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Soliton ratchets
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The mechanism underlying the soliton ratchet, both in absence and in presence of noise, is investigated. We
show the existence of an asymmetric internal mode on the soliton profile that couples, through the damping in
the system, to the soliton translational mode. Effective soliton transport is achieved when the internal mode and
the external force are phase locked. We use as a working model a generalized double sine-Gordon equation.
The phenomenon is expected to be valid for generic soliton systems.
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One of the phenomena which is presently attracting in
est both in physics and in biology is the so-called ratc
effect @1#. In simple terms, a ratchet system can be descri
as a periodically forced Brownian particle moving in a
asymmetric potential in the presence of damping and p
odic driving. The periodic forcing keeps the system out
equilibrium so that the thermal energy can assist the con
sion of the ac driver into effective work~direct motion of the
particle! without any conflict with the second law of thermo
dynamics. This phenomenon has been found in sev
physical@2# and biological@3# systems and is presently con
sidered as a possible mechanism by which biological mo
perform their functions@4#. For ode systems with damping
additive forcing, and noise, the ratchet effect can be view
as a phase-locking phenomenon between the motion of
particle in the periodic potential and the external driver@5#.
Ratchet dynamics have also been observed in more com
cated systems such as overdampedf4 models@6#, chains of
coupled particles with degenerate on-site potentials@7#, long
Josephson junctions with modulated widths@8#, and inhomo-
geneous parallel Josephson arrays@9#, three-dimensional he
lical models@10#, etc. These are infinite dimensional syste
described by continuous or discrete equations of soliton ty
with asymmetric potentials, damping, and periodic forcin
in which the ratchet phenomenon manifests as unidirectio
motion of the soliton~soliton ratchet!. For overdamped sys
tems one can reduce the soliton ratchet to the usual sin
particle ratchet by using a collective coordinate approach
the center-of-mass of the soliton@6#. For underdamped o
moderately damped systems, however, this could be inap
priate, since the radiation field present in the system can
an important role for the generation of the phenomenon.

The aim of this article is to investigate the mechani
underlying soliton ratchets both in the absence and in
presence of noise. To this end we use an asymmetric do
sine-Gordon equation as a working model for studying
effect ~the phenomena, however, will not depend on the p
ticular model used!. We show that the asymmetry of the p
tential induces a spatially asymmetric internal mode on
soliton profile which can be excited by the periodic force.
the presence of damping, this mode can exchange en
with the translational mode so that the soliton can have a
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motion under the action of the ac force. In this mechanis
the damping plays the role of coupling between the inter
mode and the translational mode of the soliton. We find th
for fixed amplitude and frequency of the ac force, there is
optimal value of the damping for which the transport~i.e.,
the velocity achieved by the soliton! becomes maximal. In
this case the frequency of the internal mode and the on
the external driver, perfectly match~phase locking!. A simi-
lar resonant behavior is also observed by varying the
quency of the ac force, keeping fixed the other parameter
the system. At very high damping and fixed amplitude of t
forcing, the internal mode oscillation becomes very sm
and the transport due to the soliton ratchet is strongly
duced. At low damping and higher forcing we find, qui
surprisingly, that current reversals can occur. Finally,
show that soliton ratchets can survive the presence of n
in the system.

We start by introducing the following generalized doub
sine-Gordon equation:

f tt2fxx52sin~f!2l sin~2f1u![2
dU~f!

df
~1!

with the potential U(f)5C2cos(f)2(l/2)cos(2f1u).
Herel is the asymmetry parameter,u is a fixed phase, andC
a constant that fixs the zero of the potential. A discrete v
sion of this equation was introduced in Ref.@11# in terms of
a chain of elastically coupled double pendula assembled
gear of ratio 1/2 with a phase angleu between them. Forl
50, Eq. ~1! gives the well known sine-Gordon equatio
~SGE! with exact soliton solutions, while forlÞ0 and u
50 ~mod p) it reduces to the proper double sine-Gord
equation~note that in both cases the potential is periodic a
symmetric inf). In the following discussion we are inter
ested in the caseuÞ0 ~mod p) for which the periodic po-
tential becomes asymmetric. We shall refer to this case as
asymmetric double sine-Gordon equation~ADSGE!. In par-
ticular, we fix u5p/2 in Eq. ~1! in order to have maxima
asymmetry, and chooseC5cos(f0)2l/2 sin(2f0), with f0

