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Soliton ratchets
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The mechanism underlying the soliton ratchet, both in absence and in presence of noise, is investigated. We
show the existence of an asymmetric internal mode on the soliton profile that couples, through the damping in
the system, to the soliton translational mode. Effective soliton transport is achieved when the internal mode and
the external force are phase locked. We use as a working model a generalized double sine-Gordon equation.
The phenomenon is expected to be valid for generic soliton systems.
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One of the phenomena which is presently attracting intermotion under the action of the ac force. In this mechanism,
est both in physics and in biology is the so-called ratchethe damping plays the role of coupling between the internal
effect[1]. In simple terms, a ratchet system can be describethode and the translational mode of the soliton. We find that,
as a periodically forced Brownian particle moving in an for fixed amplitude and frequency of the ac force, there is an
asymmetric potential in the presence of damping and perioptimal value of the damping for which the transpgre.,
odic driving. The periodic forcing keeps the system out ofthe velocity achieved by the solitbiecomes maximal. In
equilibrium so that the thermal energy can assist the convethis case the frequency of the internal mode and the one of
sion of the ac driver into effective worldirect motion of the  the external driver, perfectly matdphase locking A simi-
particle without any conflict with the second law of thermo- 1ar resonant behavior is also observed by varying the fre-
dynamics. This phenomenon has been found in severdluency of the ac force, keeping fixed the other parameters of
physical[2] and biological 3] systems and is presently con- the system. At very high damping and fixed amplitude of the
sidered as a possible mechanism by which biological motoréorcing, the internal mode oscillation becomes very small,
perform their functiong4]. For ode systems with damping, and the transport due to the soliton ratchet is strongly re-
additive forcing, and noise, the ratchet effect can be viewedluced. At low damping and higher forcing we find, quite
as a phase-locking phenomenon between the motion of theurprisingly, that current reversals can occur. Finally, we
particle in the periodic potential and the external drif&} show that soliton ratchets can survive the presence of noise
Ratchet dynamics have also been observed in more complin the system.
cated systems such as overdamgédmodels[6], chains of ~ We start by introducing the following generalized double
coupled particles with degenerate on-site potenfiélslong  Sine-Gordon equation:

Josephson junctions with modulated widfB$ and inhomo-

geneous parallel Josephson arrf8f three-dimensional he- B~ = —SIN(B)— \ SN2+ 6) = — du(¢) )

lical models[10], etc. These are infinite dimensional systems T do

described by continuous or discrete equations of soliton type,

with asymmetric potentials, damping, and periodic forcing,With the potential U(¢)=C—cos(p)—(A/2)cos(2p+6).

in which the ratchet phenomenon manifests as unidirectiondtiereX is the asymmetry parametet|s a fixed phase, and
motion of the soliton(soliton ratchet For overdamped sys- & constant that fixs the zero of the potential. A discrete ver-
tems one can reduce the soliton ratchet to the usual singl&ion of this equation was introduced in REf1] in terms of
particle ratchet by using a collective coordinate approach fop chain of elastically coupled double pendula assembled by a
the center-of-mass of the solitd6]. For underdamped or gear of ratio 1/2 with a phase anglebetween them. Fox
moderately damped systems, however, this could be inappré=0, EQ. (1) gives the well known sine-Gordon equation
priate, since the radiation field present in the system can pla§GB with exact soliton solutions, while fox+#0 and 6

an important role for the generation of the phenomenon. =0 (mod ) it reduces to the proper double sine-Gordon

The aim of this article is to investigate the mechanismequation(note that in both cases the potential is periodic and
underlying soliton ratchets both in the absence and in théymmetric in¢). In the following discussion we are inter-
presence of noise. To this end we use an asymmetric doubgsted in the cas€+0 (mod ) for which the periodic po-
sine-Gordon equation as a working model for studying théential becomes asymmetric. We shall refer to this case as the
effect (the phenomena, however, will not depend on the parasymmetric double sine-Gordon equatigkDSGE). In par-
ticular model used We show that the asymmetry of the po- ticular, we fix #= /2 in Eq. (1) in order to have maximal
tential induces a spatially asymmetric internal mode on theéissymmetry, and choos€ = cos(pg)—\/2 sin(2py), with ¢,
soliton profile which can be excited by the periodic force. In=arcsifi(1-A)/4\]+2n7 and A=.1+8\?, to have the
the presence of damping, this mode can exchange energgro of the potential in correspondence with its absolute
with the translational mode so that the soliton can have a nehinima ¢y. We also assume, for simplicity e[ —1,1] to

1063-651X/2002/6&)/0256024)/$20.00 65 025602-1 ©2002 The American Physical Society



MARIO SALERNO AND NIURKA R. QUINTERO

avoid relative minima appearing in the potential. Besides the
mentioned mechanical model, E@.) is also linked to an-
other interesting physical system i.e., a one-dimensional ar-
ray of inductively coupled Superconducting quantum inter-
ference devicesSQUID’s), each consisting of a loop of a
Josephson junction in parallel with a series of two identical
Josephson junctions. The single element of this array was 3
studied in Ref[12] in which it was shown that, due to the
ratchet effect, the system can rectify periodic signals. In
analogy with the single-particle ratchet, it is reasonable to
introduce in the distributed model, periodic forcing, damp-
ing, and noise, leading to the following perturbed ADSGE:

