on Φω, we know that
∣∣∣∣
∞∑

j=2

cj sin(jπx/L)
∣∣∣∣
α

= C

( ∞∑

j=2

|cj |2j4α

)1/2

≤ Cω

∣∣ε sin(πx/L)|3α = Kωε3.

Since α > 3/4 we can now write

∞∑

j=2

|cj |j ≤
( ∞∑

j=2

j4α|cj |2
)1/2( ∞∑

j=2

j2(1−2α)

)1/2

≤ Cε3,

and so
u(x, ε) ≥ sin(πx/L)[ε− Cε3].

Thus for ε > 0 small enough, u(x, ε) ≥ 0 on [0, L]; similarly for ε < 0 and small
enough, u(x, ε) ≤ 0 on [0, L]. In other words, there are portions of Mδ(ω) near the
origin which intersect non-trivially with K+ and K−.

Now, Kotelenez (1992) shows that the cocycle generated by the equation is
order-preserving on L2(D), so that if u0 ≥ v0 almost everywhere then

ϕ(t, ω)u0 ≥ ϕ(t, ω)v0.

In particular, since zero is a fixed point of the equation, K± are invariant subspaces
for ϕ. (These two facts are easy to check if u0 and v0 are continuous functions by
applying the standard deterministic theory (essentially the maximum principle, see
Smith 1995) to the equation for v(t) = e−σWtu(t).)

By following the analysis in Caraballo et al. (2000) one can show that the flow in
each of these subspaces has a positively invariant compact absorbing set, namely a
bounded set in H1(D) with radius r(ω), where r(ω) is a tempered random variable.
In particular therefore, using the theory in Flandoli & Schmalfuss (1996) the flow in
each of these subspaces has its own random attractor, A+(ω) and A−(ω), and these
attract all tempered random sets. Since Mδ(ω)∩K± forms part of the unstable set
of the origin, it must be a subset of A±(ω), and so in particular A±(ω) is non-trivial.

In their 1998 paper Arnold & Chueshov develop an extensive theory for order-
preserving random dynamical systems, and in particular one of their results (the-
orem 2) provides the existence of new stochastic fixed points in this example (es-
sentially we follow Chueshov, 2000): if ϕ is an order-preserving random dynamical
system for which there exists a random interval

J (ω) = {u : b(ω) ≤ u ≤ c(ω)}
which is attracted to and contains A(ω), then there exist random fixed points
u−(ω) ≤ u+(ω) such that u−(ω) ≤ u ≤ u+(ω) for all u ∈ A(ω).
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SinceA(ω) lies within a random ball in H1(D) of radius r(ω), and since H1(D) ⊂
C0(D) with ‖u‖∞ ≤ C(D)‖u‖1H , it follows in particular that

0 ≤ u ≤ c(D)r(ω) for all u ∈ A+(ω).

Using the above result we can deduce that there exist two random fixed points
u−(ω) and u+(ω) such that

u−(ω) ≤ u ≤ u+(ω) for all u ∈ A+(ω).

Clearly u−(ω) = 0, but since A+(ω) is non-trivial this proves the existence of a
new random (positive) fixed point a(ω) = u+(ω). By symmetry there is also a
new random (negative) fixed point −a(ω). (For a similar argument see Chueshov
(2000).)

That a(ω) → 0 as β ↓ λ1 follows from a slight variant of the general result on
the upper-semicontinuity of random attractors to be found in Caraballo & Langa
(2001, theorem 3), which guarantees under conditions which are easily verified in
our case (convergence of the corresponding cocyles; convergence of the compact
absorbing sets; and positive invariance of the compact absorbing set for the limit
equation (β = λ1)) that P-a.s.

lim
β↓λ1

dist(A+
β (ω), Aλ1(ω)) = 0.

Since a(ω) ⊂ A+(ω) and Aλ1(ω) = {0} we have a(ω) → 0.

In fact, we know a little more than is stated in the theorem. For β > λ1 the
attractor contains the two distinct, non-trivial, invariant subsets A+(ω) and A−(ω),
which attract all initial conditions in K+ and K− respectively. One can think of
this, loosely, as a transfer of stability of the origin to A+(ω) and A−(ω).

For a more concrete stability result, theorem 2 in Arnold & Chueshov (1998)
guarantees a limited type of stability for the new fixed points. In particular, a(ω) is
stable from above, in that if u(ω) ≥ a(ω) (note that this “initial condition” cannot
in general be taken to be deterministic) then

lim
t→∞

ϕ(t, θ−tω)u(θ−tω) = a(ω)

(stability “from below” holds for −a(ω)). Since trajectories near zero in K+ move
away from the origin, it seems reasonable to expect that a(ω) is attracting in K+.
If one could show that solutions eventually enter K+ or K− this would give the
stability of the fixed points. (A general result guaranteeing the existence of stable
fixed points is given by Schmalfuß (1996), but we have not been able to apply this
in our case.)

6. Conclusion

We have shown that the structure of the random attractor for our example, the
Chafee-Infante equation with a multiplicative noise term, is surprisingly close to
that of the deterministic equation. In particular, we have shown that the dimen-
sion of the attractor, asymptotically in β, exhibits the same behaviour as in the
deterministic case, and is independent of the level of noise (σ).
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Analysing further the structure of this attractor we have shown that as β passes
through λ1 the attractor grows and two new random fixed points appear. Noting
that a±(ω) ∈ A±(ω), what we expect is that in fact, for λ1 < β < λ2,

A(ω) = A+(ω) ∪A−(ω),

with A±(ω) consisting of a one-dimensional manifold (the image of Mδ(ω) ∩ K±
under the flow) joining the origin to ±a(ω). This would ensure that the attractor’s
structure is exactly that in the deterministic case.

Some support for this picture, at least for small σ, is given by the upper semi-
continuity result in Caraballo et al. (1998). We proved there that as σ → 0, for
each ω,

dist(Aσ(ω),A) → 0.

Thus the random attractor, a set which is at least one-dimensional, must lie within a
small neighbourhood ofA, which is itself homeomorphic to a line when λ1 < β < λ2.

Finally, we comment that we would not expect similar ideas to work in the case
of an additive noise term (e.g. +εφ dWt, for some φ ∈ H). Without the fixed point
{0} there is no clear way to show that an invariant manifold for a truncated version
of the equation is a subset of the random attractor. Indeed, the one-dimensional ex-
ample in Crauel & Flandoli (1998) suggests that with an additive noise the attractor
will be very much simpler than in the deterministic case. We hope to investigate
this further in a future paper.
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some interesting and helpful conversations. James Robinson is currently a Royal Society
University Research Fellow, and would like to thank the Society for their support. He
would also like to thank EDAN for their hospitality, and Iberdrola for their financial
assistance during his visit. Tomás Caraballo and José Langa have been partially supported
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