5arcsin@(12A)/4l#12np and A5A118l2, to have the
zero of the potential in correspondence with its absol
minima f0. We also assume, for simplicity,lP@21,1# to
©2002 The American Physical Society02-1
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avoid relative minima appearing in the potential. Besides
mentioned mechanical model, Eq.~1! is also linked to an-
other interesting physical system i.e., a one-dimensiona
ray of inductively coupled Superconducting quantum int
ference devices~SQUID’s!, each consisting of a loop of
Josephson junction in parallel with a series of two identi
Josephson junctions. The single element of this array
studied in Ref.@12# in which it was shown that, due to th
ratchet effect, the system can rectify periodic signals.
analogy with the single-particle ratchet, it is reasonable
introduce in the distributed model, periodic forcing, dam
ing, and noise, leading to the following perturbed ADSGE

f tt2fxx1sin~f!1l cos~2f!52af t1e sin~vt1u0!

1n~x,t !. ~2!

Herea denotes the damping constant,n(x,t) is white noise
with autocorrelation

^n~x,t !n~x8,t8!&5Dd~x2x8!d~ t2t8!, ~3!

and e, v, u0 are, respectively, the amplitude the frequen
and the phase of the driver. Traveling wave solutions of
unperturbed ADSGE, i.e., solutions which depend onj[(x
2Vt)/A12V2 @note that Eq.~1! is Lorentz invariant# can be
found by substitutingf[f(j) in the left-hand side of Eq
~2! and equating it to zero. After one integration inj we
obtain

E
f0

f df

A2~E1U !
5j2j0 , ~4!

which gives, after the inversion of the integral atE50 ~top
of the reversed potential!, the 2p-kink ~antikink! solutions as

fK
65f012tan21H sign~l!AB

A212h sinhF6
j

2
AAB/uluG J , ~5!

whereh52lA2(11A), andB5A2(4l2211A) ~the plus
and minus signs refer to the kink and antikink solution
respectively!. Note that in the limitl→0, Eq.~5! reduces to
the well-known soliton solution of SGE. To investigate t
existence of internal modes in the system, we linearize
ADSGE around the solution in Eq.~5!, i.e., we look for
solutions of the formf5fK

61c with

c~x,t !5exp~ ivt ! f ~x!, f ~x!!1.

This leads to the following eigenvalue problem on the wh
line

f xx1$v22cos@fK
6#12l sin~2fK

6!% f 50, ~6!

with f x(6`)50, which can be easily solved by numeric
methods for any finite length of the system. In Fig. 1 w
report the numerical spectrum of Eq.~6! as a function ofl.
We see that except for the sine-Gordon limit (l50), there is
an internal mode frequencyV i below the spectrum of the
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phonon band~the zero mode, existing for all values ofl, is
not plotted for graphical convenience!. In the inset of the
figure the shape of the internal mode is also reported, fr
which we see that the asymmetry of the potential induce
spatial asymmetry inf (x). In the presence of a periodic forc
this internal mode can be easily excited.

To understand the role of the various elements of
problem, ~i.e., asymmetry of the potential, internal mod
damping, forcing, and noise! it is better to consider first the
zero noise case~deterministic soliton ratchet!. By viewing
the soliton as a string lying on the potential surfa
S(U,f,x) and connecting adjacent minima, the followin
picture of the phenomenon can be given. If the potentia
asymmetric~in f) the transition from the top of the potentia
to one minimum and from the top of the potential to t
other minimum, is also asymmetric~it will be more rapid for
the part of the string lying on the region where the poten
is more stiff!. Thus, the potential asymmetry inf induces an
asymmetry in space which can be seen both in the 2p-kink
profile and in the internal mode. In presence of an ac for
but in the absence of damping, this asymmetry will not p
duce transport, i.e., the string will slide, without any frictio
back and forth on the potential profile along thex direction.
The presence of damping, however, introduces friction
this sliding, and the part of the string moving on the stiff pa
of the potential profile dissipates more that the other. T
asymmetry in the dissipation produces net motion for
soliton ~the string moves in the direction in which it ap
proaches the potential minimum more smoothly!. We can say
that the effect of the damping is to couple the internal mo
to the translational mode. The mechanism underlying the
terministic soliton ratchet can then be described as follo
the ac force pumps energy in the internal mode which
converted into net dc motion by the coupling with the ze
mode induced by the damping. From this picture one c
easily predict that in the absence of the internal mode, o
the absence of damping, no soliton ratchet can exist. Mo
over, one expects that the maximal effect in transport