P~ dxxTSIN(P) + N cOY2¢) = — ad+ e sin(wt+ )
+n(x,t). 2)

Here o denotes the damping constan{x,t) is white noise
with autocorrelation
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FIG. 1. Small oscillation spectrum versws Above the solid
line are the phonon’s modes. The stars joined by the dashed line
refers to the internal mode. The inset shows the spatial profile of the

) . phonon bandthe zero mode, existing for all values »f is
ande, w, 6, are, respectively, the amplitude the frequencypq; piotted for graphical conveniencen the inset of the
and the phase of the driver. Traveling wave solutions of thefigure the shape of the internal mode is also reported, from

unperturbed ADSGE, i.e., solutions which dependéen(x
—Vt)/\/l—V2 [note that Eq(1) is Lorentz invariantcan be
found by substitutingp= ¢(&) in the left-hand side of Eq.
(2) and equating it to zero. After one integration §nwe
obtain

which we see that the asymmetry of the potential induces a
spatial asymmetry if(x). In the presence of a periodic force
this internal mode can be easily excited.

To understand the role of the various elements of the

problem, (i.e., asymmetry of the potential, internal mode,
o do damping, forcing, and noiét is better to consider first the
f . — (4) zero noise casédeterministic soliton ratchgt By viewing

" ’—2(E+U) =&—&o,

which gives, after the inversion of the integralt 0 (top
of the reversed potentiglithe 2-kink (antikink) solutions as

sign(\)AB

A-1- nsin)—{ig\/ABllhl}

by = po+2tan

the soliton as a string lying on the potential surface

S(U, ¢,x) and connecting adjacent minima, the following

picture of the phenomenon can be given. If the potential is

asymmetridin ¢) the transition from the top of the potential

to one minimum and from the top of the potential to the

, (5)  other minimum, is also asymmetriit will be more rapid for
the part of the string lying on the region where the potential
is more stiff. Thus, the potential asymmetry i induces an

_ _ BI=1TA) asymmetry in space which can be seen both in thekihk
where =2\ y2(1+A), andB=y2(4\"—1+A) (the plus  , file anq in the internal mode. In presence of an ac force,

and minus signs refer to the kink and antikink solutions
respectively. Note that in the limi\ — 0, Eq.(5) reduces to
the well-known soliton solution of SGE. To investigate the
existence of internal modes in the system, we linearize th
ADSGE around the solution in Ed5), i.e., we look for
solutions of the formp= ¢, + ¢ with

Jx,H=exgiot)f(x), f(x)<L.

'but in the absence of damping, this asymmetry will not pro-
duce transport, i.e., the string will slide, without any friction,
back and forth on the potential profile along theirection.
q‘he presence of damping, however, introduces friction in
this sliding, and the part of the string moving on the stiff part
of the potential profile dissipates more that the other. This
asymmetry in the dissipation produces net motion for the

soliton (the string moves in the direction in which it ap-
This leads to the following eigenvalue problem on the wholeproaches the potential minimum more smoothife can say
line that the effect of the damping is to couple the internal mode

to the translational mode. The mechanism underlying the de-

foxt{w?—cog ¢y ]+ 2\ sin(2¢ ) f=0, (6)  terministic soliton ratchet can then be described as follows:

the ac force pumps energy in the internal mode which is
with f,(+%)=0, which can be easily solved by numerical converted into net dc motion by the coupling with the zero
methods for any finite length of the system. In Fig. 1 wemode induced by the damping. From this picture one can
report the numerical spectrum of E@) as a function ofx. easily predict that in the absence of the internal mode, or in
We see that except for the sine-Gordon limit0), there is  the absence of damping, no soliton ratchet can exist. More-
an internal mode frequenc§); below the spectrum of the over, one expects that the maximal effect in transport, is
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FIG. 2. Time evolution of thex derivative of the kink profile
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FIG. 3. Mean velocity of the kink center-of-mass versus the

frequency of the ac force far=0.4 (solid line) and e= 0.6 (dashed

while executing ratchet dynamics. The parameter valueshare lin€). The other parameters are fixed as in Fig. 2 except for the

=0.5, p=m/2, ®=0.6, €¢=0.8, w=0.8, andD=0.

observed when the internal oscillation and the external force
are synchronizedphase locked

