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Abstract. Let An(k) be the Weyl algebra, with k a field of characteristic

zero. It is known that every projective finitely generated left module is free or
isomorphic to a left ideal. Let M be a left submodule of a free module. In this

paper we give an algorithm to compute the projective dimension of M . If M

is projective and rank(M) ≥ 2 we give a procedure to find a basis.

Introduction.

The study of finitely generated projective modules over a ring is an interest-
ing topic. We know that over polynomial rings they are free, as it was shown
by Quillen and Suslin. There are several algorithmic versions of this theorem
[Logar et al.(1992), Laubenbacher et al.(1997), Gago(2002)] that compute a basis
from a system of generators. All of these procedures use Gröbner bases in polyno-
mial rings. It is natural to extend these results to the Weyl Algebra An(k), with k
a field with characteristic zero. It is known that if a left finitely generated An(k)-
module is projective and has rank greater or equal 2 then is free [Stafford(1978)].
Our goal is to give an algorithm to find a basis of these modules.
Projective modules in An(k) are stably free [Stafford(1977)], so the first step is to
find an isomorphism P ⊕An(k)s ' An(k)t for some s, t. We develop this procedure
in Section 1, together with an algorithm to compute the projective dimension of a
module, that is valid for a broad class of rings. We note by pdim(M) the projective
dimension of a module M . We require the computation of Gröbner bases in the
ring and that every module has a finite free resolution. If M is projective we find
a matrix that defines an isomorphism M ⊕ Rs ' Rt. The starting point is a left
R-module M defined by a system of generators in some Rm.
In Section 2 we follow the proof of [Stafford(1978)] with algorithmic tools to find
a basis of a projective module. We develop, for completeness, the reference to
[Swan(1968)] used in [Stafford(1978), Thm. 3.6(a)], to clarify where these computa-
tions are needed . We follow describing the minor changes to [Hillebrand et al.(2002)]
to obtain two special generators of a left ideal, according to [Stafford(1978), The-
orem 3.1]. Finally, we give an example of this procedure to build a basis of a
projective module in A2(Q).
For all the computations we need an effective field k in the sense of [Cohen(1999)]
to apply the Gröbner bases algorithm in An(k). We have used in the examples
k = Q.
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1. Computing projective dimension.

Let R be a ring where it is possible to compute a finite free resolution of a
left module, and we can determine if a right submodule of Rk is equal to Rk.
Such a ring may be k[x1, . . . , xn], An(k) or more general rings like PBW algebras
[Bueso et al.(1998)]. We make use of a characterization given in [Logar et al.(1992)],
based on a finite free resolution of a module. The existence of a finite free resolution
for a projective moduleM is equivalent forM to be stably free [McConnell et al.(1987)].
With the algorithm described in this section we test wether M is projective, and
if the answer is yes we compute an isomorphism M ⊕ Rs ' Rt for some s, t. The
procedure is by induction on the length of the resolution. We identify the homo-
morphisms with their matrices to simplify the notation.
Suppose

0→ F1
α1→ F0

α0→M → 0

is a free resolution of M , with rank(Fi) = ri. If M is a projective module, this
sequence splits, so there exists β1 : F0 → F1 such that β1α1 = Ir1 . We can
compute this matrix from the rows of the matrix α1: if we consider them as vectors
of F1, the right R-module generated must be equal to F1. We express each vector
of the canonical basis of F1 as a linear combination of the rows of α1, and with
these coefficients we construct the matrix β1. So we can give the isomorphism
F1 ⊕ ker(β1) ' F0 ' F1 ⊕M and a basis of F1 ⊕ ker(β1).
Let

F : 0→ Ft
αt−→ Ft−1

αt−1−→ Ft−2
αt−2−→ Ft−3

αt−3−→ . . .
α1−→ F0

α0−→M → 0

be a finite free resolution of M with rank(Fi) = ri and t ≥ 2 (we take α−1 the null
homomorphism). Again, if M is a projective module, then the short exact sequence

