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We use soliton perturbation theory and collective coordinate ansatz to investigate the mechanism of soliton
ratchets in a driven and damped asymmetric double sine-Gordon equation. We show that, at the second order
of the perturbation scheme, the soliton internal vibrations can couple effectively, in presence of damping, to the
motion of the center of mass, giving rise to transport. An analytical expression for the mean velocity of the
soliton is derived. The results of our analysis confirm the internal mode mechanism of soliton ratchets proposed
in �Phys. Rev. E 65, 025602�R� �2002��.
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I. INTRODUCTION

During the past years, a great deal of attention has been
devoted to the ratchet effects both for point particles �1–4�
and for extended systems �5–8�. Some experimental realiza-
tions of these models can be found in �7,9–12� �see �13� for
a recent review�. Ratchet-like systems such as systems of
two particles with an internal degree of freedom �3�, periodic
rocket ratchets �deterministic and stochastic� �14�; and tem-
perature ratchets �15�, have also been considered. For
infinite-dimensional systems described by nonlinear partial
differential equations �PDEs� of soliton type, ratchet phe-
nomena were investigated both in the case of asymmetric
potentials in presence of symmetric forces �16�; and in the
case of symmetric potentials with asymmetric forces
�12,17,18�. In both cases, the ratchet phenomenon manifests
as a unidirectional motion of the soliton, similar to the drift
motion occurring for point particle ratchets �from here, the
name of soliton ratchets�. A symmetry approach to the phe-
nomenon, which allows one to establish conditions for the
occurrence of soliton ratchets, was developed in Ref. �18�.
This approach, although useful for predicting the phenom-
enon, does not provide information about the actual mecha-
nism responsible for the unidirectional motion. The mecha-
nism underlying soliton ratchets was proposed in �16� for the
case of a perturbed asymmetric double sine-Gordon equation
�ADSGE� driven by symmetric forces, and extended in Ref.
�17� to the case of a perturbed sine-Gordon system in pres-
ence of asymmetric drivers. In both cases the phenomenon
was ascribed to the existence of an internal oscillations of the
kink’s width, which, in presence of damping, is able to
couple soliton internal vibrations to the translational mode,
producing in this way transport. The phenomenon was de-
scribed as follows: the energy pumped by the ac force into

the soliton internal mode is converted intoa net dc motion by
the coupling of the internal vibration with the center of mass
induced by the damping. This internal mode mechanism was
confirmed by numerical and analytical investigations for the
case of the sine-Gordon system with asymmetric periodic
forces �17–19� and by direct numerical investigations for the
case of soliton ratchets of the asymmetric double sine-
Gordon equation �16�. In the last case, a detailed numerical
investigation �see �16�� showed the following facts:

�i� The presence of damping and the asymmetry of the
potential are both crucial ingredients for the existence of the
net motion of the soliton �in presence of the ac force, but in
absence of damping, the asymmetry of the potential does not
produce transport�. �ii� The effect of the damping is to couple
effectively the internal vibrations of the kink to the motion of
the center of mass. �iii� For fixed values of the amplitude and
frequency of the ac force there is an optimal value of the
damping for which the transport is maximal. �iv� The direc-
tion of the motion is fixed by the asymmetry of the potential
and is independent of initial conditions. �v� For fixed values
of the damping, the average velocity of the kink shows a
resonant behavior as a function of the frequency of the ac
force. �vi� At low damping and higher forcing strengths, cur-
rent reversals in the kink dynamics can occur. This phenom-
enon was ascribed in Ref. �16� to the soliton-phonon inter-
action rather than to the internal mode mechanism.

These points were also found to be valid for different
soliton ratchet systems �17,20�. In Ref. �20�, the existence of
an optimal value of the damping constant which maximizes
the transport, was ascribed to the relativistic nature of the
kink dynamics and the possibility of nonzero currents in ab-
sence of damping, was also found.