FIG. 1. Small oscillation spectrum versusl. Above the solid
line are the phonon’s modes. The stars joined by the dashed
refers to the internal mode. The inset shows the spatial profile of
internal mode atl50.5.
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observed when the internal oscillation and the external fo
are synchronized~phase locked!.

In order to confirm this picture, we have performed dire
numerical integrations of the ADSGE for different values
the system parameters. First, we have checked that in
SGE limit, i.e., whenl50, the ratchet dynamics does n
exists. This agrees with the fact that in this case there is
asymmetry in the potential and no internal mode. At t
point we remark that the dynamics of a SG kink subject t
periodic force was also investigated in Ref.@13#, in which it
was shown that in the absence of damping the kink can
quire a finite velocity depending on the initial phase of the
force. Net motion of a SGE soliton was shown to be a
possible in the presence of a small damping, if the ac fo
excites a phonon mode that exchanges energy with the
ton @14#. These cases, however, should not be confused
soliton ratchets since they strongly depend on initial con
tions ~if one average on initial conditions the transport d
appears!. Moreover, in contrast with soliton ratchets, the
effects exist only at zero or at very low damping. Second,
have checked that forlÞ0 ~asymmetric potential! but in the
absence of damping, soliton ratchets also do not exist~for
brevity we will not expand on these cases here!. From this
analysis we conclude that, in analogy with the determinis
single-particle ratchets, the asymmetry of the potential,
damping and, obviously the periodic forcing, are crucial
gredients for soliton ratchets. In Fig. 2 we show a prospe
view of the soliton ratchet dynamics as obtained from n
merical integration of Eq.~2!. We remark that the direction
of the motion is fixed by the asymmetry of the potential a
can be inverted by changing the sign ofl. We see that,
except for the soliton profile which is wobbling, no phono
are present in the system. This confirms the relevance o
internal mode in the phenomenon. We also find that for so
parameter values, the net motion is more effective. To inv
tigate the dependence of the phenomenon on parameter
have performed numerical simulations of Eq.~2! both by
fixing all parameters and changingv, and by fixing all pa-

FIG. 2. Time evolution of thex derivative of the kink profile
while executing ratchet dynamics. The parameter values arl
50.5, u05p/2, a50.6, e50.8, v50.8, andD50.
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rameters and changinga. In Fig. 3 we show the averag
velocity ~computed by using an integration timet51000) of
the soliton center-of-mass versus the frequency of the ex
nal driver, for two different values of the amplitude of the
force ~the low damping part of the curves was not compu
due to the longer integration times required in this cas!.
From this figure we see that^V& has a maximum atv;1
~i.e., v51.04 andv51 for e50.4 ande50.6, respectively!
which is very close to the internal mode frequencyV i
'1.0562~the discrepancy is within the numerical accura
of our numerical scheme!. By increasing the amplitude of th
forcing, the dynamics gets more complicated~breatherlike
excitations can appear! and the resonance peak in frequen
more pronounced.

A similar resonant behavior is expected to also exist a
function of the damping. When the damping is very hig
indeed, the internal mode is almost suppressed by the da

FIG. 3. Mean velocity of the kink center-of-mass versus t
frequency of the ac force fore50.4 ~solid line! ande50.6 ~dashed
line!. The other parameters are fixed as in Fig. 2 except for
asymmetry parameter, which isl520.5.