0→ ker(α0)→ F0 →M → 0

splits, so ker(α0) = im(α1) is projective. By induction, the modules im(αi), i =
1, . . . , t are projective. In particular, im(αt−1) is projective and the exact sequence

0→ Ft
αt−→ Ft−1

αt−1−→ im(αt−1)→ 0

splits. Then there exists βt : Ft−1 → Ft such that Irt = βtαt. The module
ker(βt) is projective, isomorphic to im(αt−1) and we can compute the isomorphism
ker(βt)⊕ Ft ' Ft−1. We consider the following sequence:

0→ Ft
α̃t−→ Ft−1 ⊕ Ft

α̃t−1−→ Ft−2 ⊕ Ft
α̃t−2−→ Ft−3

αt−3−→ . . .
α1−→ F0

α0−→M → 0

where

α̃t(vt) = (αt(vt),0), α̃t−1(vt−1,vt) = (αt−1(vt−1),vt),
α̃t−2(vt−2,vt) = αt−2(vt−2)

Then it is an exact sequence and again the module im(α̃t−1) is projective. As
before, the sequence

(1) 0→ Ft
α̃t−→ Ft−1 ⊕ Ft

α̃t−1−→ im(α̃t−1)→ 0

splits and there exists β̃t : Ft−1 ⊕ Ft → Ft such that Irt = β̃tα̃t. In this case,

β̃t =
(
βt θ

)
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where θ is the null matrix with order rt × rt. Then β̃(vt−1,vt) = βt(vt−1), so

ker(β̃t) = ker(βt)⊕ Ft ' Ft−1. We can compute the isomorphism

ν̃t−1 : Ft−1 → ker(β̃t).

Let

(2) γ̃t−1 = α̃t−1ν̃t−1 : Ft−1 → Ft−2 ⊕ Ft.
Then the sequence

0→ Ft−1
γ̃t−1−→ Ft−2 ⊕ Ft

α̃t−2−→ Ft−3
αt−3−→ . . .

α1−→ F0
α0−→M → 0

is exact. Because the sequence (1) splits, the homomorphism α̃t−1 is an isomor-

phism between ker(β̃t) and im(α̃t−1), so γ̃t−1 is an isomorphism between Ft−1 and
im(α̃t−1) = ker(α̃t−2), and we have the exactness of the sequence (2). We apply
again the process to γ̃t−1 to check the projectiveness of the module M .
We need the following result:

Theorem 1. Let R be a ring and

F : . . .→ Fd → Fd−1 → . . .→ F1 → F0 →M → 0

a projective resolution. Let d be the smallest number such that {imFd → Fd−1} is
projective. Then d does not depend on the resolution and pdim(M) = d.

Proof. [Eisenbud(1995)], exercise A.3.13. �

Theorem 2. The previous algorithm allows us to compute the projective dimension
of a module.

Proof. Let

0→ Fn
αn−→ Fn−1

αn−1−→ . . .→ F1
α1−→ F0

α0−→M → 0

be a finite free resolution given by the procedure. Then im(αn−1) is not projec-
tive, because the matrix αn has not left inverse. We can suppose that M is not
projective, otherwise we have had shortened the resolution. Then the sequence

0→ ker(α0)→ F0 →M → 0

does not split, so im(α1) = ker(α0) is not projective. In the same way, the short
exact sequence

0→ ker(α1)→ F1 → im(α1)→ 0

does not split and im(α2) = ker(α1) is not projective. Then the modules

im(α1), im(α2), . . . , im(αn−1)

are not projective and the module im(αn) is projective. Then the projective di-
mension of M is equal to n. �

Algorithm 1.1. Projective dimension.
Input: a left R-module M defined by its generators in Rr.
Output: Projective dimension of M and a minimal length free resolution. If pdim(M) =
0, i.e. M is projective, the algorithm returns an isomorphism M ⊕Rs ' Rt.