The aim of this paper is to present an analytical investi-
gation of soliton ratchets of the asymmetric double sine-
Gordon equation that confirms the aforementioned internal
mode mechanism proposed in Ref. �16� as well as points
�i�–�vi� listed above. To this end, we use perturbation theory
and a collective coordinates �CC� for the soliton shape, to
derive ordinary differential equations �ODE� for the center of
mass and for the soliton width. We show that, to second

*Electronic address: niurka@euler.us.es
†Electronic address: bernardo@us.es
‡Electronic address: salerno@sa.infn.it

PHYSICAL REVIEW E 72, 016610 �2005�

1539-3755/2005/72�1�/016610�8�/$23.00 ©2005 The American Physical Society016610-1

http://dx.doi.org/10.1103/PhysRevE.72.016610


order of perturbation theory, soliton width vibrations couple
effectively to the motion of the center of mass via the damp-
ing in the system. By using the collective coordinate equa-
tions, we are able to derive an analytical expression for the
mean drift velocity of the kink as a function of the system
parameters. The analysis is shown to be in good agreement
with numerical simulation and with the results �i�–�vi� ob-
tained in Ref. �16�.

The paper is organized as follow: in Sec. II we introduce
our model and discuss its main properties. In Sec. III we
derive the dynamical equations for soliton collective coordi-
nates and obtain an expression of the average kink velocity
as a function of the system parameters. In Sec. IV we com-
pare our analytical results with direct numerical simulations
and discuss them in connection with previous work. Finally,
in Sec. V the main conclusions of the paper are summarized.

II. THE MODEL

Let us consider the following perturbed asymmetric
double sine-Gordon equation

�tt − �xx + sin��� + � cos�2�� = F�x,t,�,�t, . . . �

� f�t� − ��t, �1�

where �� �−1,1� is a parameter related to the asymmetry of
the nonlinear Klein-Gordon potential, � is a damping con-
stant, and f�t�=� sin��t+�0� is a periodic force with ampli-
tude �, frequency �, and phase �0. This system is connected
with interesting physical problems, such as arrays of induc-
tively coupled asymmetric superconducting quantum inter-
ference devices of the type considered in Ref. �21�. A me-
chanical analog of Eq. �1� in terms of a chain of a double
pendulum was given in Ref. �22�. For F=0, Eq. �1� has a
Hamiltonian structure with Hamiltonian �energy�

H = �
−�

+�

dx�1

2
��t

2 + �x
2� + U���� , �2�

and momentum

P = − �
−�

+�

dx �x�t. �3�

The potential in Eq. �2� is U���=C−cos���+ �� /2�sin�2��,
C=cos��0�− �� /2�sin�2�0�, and �0=arcsin��1−A� / �4���
+2�n �notice that for ��0 the potential is asymmetric in the
field variable�. Similar to the sine-Gordon equation, the en-
ergy and the momentum are both conserved quantities for the
unperturbed ADSGE. In this case it was shown �16� that Eq.
�1� has an exact kink �antikink� solution of the form

�K
± = �0 + 2 tan−1	

sign���AB

A − 1 − 	 sinh
±



2
�AB

���
� , �4�

where 
= �x−Vt� /�1−V2, A=�1+8�2, 	=2��2�1+A�, B
=�2�4�2−1+A� �the � signs refer to the kink and antikink
solutions, respectively�. In the limit �→0 �zero asymmetry�,

Eq. �4� reduces to the well known soliton solution of sine-
Gordon equation.

III. COLLECTIVE COORDINATE ANALYSIS

The term F�x , t ,� ,�t� added to the ADSGE can be con-
sidered as a small perturbation acting on the system. In this
case the energy and the momentum will depend on time, so
that it is natural to assume an ansatz for the perturbed kink of
the form

� = �0 + 2 tan−1	 sign���AB

A − 1 − 	 sinh
 x − X�t�

W�t�
� , �5�

where X�t� and W�t� represent dynamical collective coordi-
nates corresponding to the center of mass and the width of
the kink, respectively �a similar approach was introduced in
�23� for the SGE�. In the following, we consider only kink
solutions since the analysis of antikinks will follow from it
without difficulty. In absence of perturbation, the kink moves
with constant velocity V and constant width W�t�=Ws

