BASES FOR PROJECTIVE MODULES IN A, (k)

JESUS GAGO-VARGAS

ABSTRACT. Let Ay, (k) be the Weyl algebra, with k a field of characteristic
zero. It is known that every projective finitely generated left module is free or
isomorphic to a left ideal. Let M be a left submodule of a free module. In this
paper we give an algorithm to compute the projective dimension of M. If M
is projective and rank(M) > 2 we give a procedure to find a basis.

INTRODUCTION.

The study of finitely generated projective modules over a ring is an interest-
ing topic. We know that over polynomial rings they are free, as it was shown
by Quillen and Suslin. There are several algorithmic versions of this theorem
[Logar et al.(1992), Laubenbacher et al.(1997), Gago(2002)] that compute a basis
from a system of generators. All of these procedures use Grobner bases in polyno-
mial rings. It is natural to extend these results to the Weyl Algebra A, (k), with k
a field with characteristic zero. It is known that if a left finitely generated A, (k)-
module is projective and has rank greater or equal 2 then is free [Stafford(1978)].
Our goal is to give an algorithm to find a basis of these modules.

Projective modules in A, (k) are stably free [Stafford(1977)], so the first step is to
find an isomorphism P @ A, (k)* ~ A, (k)? for some s,t. We develop this procedure
in Section 1, together with an algorithm to compute the projective dimension of a
module, that is valid for a broad class of rings. We note by pdim (M) the projective
dimension of a module M. We require the computation of Grobner bases in the
ring and that every module has a finite free resolution. If M is projective we find
a matrix that defines an isomorphism M @ R® ~ R!. The starting point is a left
R-module M defined by a system of generators in some R™.

In Section 2 we follow the proof of [Stafford(1978)] with algorithmic tools to find
a basis of a projective module. We develop, for completeness, the reference to
[Swan(1968)] used in [Stafford(1978), Thm. 3.6(a)], to clarify where these computa-
tions are needed . We follow describing the minor changes to [Hillebrand et al.(2002)]
to obtain two special generators of a left ideal, according to [Stafford(1978), The-
orem 3.1]. Finally, we give an example of this procedure to build a basis of a
projective module in A2(Q).

For all the computations we need an effective field k in the sense of [Cohen(1999)]
to apply the Grobner bases algorithm in A, (k). We have used in the examples

k=Q.
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1. COMPUTING PROJECTIVE DIMENSION.

Let R be a ring where it is possible to compute a finite free resolution of a
left module, and we can determine if a right submodule of R* is equal to RF.
Such a ring may be k[z1,...,z,], An(k) or more general rings like PBW algebras
[Bueso et al.(1998)]. We make use of a characterization given in [Logar et al.(1992)],
based on a finite free resolution of a module. The existence of a finite free resolution
for a projective module M is equivalent for M to be stably free [McConnell et al.(1987)].
With the algorithm described in this section we test wether M is projective, and
if the answer is yes we compute an isomorphism M @ R® ~ R! for some s,t. The
procedure is by induction on the length of the resolution. We identify the homo-
morphisms with their matrices to simplify the notation.

Suppose

0> F B3 F38M—-0

is a free resolution of M, with rank(F;) = r;. If M is a projective module, this
sequence splits, so there exists 81 : Fy — Fy such that f1a; = I,,. We can
compute this matrix from the rows of the matrix «a;: if we consider them as vectors
of F1, the right R-module generated must be equal to F;. We express each vector
of the canonical basis of F} as a linear combination of the rows of a1, and with
these coeflicients we construct the matrix ;. So we can give the isomorphism
F1 D ker(ﬁl) ~ FO ~ F1 e M and a basis of F1 D ker(ﬁl).