Let F be a finite free resolution of M :

0→ Ft
αt−→ Ft−1

αt−1−→ Ft−2
αt−2−→ Ft−3

αt−3−→ . . .
α1−→ F0

α0−→M → 0

START:
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if αt has no left inverse then
pdim(M) = t. STOP.

else
let βt be a left inverse of αt.

end if
if t = 1 then

pdim(M) = 0 and M ⊕ F1 ' ker(β1)⊕ F1 ' F0. STOP.
else

compute the exact sequence

0→ Ft
α̃t−→ Ft−1 ⊕ Ft

α̃t−1−→ Ft−2 ⊕ Ft
α̃t−2−→ Ft−3

αt−3−→ . . .
α1−→ F0

α0−→M → 0

and the matrix ν̃t−1 that gives the isomorphism ker(βt)⊕ Ft ' Ft−1.
end if
Let γ̃t−1 = α̃t−1ν̃t−1.
Let F be the finite free resolution

0→ Ft−1
γ̃t−1−→ Ft−2 ⊕ Ft

α̃t−2−→ Ft−3
αt−3−→ . . .

α1−→ F0
α0−→M → 0.

go to START.

This algorithm has being programmed with Macaulay 2 [Grayson et al.(1999)],
using the routines forD-modules developed by A. Leykin and H. Tsai [Leykin et al.(2002)].

Example 1. Let W = A2(Q) and I = W 〈x∂x−1, x∂y, ∂
2
x, ∂

2
y〉. We found a resolution

of I of the form

0← I
α̃0←W 4 γ̃1←W 3 ← 0

where

γ̃1 =


−∂2

x −x∂x + 1 0
∂y 0 −x
0 ∂y ∂x
−∂x −x 0

 .

The rows of the matrix γ̃1 do not generate W 3, because a Gröbner basis is given
by the columns of the matrix  0 0 ∂y ∂x

1 0 0 0
0 1 0 0

 .

Then the ideal I is not projective, and its projective dimension is 1.

2. Computing a basis.

Let k be a field of characteristic zero. Given a projective module over An(k)
with rank greater than 1, we are going to describe a procedure to compute a basis.
We will need the standard Gröbner basis theory on An(k) to make the compu-
tations. See for example [Castro(1987)] for a description of this algorithm. In
[Hillebrand et al.(2002)] we found

Theorem 3. Let R = k(x1, . . . , xn)[∂1, . . . , ∂n] and I = R〈a, b, c〉. Then we can

compute ã, b̃ ∈ R such that I = R〈a+ ãc, b+ b̃c〉.
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As pointed out in [Hillebrand et al.(2002), Remark 3.15], the algorithm can be
extended to W = An(k) = k[x1, . . . , xn][∂1, . . . , ∂n]. We need the following stronger
result [Stafford(1978), Thm. 3.1]:

Theorem 4. Let I = W 〈a, b, c〉 be a left W -ideal, and let d1, d2 ∈ W − {0} be
arbitrary elements. Then we can find f1, f2 ∈W such that

I = W 〈a+ d1f1c, b+ d2f2c〉.

This can be accomplished with some minor changes to the proof of [Hillebrand et al.(2002),
Lemma 3.10]. Following their notation, it is enough to take g1, g2 ∈ W such
that h1d1g1 + h2d2g2 = 0, and to apply [Hillebrand et al.(2002), Lemma 3.9] to
v = td2g2. These changes appear in the proof of [Stafford(1978), Theorem 3.1].
The procedure is analogous for right ideals.

Definition 1. Let M be a left W -module and v ∈M . We say that v is unimodular
in M if there exists ϕ ∈ HomW (M,W ) such that ϕ(v) = 1.

Remark 1. If v is a column vector in some Wm then v is unimodular if and only if
the right ideal generated by its entries is equal to W . Through Gröbner bases, we
can give the homomorphism that apply v in 1.

The following Lemma is a direct consequence of Theorem 4, and it will allow a
’cancellation’ in some direct sums.

Lemma 1. [Stafford(1978), Lemma 3.5] Let M ⊂ Wm be a left W -module with
rank(M) ≥ 2 and a⊕ t ∈ M ⊕W unimodular. Then there is an algorithm to find
Φ ∈ HomW (W,M) such that a + Φ(t) is unimodular in M .