=W0
�1−V2 �W0=2���� / �AB��, so that X�t�=Vt. The kink

momentum calculated from Eq. �3� is given by P
=M���V /�1−V2 with M���= 1

2R2I1����AB / ���, with R and
I1��� defined below. Notice that in the ansatz �5� we do not
assume any relativistic relation between the velocity and the
momentum of the kink since the relativistic invariance of the
theory is automatically broken by the perturbation. This im-
plies that the velocity of the kink should not be obtained
from the relativistic expression of the momentum but should
be computed directly from the time derivative of the center
of mass of the kink. We also remark that ansatz �5� is con-
sistent with the linear stability analysis performed in Ref.
�16�, showing the existence of an internal mode frequency �I
below the phonon band �this mode disappears in the sine-
Gordon limit �=0�. From the spatial profile of the corre-
sponding localized eigenfunction, indeed, one can see that
the internal mode is linked to vibrations of the kink’s width,
this suggesting the choice of ansatz �5�. We remark that a
more general ansatz including the phonon’s dressing �24�
requires one to solve the Sturm-Liouville problem corre-
sponding to the linearized ADSGE around the kink solution
�4�, this being a very difficult task to solve analytically �for a
numerical solution of this problem, see �16��.

By substituting Eq. �5� into Eqs. �2� and �3�, and differ-
entiating with respect to time, one obtains, after straightfor-
ward calculations �for details, see �25��, that X�t� and W�t�
satisfy the following system of nonlinear ODE:

dX

dt
=

P�t�W�t�
R2I1

−
I2

I1
Ẇ , �6a�

Ẇ2 − 2WẄ − 2�WẆ = −
I1

K
+

W2

K

 P2

R4I1
+ �sign���I4

− q
I2

RI1
�2f�t�

R
+

2

R2g , �6b�

where the momentum P is a solution of the equation
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dP

dt
= − �P − qf�t� , �7�

with q=2� and

Ii = �
−�

+� cosh2���� i−1d�

��A − 1 − 	 sinh����2 + A2B2�2 , i = 1,2,3,

I4 = �
−�

+� cosh���� d�

�A − 1 − 	 sinh����2 + A2B2 ,

K = �I3 −
I2

2

I1
�, R = 2AB	, g =

I1���A3B3	2

2���
.

Notice that the above integrals depend on the asymmetry
parameter � and are finite for any value of � �they can be
easily calculated by numerical tools�. In Ref. �19� a similar
approach was used to show that the internal mode mecha-
nism gives rise to net motion in the SG equation perturbed
by two harmonic forces. However, the present mechanism of
soliton ratchets is slightly different from the one considered
in Ref. �19� since in our case the symmetric external force
acts directly on the translational mode and on the kink’s
width oscillations �internal mode�, the resonance of these
two degrees of freedom makes possible, in presence of the
ldamping, the net motion.

In order to solve the system of equations �6a�, �6b�, and
�7�, we use the following initial conditions: dX�0� /dt=0,
P�t=0�= P�0�, and W�0�=W0. We solve first the noncoupled
linear equation for the total momentum. From Eq. �7� we
obtain

P�t� =
− q�

��2 + �2
sin��t + �0 + �

+ e−�t
P�0� +
q�

��2 + �2
sin��0 + � , �8�

where tan��=−� /� and the last term in the right-hand side,
being a transient, will be neglected �we are interested in the
stationary regime t��−1�. We remark that in the stationary
regime, P�t� is a sinusoidal function of time and, therefore,
its time-average �P�t�� is zero �notice that, as remarked in
�26�, Eq. �7� is an exact evolution equation for the momen-
tum �3� valid for any periodic potential U��� and any exter-
nal ac force f�t��. The fact that the time-average of the mo-
mentum is zero, however, does not mean that there is not
transport because as previously remarked, the drift velocity
dX /dt is not linked to the momentum by the usual relativistic
relation. From Eq. �6b� we see that the width of the kink is
affected directly by the ac force with a frequency � and
indirectly by the translational motion �the momentum� with a
frequency 2� �see Ref. �25�b���. Since it is difficult to solve
exactly this equation, we will search for an approximate so-
lution for W�t� in the form of a power series in �:

W�t� = W0 + �W1�t� + �2W2�t� + O��3� . �9�

Inserting �9� into �6b� and taking terms of the same order in
�, we obtain, after a transient time �t��−1�, the following set
of linear equations. At order O��� we have