Let

Q¢ (o 77 Qo
F:0oF 2 F " 53F "2 F_ 35 . 25 F 2% M0

be a finite free resolution of M with rank(F;) = r; and ¢ > 2 (we take a_; the null
homomorphism). Again, if M is a projective module, then the short exact sequence

0 — ker(ag) = Fo = M — 0

splits, so ker(ap) = im(a) is projective. By induction, the modules im(«;), i =
1,...,t are projective. In particular, im(a;—1) is projective and the exact sequence

0— Ft % Ft,1 Otf_—g im(at,l) —0

splits. Then there exists §; : Fi_1 — F; such that I,, = fiay. The module
ker(8;) is projective, isomorphic to im(c;_1) and we can compute the isomorphism
ker(83;) & F; ~ F;_1. We consider the following sequence:

0 F S F  oF Y R oF Y3 E %8 2N E 2% 0 0
where

ai(ve) = (v (vy),0), ar—1(vi—1,ve) = (a—1(vi=1), ve),
&t72(Vt72>Vt) = at72<vt72)

Then it is an exact sequence and again the module im(a;_1) is projective. As
before, the sequence

(1) 0= F 2% F_ @F "3 im(@_,) — 0
splits and there exists Et : Fy_1 ® Fy — F, such that I, = Bt&t. In this case,
Bi=(8 0)
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where 6 is the null matrix with order r; x r;. Then B(vi—1,v¢) = Bi(vi—1), s0
ker(83;) = ker(8;) @ Fy ~ F;_1. We can compute the isomorphism
17t_1 : Ft—l — ker(gt).
Let
(2) Vi1 =i 1Vi1: Fy oy — Fy_o @ F}.

Then the sequence

O%thlw—_iFt,Q@Ftat—_?thgat—_?...ﬂ)Foﬂ)M%O
is exact. Because the sequence (1) splits, the homomorphism &;_; is an isomor-
phism between ker(gt) and im(a;_1), 0 Y;—1 is an isomorphism between F;_; and
im(ay—1) = ker(as—2), and we have the exactness of the sequence (2). We apply
again the process to 4;_1 to check the projectiveness of the module M.
We need the following result:

Theorem 1. Let R be a ring and
F:..oFg—>F;1—..—wF—F—M-=—0

a projective resolution. Let d be the smallest number such that {im Fy — Fy_1} is

projective. Then d does not depend on the resolution and pdim(M) = d.

Proof. [Eisenbud(1995)], exercise A.3.13. O

Theorem 2. The previous algorithm allows us to compute the projective dimension
of a module.
Proof. Let
0= F, 2% F, 2 R 2SR 2S M0
be a finite free resolution given by the procedure. Then im(w,—1) is not projec-

tive, because the matrix «, has not left inverse. We can suppose that M is not
projective, otherwise we have had shortened the resolution. Then the sequence

0 — ker(ag) - Fo > M — 0

does not split, so im(a1) = ker(ay) is not projective. In the same way, the short
exact sequence
0 — ker(ay) = F1 — im(ay) = 0
does not split and im(asg) = ker(aq) is not projective. Then the modules
im(ay),im(az), ..., im(an-1)
are not projective and the module im(«,,) is projective. Then the projective di-
mension of M is equal to n. O

Algorithm 1.1. Projective dimension.

Input: a left R-module M defined by its generators in R".

Output: Projective dimension of M and a minimal length free resolution. If pdim(M) =
0, i.e. M is projective, the algorithm returns an isomorphism M & R® ~ R!.

Let F be a finite free resolution of M :
0= F 5% F "3 FE "SR~ "5 RS M—0
START:
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if a4 has no left inverse then
pdim(M) =t. STOP.
else
let By be a left inverse of ay.
end if
if t =1 then
pdim(M) =0 and M ® F; ~ker(5,) ® Fy ~ Fy. STOP.
else
compute the exact sequence

0=F S F oR™S R 0 3 F %3 25 F 2% M -0

and the matriz Uy that gives the isomorphism ker(8;) ® Fy ~ F;_1.
end if

Let yi_1 = s 101

Let F be the finite free resolution

0> F 1 S F ,oF Y3 F 2% Y 2% M —o.
go to START.

This algorithm has being programmed with Macaulay 2 [Grayson et al.(1999)],
using the routines for D-modules developed by A. Leykin and H. Tsai [Leykin et al.(2002)].

Ezample 1. Let W = Ay(Q) and I = W (28, —1,29,,02,0;). We found a resolution
of I of the form

0 TEWL W30

where
-02 —20,+1 0
~ Oy 0 -z
RE ) 8, B,
—0y -z 0

The rows of the matrix 5; do not generate W3, because a Grébner basis is given
by the columns of the matrix

00 8, 0,
10 0 0
01 0 O

Then the ideal I is not projective, and its projective dimension is 1.