Proof. Let a1 ∈ M ⊂ Wm be a non zero element and consider Φ1 : Wm → W a
projection such that Φ1(a1) 6= 0. Let M1 = M ∩ ker(Φ1), that we can compute by
Gröbner bases. Then rank(M1) = rank(M) − 1 ≥ 1, so there exists a2 ∈ M1 − 0.
Let Φ2 : Wm → W be a projection such that Φ2(a2) 6= 0. If Φ2(a1) 6= 0 we
can compute syzygies to get r1, r2 ∈ W such that Φ1(a1)r1 + Φ2(a2)r2 = 0 and
replace Φ2 by the homomorphism Φ1r1 + Φ2r2. Then Φ1(a2) = Φ2(a1) = 0. Let
d1 = Φ1(a1), d2 = Φ2(a2) and consider the right ideal

I = 〈Φ1(a),Φ2(a), t〉W.
Then there exist f1, f2 ∈W such that

I = 〈Φ1(a) + tf1d1,Φ2(a) + tf2d2〉W.
Let Φ : W → M be the homomorphism defined by Φ(1) = f1a1 + f2a2. Then, as
shown in [Stafford(1978), Lemma 3.5], a+Φ(t) is unimodular, and we can compute
j ∈ HomW (M,W ) such that j(a + Φ(t)) = 1. �

Remark 2. The case a 6= 0 is of special interest. In this case we can take a1 = a
and obtain Φ2(a) = 0, d1 = Φ1(a). We have to find f1, f2 such that

I = 〈d1, 0, t〉W = 〈d1 + tf1d1, tf2d2〉W.
Note that the problem is not to find two generators for the ideal I. We are looking
for two special generators.

Proposition 1. [Swan(1968), Corollary 12.6] Let M ⊂ Wm be a left W -module
with rank(M) ≥ 2 and h : W ⊕ N → W ⊕M be an isomorphism with N a left
W -module. Then M ' N .
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Proof. Let h(1,0) = (t0,a0) ∈ W ⊕M . The vector (1,0) is unimodular so (t0,a0)
too. Then we compute Φ : W → M such that a′0 = a0 + Φ(t0) is unimodular in
M and we get the homomorphism j : M → W with j(a′0) = 1. We consider the
following homomorphisms:

g : W ⊕M →W ⊕M, g(t,a) = (t,a + Φ(t))
k : W →W, k(1) = t0
l : W ⊕M →W ⊕M, l(t,a) = (t− (k ◦ j)(a),a),
i : W ⊕N →W ⊕M, i = l ◦ g ◦ h

Then i is isomorphism and i(1,0) = (0,a′0). We have M = Wa′0 ⊕ ker(j) and the
following chain of isomorphisms

N ' (W ⊕N)/We1
i→ (W ⊕M)/Wa′0 = (W ⊕ ker(j)⊕Wa′0)/Wa′0 '

W ⊕ ker(j) 'Wa′0 ⊕ ker(j) = M

The isomorphism is defined as follows. Take v1, . . . ,vr a set of generators of N . Let
i(0,vi) = (αi,ui) where αi ∈ W,ui ∈ M . The map (W ⊕M)/Wa′0 → W ⊕ ker(j)
works taking an element of W ⊕M , decomposes the component in M as a sum
v + w with v ∈ Wa′0,w ∈ ker(j) and takes w. For this step note that if u ∈ M
and λ = j(u) then u = (λa′0) + (u− λa′0) is the desired decomposition. �

Remark 3. When the module N is of the form W s, then M is isomorphic to a free
module, so it has a basis. Such a basis is the image of ei, i = 1, . . . , s.

Algorithm 2.1. Computing a basis.

Input: an isomorphism W t h'W s ⊕M , with t− s ≥ 2.
Output: a basis of the module M .