Ẅ1 + �2W1 + �Ẅ1 = W0G���sin��t + �0� , �10�

where

�2 =
2g���
R2k���

, �11�

G��� =
qI2 − sgn���I1I4R

�I1I3 − I2
2�R2 , �12�

while at the second-order �O��2�� we obtain

Ẅ2 + �2W2 + �Ẇ2 =
Ẇ1

2

2W0
+

�2W1
2

2W0
−

W0q2 sin2��t + �0 + �
2R4�I1I3 − I2

2���2 + �2�

+ G���W1 sin��t + �0� . �13�

Equations �10� and �13� correspond to linear, damped, and
driven oscillators with characteristic frequency �. We find
that for �� �−1,1� the values of � are quite close to the
internal mode frequency �I of the ADSGE. This is shown in
Fig. 1, where the small oscillation spectrum and the fre-
quency � versus � are plotted. Notice that the maximum
difference between � and �I is �0.1. It is also interesting to
note that while for small values of � �i.e., close to the sine-
Gordon limit�, � lies in the phonon band, away from this
limit; i.e., for 0.24���1, � is well below the phonon band
and the lifetime of the W�t� oscillation becomes infinite. The
fact that the W�t� oscillation become important in the same
parameter region where the ratchet effect exists �large poten-
tial asymmetries� indicates the importance of this mode in
describing the phenomenon.

FIG. 1. Small oscillation spectrum of the ADSG and the fre-
quency � �black squares� of the kink’s width oscillations, as a
function of �. The continuous curve denotes the lower edge of the
phonon band, while the stars joined by the dashed lines refer to the
internal mode frequency �I.
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To obtain an analytical expression for the mean velocity
of the kink, we take advantage of the fact that Eqs. �10� and
�13� for the lowest-order terms of the W�t� mode can be
exactly solved.

The homogeneous part of the solutions of both equations
decays to zero after a transient time, if �2−4�2�0. The
particular solutions of �10� and �13� are given, respectively,
by

W1�t� = −
W0G���cos��t + �0 + �̃�

���2 − �2�2 + �2�2
, �14�

W2�t� =
A0

�2���2 − �2�2 + �2�2�
+

A1 sin�2�t + 2�0 + 2�̃ + �̃1�
���2 − �2�2 + �2�2����2 − 4�2�2 + 4�2�2

+
A2 sin�2�t + 2�0 + 2 + �̃1� + A3 cos�2�t + 2�0 + �̃ + �̃1�

���2 − �2�2 + �2�2����2 − 4�2�2 + 4�2�2
, �15�

where tan��̃�= ��2−�2� / ����, tan��̃1�= ��2−4�2� / �2���,
and

A0 = A1 − A2 +
W0G2�2

2
,

A1 = W0G2�����2

4
−

�2

4
� ,

A2 =
W0q2���2 − �2�2 + �2�2�

4R4�I1I3 − I2
2���2 + �2�

,

A3 =
W0G2������2 − �2�2 + �2�2

2
.

Substituting Eqs. �8� and �9� into Eq. �6a�, we obtain that the
velocity of the kink up to the second order in � is given by

dX

dt
= �
− qW0 sin��t + �0 + �

R2I1�����2 + �2
−

I2���
I1���

Ẇ1
+ �2
− qW1 sin��t + �0 + �

R2I1�����2 + �2
−

I2���
I1���

Ẇ2 . �16�

By taking the average value of this velocity over one period
�T=2� /��, �dX /dt���V�= �1/T��0

T�dX /dt�d�, we finally ob-
tain

�V� =
− �2qW0G����2�

2R2I1�����2 + �2����2 − �2�2 + �2�2�
. �17�

Equations �16� and �17� represent the main result of the
paper. From their analysis, the following important conclu-
sions can be made. First, we notice that the nonzero average
velocity is due to the effective interaction between the trans-
lational �P�t�� and internal mode �W1�t�� represented by the
first term in the second bracket of �16�. Second, Eq. �17�
shows that the average velocity does not depend on the ini-

tial phase. Indeed, the direction of the motion is determined
only by G��� �i.e., by the parameter ��, which controls the
asymmetry of the potential. It is not difficult to check that
G����0 �G����0� for ��0 ���0�and that G��� vanishes
at �=0. Third, from Eq. �17� we also see that for a given
frequency there is an optimal value of the damping to
achieve the maximal mean velocity �see Fig. 4 of �16��. This
optimal value can be easily calculated as a function of � and
� �see the solid line of Fig. 4 of the present paper�, and is
given by