2. COMPUTING A BASIS.

Let k be a field of characteristic zero. Given a projective module over A, (k)
with rank greater than 1, we are going to describe a procedure to compute a basis.
We will need the standard Grobner basis theory on A, (k) to make the compu-
tations. See for example [Castro(1987)] for a description of this algorithm. In
[Hillebrand et al.(2002)] we found

Theorem 3. Let R = k(x1,...,2,)[01,...,0n] and I = R{a,b,c). Then we can
compute a,b € R such that I = R{a + ac,b+ be).
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As pointed out in [Hillebrand et al.(2002), Remark 3.15], the algorithm can be
extended to W = A, (k) = k[z1,...,2,][01,...,0n]. We need the following stronger
result [Stafford(1978), Thm. 3.1J:

Theorem 4. Let I = W{a,b,c) be a left W-ideal, and let d1,d2 € W — {0} be
arbitrary elements. Then we can find f1, fo € W such that

I = W<(L + dlflc, b + d2f26>.

This can be accomplished with some minor changes to the proof of [Hillebrand et al.(2002),
Lemma 3.10]. Following their notation, it is enough to take g1,g2 € W such
that hidig1 + hadage = 0, and to apply [Hillebrand et al.(2002), Lemma 3.9] to
v = tdage. These changes appear in the proof of [Stafford(1978), Theorem 3.1].
The procedure is analogous for right ideals.

Definition 1. Let M be a left W-module and v € M. We say that v is unimodular
in M if there exists ¢ € Homy (M, W) such that p(v) = 1.

Remark 1. If v is a column vector in some W™ then v is unimodular if and only if
the right ideal generated by its entries is equal to W. Through Grébner bases, we
can give the homomorphism that apply v in 1.

The following Lemma is a direct consequence of Theorem 4, and it will allow a
’cancellation’ in some direct sums.

Lemma 1. [Stafford(1978), Lemma 3.5] Let M C W™ be a left W-module with
rank(M) > 2 and a®t € M & W unimodular. Then there is an algorithm to find
® € Homyy (W, M) such that a4+ ®(t) is unimodular in M.

Proof. Let a; € M C W™ be a non zero element and consider ®; : W™ — W a
projection such that ®;(a;) # 0. Let My = M Nker(®,), that we can compute by
Grobner bases. Then rank(M;) = rank(M) — 1 > 1, so there exists as € M; — 0.
Let &3 : W™ — W be a projection such that ®s(az) # 0. If Pa(ay) # 0 we
can compute syzygies to get r1,ro € W such that ®;(a;)r; + P2(az)re = 0 and
replace @5 by the homomorphism ®171 + Poro. Then &4 (az) = Po(a;) = 0. Let
dy = ®1(a1),ds = Po(az) and consider the right ideal

I= <(b1(a)a ¢2(a)7t>W
Then there exist f1, fo € W such that
I'=(®1(a) + tfidi, Pa(a) +tfodo) W.

Let ® : W — M be the homomorphism defined by ®(1) = fia; + faas. Then, as
shown in [Stafford(1978), Lemma 3.5], a+ ®(¢) is unimodular, and we can compute
j € Homyy (M, W) such that j(a+ ®(t)) = 1. O

Remark 2. The case a # 0 is of special interest. In this case we can take a; = a
and obtain ®9(a) = 0,d; = ®1(a). We have to find fi, fo such that
I'=(d1,0,)W = (d1 + tfidi,tfod2)W.

Note that the problem is not to find two generators for the ideal I. We are looking
for two special generators.

Proposition 1. [Swan(1968), Corollary 12.6] Let M C W™ be a left W-module
with rank(M) > 2 and h : W @ N — W & M be an isomorphism with N a left
W-module. Then M ~ N.
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Proof. Let h(1,0) = (tg,a9) € W @ M. The vector (1,0) is unimodular so (g, ap)
too. Then we compute ® : W — M such that aj = ag + ®(tp) is unimodular in
M and we get the homomorphism j : M — W with j(aj) = 1. We consider the
following homomorphisms:

g-WaoeM->WaeM, gt
k:W—>W, k(1)
I-WoeM->WaoM, Ita)=(t-(koj)(a),a),
T WeN->WeM, i=I

Then ¢ is isomorphism and (1,0) = (0,a(). We have M = Wa(, @ ker(j) and the
following chain of isomorphisms