START:

if s = 0 then
{ h(e1, ), . . . , h(et) } is a basis.
STOP.

end if

Let h(1,0) = (t0,a0), with t0 ∈W,a0 ∈W s−1 ⊕M .
Compute Φ : W →W s−1 ⊕M such that a′0 = a0 + Φ(t0) is unimodular.
Compute j : W s−1 ⊕M →W such that j(a′0) = 1.
Let i : W ⊕W t−1 →W ⊕ (W s−1 ⊕M) as defined in Prop. 1.
Let h : W t−1 →W s−1 ⊕M the isomorphism defined by

h(ei) = αia
′
0 + ui − λia′0

where i(0, ei) = (αi,ui), αi ∈W,ui ∈W s−1 ⊕M,λi = j(ui).
go to START

As in the previous section, this algorithm has been programmed with Macaulay2.

Example 2. Let W = A2(Q), and f =
(
x∂y xy ∂x

)
. Then P = ker f is a

projective module, because f is a unimodular row. Let

β =

 −y∂x∂x∂y
−x

 .
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Then f · β = 1, and imβ ⊕ P = W 3. The isomorphism h : W ⊕W 2 → W ⊕ P is
given by the matrix

h =


x∂y xy ∂x

xy∂x∂y + x∂x + 1 xy2∂x y∂2
x

−x∂x∂2
y −xy∂x∂y + 1 −∂2

x∂y
x2∂y x2y x∂x + 2

 .

Then

t0 = x∂y,a0 =

 xy∂x∂y + x∂x + 1
−x∂x∂2

y

x2∂y

 .

We must find Φ : W → P such that a′0 = a0 + Φ(t0) is unimodular. Let
Φ1 : P → W be the projection over the first component and a2 ∈ P ∩ ker(Φ1) not
null. For example,

a2 =

 0
∂2
x∂y

−xy∂x∂y − x∂x − 2y∂y − 2


and let Φ2 : W → P be the projection over the second component. Because
Φ2(a0) 6= 0, we have to compute r1, r2 ∈W such that Φ1(a0)r1 + Φ2(a2)r2 = 0. In
this case, we get

r1 = −∂2
x∂y, r2 = xy∂x∂y − 2y∂y + 1,

and following the notation of the proof of Lemma 1,

d1 = xy∂x∂y + x∂x + 1, d2 = xy∂3
x∂

2
y + x∂3

x∂y + ∂2
xdy.

We have to find f1, f2 ∈W such that 〈d1, t0〉W = 〈d1 +t0f1d1, t0f2d2〉W . Applying
the modified procedure of [Hillebrand et al.(2002)], we find

f1 = 0, f2 = x+ y.

Let Φ : W → P be the morphism defined by Φ(1) = (x+y)a2. Then a′0 = a0+Φ(t0)
is unimodular and we can compute the morphism j : P → W such that j(a′0) = 1.
The output is too large to be included here, but has the form

j =
(− 2

63x
2y7∂4

x∂
5
y − 2

63xy
8∂4
x∂

5
y + 5

126x
3y6∂3

x∂
6
y + . . .− 433

9 x∂x + 17x∂y + 1,
2
63xy

8∂3
x∂

4
y − 5

126x
2y7∂2

x∂
5
y + 10

63xy
8∂2
x∂

5
y + + . . .+ 5

3xy −
137
6 y2, 0)

Also we can build the matrices associated to the other morphisms

g =

(
1 0
Φ I3

)
, k = (x∂y), l =

(
1 −k · j
0 I3

)
,

i = l · g · h =

(
0 α2 α3

a′0 u2 u3

)
where

u2 = (xy2∂x, x
2y∂2

x∂y + xy2∂2
x∂y − xy∂x∂y + 1,

−x3y2∂x∂y − x2y3∂x∂y − x3y∂x − x2y2∂x − 2x2y2∂y − 2xy3∂y − x2y − 2xy2)t,
u3 = (y∂2

x, x∂
3
x∂y + y∂3

x∂y,
−x2y∂2

x∂y − xy2∂2
x∂y − x2∂2

x − xy∂2
x − 4xy∂x∂y − 3y2∂x∂y − 3x∂x − 3y∂x − 2y∂y)t

Then
w1 = (α2 − λ2)a′0 + u2,w2 = (α3 − λ3)a′0 + u3

is a basis of P , where λi = j(ui), i = 2, 3.



8 JESÚS GAGO-VARGAS

References
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