�opt =�− D − �4 + ��D + �4�2 + 12D�4

6�2 , �18�

where D= ��2−�2�2.
Fourth, the activation of the internal mode alone, without

any phonons present in the system, does not allow the damp-
ing to rectify the motion. By varying � in Eq. �17� we cannot
change the sign of the average velocity. This feature confirms
the prediction of �16�, where the rectification of the move-
ment for small damping and large amplitude of the ac force
was related to the excitation of phonons for a given choice of
parameters.

Moreover, the existence of a resonant behavior of the
mean velocity as a function of the frequency � is also quali-
tatively confirmed by Eq. �17�. As reported in Ref. �16� �see
Fig. 6 of this paper�, �V� becomes maximum when � ap-
proaches the internal mode frequency �I��. This agree-
ment, however, is only qualitative since the resonant peak is
very close to the edge of the phonon band, so that phonons
are easily excited in the system. In fact, Eq. �14� together
with Eq. �15� show that the kink oscillates with two frequen-
cies � and 2�. Close to the resonance 2��2� one is inside
the phonon band, so that phonons become excited and the
CC analysis becomes unaccurate.

Notice that Eq. �17� is valid for small � and for times �t
��−1�; thus, for the zero-damping case, nothing can be in-
ferred about the mean velocity. It is of interest to investigate
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the zero-damping case separately to check the role played by
the damping in the phenomenon. For �=0 the momentum
equation �7� simplifies as well as, the collective coordinate
equations �6a� and �6b�. From Eq. �7� �with �=0� we have
that a solution satisfying the initial condition P�0�=0 is
readily obtained as

P�t� =
q�

�
�cos��t + �0� − cos��0�� . �19�

By substituting this equation and Eq. �9� into Eq. �6a�, we
obtain that the kink velocity at order � is

dX

dt
=

qW0�

R2�I1���
�cos��t + �0� − cos �0� −

I2���
I1���

�Ẇ1.

�20�

The first-order correction to the soliton width W1 can be
calculated by solving Eq. �10� with �=0. For ��� we ob-
tain

W1�t� = −
W0G���cos �0

��2 + �2 tan2 �0

���2 − �2�
sin��t + ��

+
W0G���
�2 − �2 sin��t + �0� , �21�

where tan �= �� /��tan �0 in order to fulfill the initial condi-

tions W1�0�=0 and Ẇ1�0�=0. It is clear that the velocity of
the kink depends on the initial phase �0, so that, by averaging
over the phase, one obtains zero transport. A straightforward
calculation shows that the same result is also true at order �2.
This suggests that the ratchet effect in the zero-damping case
does not exist. As we will see in the next section, this con-
clusion is confirmed by numerical simulations of Eq. �1�.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

The CC analysis of the previous section neglects the pres-
ence of phonons in the system and is based on a particular
ansatz for the soliton shape in Eq. �5�. Moreover, the ap-
proximated solution �17� is valid only when the perturbations
are small enough ���1�. To check our results, we compare
numerical solutions of Eqs. �6a� and �6b� and the approxi-
mated solution in Eq. �17�, with direct numerical integrations
of Eq. �1�. Numerical simulations of �1� were performed by
using a fourth-order Runge-Kutta scheme �27� with time and
space steps �t=0.01, �x=0.1, in the finite-length domain x
� �−50,50�, taking into account 200 time periods. In order to
obtain the numerical solutions of the CC equations, we have
integrated Eqs. �6a� and �6b� with the routine DIVPRK of the
IMSL library �28�, which uses the Runge-Kutta-Verner sixth-
order method.

Figures 2 and 3 show the mean velocity dependence on
the damping coefficient for different values of the amplitude
and frequency of the ac force. From Fig. 2 we see that for
low values of � there is a very good agreement between the
CC results and PDE simulations in the whole range of �.
However, when the amplitude of the ac force is increased,
the approximated solution �17� deviates from the numerical

solution of the CC equations and from the PDE simulations,
mostly in the optimal damping region. In Fig. 3 we show the
same dependence for a higher value of the driver frequency
��=0.4�. We see that, although the approximated solution
�17� and the numerical solution of the CC equations are quite
close, there is a discrepancy with the PDE results starting
from the peak and extending to higher values of �, this in-
dicating that the CC ansatz is valid only for ���ph ��ph
=1.2699 for �=−0.5�.