FIG. 4. Mean velocity of the center-of-mass of the kink vers
a, for parameter valuesl520.5, u05p/2, v50.4, ande50.5.
The continuous curve refers to the caseD50, while the stars refer
to the nondeterministic caseD50.01. The continuous and dotte
curves in the inset refer to two solitonfx profiles atD50, taken in
the comoving frame and separated in time by one period of
driver.
2-3
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ing, while when it is very low, the coupling between th
internal mode and the translational mode is very small, b
cases giving minimal transport. In between these extreme
value of the damping which allows the internal mode to s
chronize with the external driver and optimize transpo
should then exist. This is what we observe in Fig. 4 wh
the velocity vs damping is reported as a continuous curve
show that the internal mode is phase locked with the exte
driver, we have plotted in the inset of this figure thefx
profiles in the comoving frame~i.e., the drift motion was
subtracted! at two fixed timest15211.6 ~solid line! and t2
5227.3~circles! separated by one periodT52p/v515.7 of
the driver. We see that the profiles overlap each other,
the oscillation on the kink profile is perfectly synchroniz
with the external driver~phase locking!. From Fig. 4 we also
see, quite surprisingly, that at low damping current revers
can occur~note that the average velocity becomes nega
for a less thanacr;0.24).

We find that the value ofacr increases as the amplitude
the driver is increased. The occurrence of this phenome
which resembles the one observed in single-particle ratc
at low damping@5,15#, seems to be related more to th
phonon-soliton interaction than to the internal mode mec
-

in
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nism described above~at low dampings a complicate trans
ferral of energy between phonons, internal mode, and tra
lational mode, can arise!. To understand this phenomeno
however, a more detailed study is required.

Finally, we have investigated the effect of the noise
deterministic soliton ratchets. A preliminary analysis sho
that for low noise amplitudes the effect of the noise on
phenomenon is minimal, in the sense that the dynamics
dressed by the noise, but after averaging on the noise, alm
the same soliton mean velocitŷV& is obtained. This is
shown by the stars in Fig. 4, which represent the numer
values of^V& calculated in the presence of a noise of amp
tudeD50.01. The fact that soliton ratchets can survive t
presence of weak amplitude noise can be understood
consequence of the structural stability of phase-locking p
nomena against small fluctuations. This indicates that
phenomenon can also exist in real systems such as
dimensional arrays of inductively coupled SQUID’s. We
nally remark that the presented mechanism of soliton ra
ets is expected to be also valid for other soliton systems
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@3# F. Jülicher et al., Rev. Mod. Phys.69, 1269~1997!; J.S. Bader
et al., Proc. Natl. Acad. Sci. U.S.A.96, 13 165~1999!.

@4# R.D. Astumian and M. Bier, Phys. Rev. Lett.72, 1766~1994!.
@5# M. Barbi and M. Salerno, Phys. Rev. E62, 1988~2000!.
.

@6# F. Marchesoni, Phys. Rev. Lett.77, 2364~1996!.
@7# A.V. Savin, G.P. Tsironis, and A.V. Zolotaryuk, Phys. Lett.

229, 279 ~1997!; Phys. Rev. E56, 2457~1997!.
@8# E. Goldobinet al., Phys. Rev. E63, 031111~2001!.
@9# E. Trı́as, J.J. Mazo, F. Falo, and T.P. Orlando, Phys. Rev. E61,

2257 ~2000!.
@10# A.V. Zolotaryuk et al., Condens. Matter Phys.2, No 2„18…,

293 ~1999!.
@11# Mario Salerno, Physica D17, 227 ~1985!.
@12# I. Zapataet al., Phys. Rev. Lett.77, 2292~1996!.
@13# O.H. Olsen and M.R. Samuelsen, Phys. Rev. B28, 210~1983!.
@14# N.R. Quinteroet al., Phys. Rev. E62, 60 ~2000!.
@15# J.F. Chauwinet al., Europhys. Lett.32, 373 ~1995!; J.L.

Mateos, Phys. Rev. Lett.84, 258 ~2000!.
2-4