N~ (W& N)/We, 5 (W e M)/Wal, = (W & ker(j) ® Wal,)/Wal, ~
W @ ker(j) ~ Wa( @ ker(j) = M

The isomorphism is defined as follows. Take vi, ..., v, a set of generators of N. Let
i(0,v;) = (a4, u;) where a; € Wyu; € M. The map (W & M)/Waj, — W & ker(j)
works taking an element of W @ M, decomposes the component in M as a sum
v+ w with v € Wa(,w € ker(j) and takes w. For this step note that if u € M
and A = j(u) then u = (Aaf)) + (u — Aag) is the desired decomposition. O

Remark 3. When the module N is of the form W?#, then M is isomorphic to a free
module, so it has a basis. Such a basis is the image of ;,7=1,...,s.

Algorithm 2.1. Computing a basis.

h
Input: an isomorphism Wt ~ W ® M, witht —s > 2.
Output: a basis of the module M .

START:

if s =0 then
{ h(e1,),...,h(e) } is a basis.
STOP.

end if

Let h(1,0) = (to,aq), with to € W,ag € W=t @ M.
Compute ® : W — W=t @ M such that ay = ag + ®(to) is unimodular.
Compute j: WL @& M — W such that j(a)) = 1.
Leti:W oWt - W o (WL @ M) as defined in Prop. 1.
Let h: W=t — W*=1 @ M the isomorphism defined by
h(e;) = aap + u; — \;ay
where i(0,e;) = (a;,w;),a; € W,u; € W=t M, \; = j(w;).
go to START

As in the previous section, this algorithm has been programmed with Macaulay2.

Ezample 2. Let W = A3(Q), and f = (28, xy 0, ). Then P = kerf is a
projective module, because f is a unimodular row. Let

B=1| 0.0

—Zx
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Then f- 3 =1, and im 83 @® P = W3. The isomorphism h : W @ W2 — W @ P is
given by the matrix

z0, ry o

b Y050y + 20, + 1 2420, y0?
—x(’?wa; —2y0,0y + 1 —8387,
z20, z?y 20y + 2

Then
2y050y + 0, + 1
to = x0y,a0 = —xaraj
220,

We must find ® : W — P such that ajj = ag + ®(¢p) is unimodular. Let
®; : P — W be the projection over the first component and as € P Nker(®1) not
null. For example,

0
ag = 8%8,,
—ay0,,0y — x0y — 2y0y — 2

and let &3 : W — P be the projection over the second component. Because
®y(ag) # 0, we have to compute r1,72 € W such that ®;(ag)r; + ®2(az)re = 0. In
this case, we get

r1 = —020y, 12 = 2y0,; 0y — 290, + 1,
and following the notation of the proof of Lemma 1,

dy = 2y0,0y + 20, + 1,dy = xy@i@j + 2020, + 03dy.

We have to find f17 f2 € W such that <d1, t0>W = <d1 +t0f1d1, t0f2d2>W. Applylng
the modified procedure of [Hillebrand et al.(2002)], we find

fl :va2 =r+y.
Let @ : W — P be the morphism defined by ®(1) = (x+y)az. Then aj = ag+P(to)

0
is unimodular and we can compute the morphism j : P — W such that j(aj) = 1.
The output is too large to be included here, but has the form
(2—62—31:23}73;1325— 2ayS0L08 tO%mSyGGQGS o %xaf; 1720, + 1,
@xysag‘;a;j — mm%ﬂ@%@i + @xysagag + .4 2oy — By2,0)

Also we can build the matrices associated to the other morphisms

(1 0 _ (1 k-
. - 0 Qo (O3
1=1l-g h(a6 Wy u3>

where

uy = (2y?0,, 229020, + xy?020, — xyd.0, + 1,
—2%y?0,0, — 2?y30,0, — 23y0, — x*y?0, — 22°y?0, — 2xy30, — 2%y — 2xy?)?,
u; = (yo2, 2030, + yo20,,
—22y020, — xy?020, — 2202 — xyd? — 4xy0,0, — 3y*0,0, — 3x0, — 3yd, — 2y0,)
Then
W = (042 — )\2)&6 + U2, Wo = (Ot3 — )\3)&6 “+ us
is a basis of P, where A\; = j(u;),i = 2,3.
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