In Fig. 4, we check Eq. �18� for the optimal value �opt���
of the damping constant for �=−0.5. We can see that this
value increases up to ��0.7 and after that �opt��� de-
creases. Again, a good agreement between the CC theory and
PDE results is found at small � values.

By increasing the amplitude � of the driver, reversal of
current can also occur �16�. This is shown in Fig. 5, from
which we see that as � is increased, the mean velocity com-

FIG. 2. Dependence of the mean kink velocity on the damping
coefficient for two different values of strength of the ac force �
=0.1 �upper curves� and �=0.05 �lower curves�. Other parameters
are fixed as �=−0.5, �=0.1, and �0=� /2. The solid lines represent
the approximate solution of the CC theory �Eq. �17��, whereas
circles and pluses refer, respectively, to PDE numerical simulations
of �1� and numerical solutions of the CC equations �6a� and �6b�.

FIG. 3. Mean kink velocity versus the damping coefficient. Pa-
rameters are �=−0.5, �=0.1, �=0.4, and �0=� /2. The solid line
represents the approximated solution of the CC theory �Eq. �17��,
whereas circles and pluses are the results of the numerical simula-
tions of the PDE �1� and the numerical solutions of the CC equa-
tions �6a� and �6b�, respectively.
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puted from PDE simulations displays a crossover from nega-
tive to positive values �i.e., a current reversal occurred�. This
phenomenon is described neither by the CC analysis �notice
that Eq. �17� predicts a positive average velocity for all �
�0�, nor by the numerical solutions of the CC analysis de-
picted in the figure. This agrees with the claim made in Ref.
�16� that reversal currents do not depend on the internal
mode mechanism, but rather on the existence of phonons in
the system. In order to show the presence of phonon modes
when this phenomenon appears, we have plotted in Fig. 6 the
discrete Fourier transform �DFT� of the kink’s width W�t�
�obtained from the numerical simulations of the PDE� for
two values of �: �=0.2 �before crossover occurs� and �
=0.7 �inside the rectified motion region�. In the former case
�upper panel�, one of the frequencies of the oscillations of
W�t� lies inside the phonon band, so that phonons are clearly
excited. In the latter case �lower panel� the main frequencies
of the spectrum are well below the lower phonon edge
�wph / �2���0.2�. From this we conclude that phonon modes

are important for current reversals and a theory based on the
internal mode alone �as the one presented here� cannot de-
scribe properly this phenomenon.

In Ref. �16� a resonant behavior of mean velocity as a
function of � was also reported �see the peak of �V� at �
��I in Fig. 3 of this paper�. This feature is also confirmed
by Eq. �17� �notice that the denominator of this expression
has a minimum at �=���I�, although, in this case, the
agreement with PDE results is only qualitative. This is
shown in Fig. 7, from which we see the presence of a reso-
nant structure, with good agreement at small frequencies and
large deviations from PDE results at higher ���0.6� values.
The agreement at low frequencies can be understood from
the fact that phonons in this case are hardly excited and the
CC description becomes accurate. On the contrary, when �
gets close to the resonant peak, phonons are easily excited
and the CC analysis becomes unadequate.

We have also investigated the dependence of the phenom-
enon on the asymmetry parameter � as well as the impor-

FIG. 4. Optimal value of the damping as a function of the fre-
quency of the ac force for �=−0.5. The solid line represents the
results obtained from Eq. �18� while the circles refer to numerical
simulations of Eq. �1�.

FIG. 5. Mean kink velocity versus the damping coefficient for
�=−0.5, �=0.5, �=0.4, and �0=� /2. The solid line represents the
approximated solution of the CC theory �Eq. �17��, while circles
and pluses denote the results of the numerical simulations of the
PDE �1� and of the numerical solutions of the CC equations �6a�
and �6b�, respectively. The PDE results show that for very small
values of damping ���0.1�, pairs of kink and antikink appear.