In order to confirm this picture, we have performed direct
numerical integrations of the ADSGE for different values off
the system parameters. First, we have checked that in th
SGE limit, i.e., when\ =0, the ratchet dynamics does not
exists. This agrees with the fact that in this case there is n
asymmetry in the potential and no internal mode. At this
point we remark that the dynamics of a SG kink subject to a
periodic force was also investigated in Rlf3], in which it
was shown that in the absence of damping the kink can a
quire a finite velocity depending on the initial phase of the ac
force. Net motion of a SGE soliton was shown to be also
possible in the presence of a small damping, if the ac force
excites a phonon mode that exchanges energy with the solj-
ton[14]. These cases, however, should not be confused wit
soliton ratchets since they strongly depend on initial condi-
tions (if one average on initial conditions the transport dis-
appears Moreover, in contrast with soliton ratchets, these
effects exist only at zero or at very low damping. Second, we
have checked that for# 0 (asymmetric potentialbut in the
absence of damping, soliton ratchets also do not dfst
brevity we will not expand on these cases hefgom this
analysis we conclude that, in analogy with the deterministic
single-particle ratchets, the asymmetry of the potential, the
damping and, obviously the periodic forcing, are crucial in-
gredients for soliton ratchets. In Fig. 2 we show a prospectic
view of the soliton ratchet dynamics as obtained from nu-
merical integration of Eq(2). We remark that the direction
of the motion is fixed by the asymmetry of the potential and
can be inverted by changing the sign »f We see that,
except for the soliton profile which is wobbling, no phonons

have performed numerical simulations of Eg) both by
fixing all parameters and changing, and by fixing all pa-
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more pronounced.

asymmetry parameter, which As= —0.5.

rameters and changing. In Fig. 3 we show the average
velocity (computed by using an integration tirhe 1000) of
the soliton center-of-mass versus the frequency of the exter-
nal driver, for two different values of the amplitude of the ac
orce (the low damping part of the curves was not computed
ue to the longer integration times required in this gase
From this figure we see thdly) has a maximum ab~1
?l.e., w=1.04 andw=1 for e=0.4 ande= 0.6, respectively
which is very close to the internal mode frequengy
~1.0562(the discrepancy is within the numerical accuracy
of our numerical schemeBy increasing the amplitude of the
cforcing, the dynamics gets more complicatédeatherlike
excitations can apperaand the resonance peak in frequency

A similar resonant behavior is expected to also exist as a

<V>
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unction of the damping. When the damping is very high,
indeed, the internal mode is almost suppressed by the damp-
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. ’ > FIG. 4. Mean velocity of the center-of-mass of the kink versus
are present in the system. This confirms the relevance of thg, for parameter values = —0.5, f,= /2, w=0.4, ande=0.5.

internal mode in the phenomenon. We also find that for som&ne continuous curve refers to the case 0, while the stars refer
parameter values, the net motion is more effective. To invesp the nondeterministic cas®=0.01. The continuous and dotted
tigate the dependence of the phenomenon on parameters, igves in the inset refer to two solitafy, profiles atD =0, taken in

3

the comoving frame and separated in time by one period of the
driver.
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ing, while when it is very low, the coupling between the nism described abov@t low dampings a complicate trans-
internal mode and the translational mode is very small, bottierral of energy between phonons, internal mode, and trans-
cases giving minimal transport. In between these extremes, lational mode, can arigeTo understand this phenomenon,
value of the damping which allows the internal mode to syn-however, a more detailed study is required.

chronize with the external driver and optimize transport, Finally, we have investigated the effect of the noise on
should then exist. This is what we observe in Fig. 4 wheredeterministic soliton ratchets. A preliminary analysis shows
the velocity vs damping is reported as a continuous curve. That for low noise amplitudes the effect of the noise on the

show that the internal mode is phase locked with the externd®nomenon is minimal, in the sense that the dynamics gets
driver, we have plotted in the inset of this figure thg dressed by the noise, but after averaging on the noise, almost

profiles in the comoving framéi.e., the drift motion was tr;]e sarge ﬂs]olitcgn ”?eaF”. vi‘loci:}y\/% is obtainteflh This is |
subtracteg at two fixed timest;=211.6 (solid line) andt, shown by the stars in F1g. 4, which represent thé numerica

_ : : _ values of(V) calculated in the presence of a noise of ampli-
=227.3(circles separated by one peridd-=2m/w=15.7 of 100 01 The fact that soliton ratchets can survive the
the driver. We see that the profiles overlap each other, i.e

. i L . resence of weak amplitude noise can be understood as a
the oscillation on the kink profile is perfectly synchromzedp b

. . . . consequence of the structural stability of phase-locking phe-
with the external drivefphase locking From Fig. 4 we also  homena against small fluctuations. This indicates that the

see, quite surprisingly, that at low dam_ping current revers_al henomenon can also exist in real systems such as one-
can occur(note that the average velocity becomes negativgyiansional arrays of inductively coupled SQUID's. We fi-
for a less thana,~0.24). nally remark that the presented mechanism of soliton ratch-

We find that the value ok, increases as the amplitude of &5 is expected to be also valid for other soliton systems.
the driver is increased. The occurrence of this phenomenon,

which resembles the one observed in single-particle ratchets We thank M. Barbi and M. R. Samuelsen for interesting
at low damping[5,15], seems to be related more to the discussions. Financial support from the European Grant
phonon-soliton interaction than to the internal mode mechat OCNET No. HPRN-CT-1999-00163 is acknowledged.
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