FIG. 6. DFT of the width of the kink �W�t�� obtained from the
numerical solutions of the PDE for the same parameters of Fig. 5
and �=0.1 �upper panel� and �=0.7 �lower panel, when the current
is rectified�. The upper panel refers to the case in which a current
reversal occurs. The relevant frequencies in the spectrum are: �1

=2�=0.8; �2=3�=1.2; �3=�=0.4; and �4= �7/2��=1.4 �this last
being inside the phonon band�. The lower panel corresponds to the
case in which the current is rectified. The main frequencies in this
case are located at �1=�=0.4 and �2=2�=0.8 away from the pho-
non band. The frequency of the internal mode and the lower
phonon’s frequency are �I=1.056 and �ph=1.269, respectively.
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tance of the damping term for soliton ratchets. In Fig. 8 we
show the mean velocity as a function of � for fixed system
parameters and two different values of �. We see that the
curve is antisymmetric around the origin meaning that the
sign of � determines the direction of motion, the maximal
effect occurring around ���=0.5; i.e., the point of maximal
asymmetry of the potential.

Finally, we have investigated the zero-damping limit of
the phenomenon. In Fig. 9 we depict the time evolution of
the center of mass of the kink for �=0 and for different
values of the initial condition phase �0 of the ac force. We
see that X�t� is basically a linear function of time, whose
slope depends on cos��0�. This implies that, in this case, it is
the initial phase that determines the direction of the motion
and not only the asymmetry of the potential, as predicted by
the CC analysis. Since in most experimental contexts the
initial phase is usually unknown, one must consider the
phase as a random variable and take an average of it. This

obviously implies that soliton ratchets cannot exist in the
zero-damping limit.

V. CONCLUSIONS

In this paper we have studied the ratchet dynamics of the
kink solution of the ADSGE by using a collective coordinate
approach with two collective variables: the center of mass
and the width of the kink. For these variables we have ob-
tained a system of ODEs from which we derived an approxi-
mated expression for the mean velocity of the kink as a func-
tion of the system parameters. We have confirmed that the
CC approach is valid when phonons are not excited in the
system; i.e., for small values of � and for ���ph. We have
shown that for a proper description of soliton ratchets it is
not enough to consider the kink as a point particle moving in
a ratchet potential �11,29� but it is crucial to include also the
internal oscillations of the kink. In particular, we have shown
that the net motion of the kink becomes possible due to the
coupling between the translational mode and the internal co-
ordinate with the ac force �the effective coupling being pos-
sible only in presence of damping when the time-average
velocity becomes independent of the initial phase of the
driver�. We also showed that the asymmetry of the potential
determines the direction of the motion and that in the zero-
damping case the ratchet effect vanishes �i.e., it depends on
initial conditions�. The resonant behavior of the velocity as a
function of frequency and damping was also investigated.
We found that the mean velocity approach a maximum value
when the frequency of the ac force goes to the internal mode
frequency or when the damping coefficient approach its op-
timal value. Finally, we have shown that the occurrence of
current reversal is related to the presence of phonons in the
system rather than the coupling between the translational and
the internal mode.

In conclusion, the results of our analysis confirm the in-
ternal mode mechanism for soliton ratchet proposed in Ref.
�16� and provide an approximate analytical description of the
phenomenon.

FIG. 7. Mean velocity of the kink as a function of �. The pluses
superimposing the solid line show a good agreement between the
approximated �solid line� and the numerical �pluses� solutions of
the CC theory. Results obtained from the integration of the Eq. �1�
�circles� coincide with the CC theory only for smaller values of �.
Parameters are fixed as �=−0.5, �=0.1, �0=� /2, and �=0.5.

FIG. 8. Mean velocity of the kink center of mass versus � for
�=0.1, �=0.1, �0=� /2, and for two values of the damping coeffi-
cient: �=0.2 and �=0.5 �for fixed �, the mean velocity of the �
=0.5 case is smaller�.

FIG. 9. Time evolution of the center of the kink for different
values of initial phase, �0, in the nondamped case. Parameters are
fixed as: �=−0.5, �=0.1, and �=0.4. The solid and the dashed lines
represent the numerical simulations of Eq. �1� and the numerical
solutions of Eqs. �6a� and �6b�, respectively.
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