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ABSTRACT

Among the different pulse codification techniques,
stochastic pulse codification has its own arithmetic based
on the similarity between boolean algebra and statistic
algebra. Summation and multiplication are the two basic
arithmetic operations deeply treated in literature. In this
paper we present two digital stochastic circuits that ex-
tend traditional stochastic algebra: a division circuit and
a square-root circuit, and the interfaces between the ana-
log and stochastic domain.

As result, we are able to process analog input signals
with a simple and complete processing system. These cir-
cuits can be implemented in low-cost and low-power digi-
tal programmable devices.

1. INTRODUCTION

Stochastic systems make pseudo analog operations using
stochastically coded pulse sequences [1], [2]. Information
is represented by the statistical mean value of a pulse se-
quence. In a binary logic, it is the probability of taking a
“high” level. Figure 1 shows the generation of a stochas-
tic pulse stream from a digital value. The value stored
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Figure 1: Digital to stochastic conversion (DSC).

in a register is compared with a random number genera-
tor. If the random number generator is less or equal than
the register value, the output of the comparator is set to
a high level. Otherwise, a low level is set. Figure 1 can
be considered as the scheme of a digital to stochastic con-
verter. Equation 1 give us the probability of an output
high level.
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The stochastic pulse stream at the output of the compara-
tor is a Bernouilli’s sequence, with probability of a “high”
level output equal to the number stored in the register.
Bernouilli’s theorem guarantees that the mean of the ad-
dition of the Bernouilli’s random variables tends to that

probability. So, the more pulses we process, the best ac-
curacy we obtain when representing a digital value by
means of a stochastic pulse stream.

There are several methods to generate random num-
bers. Digitally, we can implement a pseudo random num-
ber generator, that is, a sequence of number with ran-
domness appearance, but exhibiting a repeatable pattern.
Among the whole variety of pseudo random number gen-
erators [3], the most extended one is the linear feedback
shift register (LFSR) of maximum length [4].

Stochastic pulse coded arithmetic is very close to pro-
cessing with oversampled signals [5]. The main differ-
ence is the following: while pulse density arithmetic only
performs basic operations such us addition and multi-
plication, stochastic pulse coded arithmetic can perform
supplementary operations that will be presented in this
paper. This approach allow a very simple electronic im-
plementation of real applications. Particularly, a reactive
power measurement method and a hardware electronic
implementation of a passivity based controller for a se-
ries resonant converter have been proposed in [6] and [7].

In next section, we will explain basic conversion
schemes between analog and stochastic domain. Section
III describes the circuits that perform traditional stochas-
tic computation, that is, summation and multiplication.
Then, division and root-square circuits will be presented.
Finally, conclusions and applications of these pulse coded
processing system will be pointed out.

2. CONVERSION SCHEMES

A digital or analog value can be recovered from a digital
stochastic pulse stream by estimating its mean value in a
long enough sequence. A counter can perform the estima-
tion in the digital domain and a RC circuit is suitable for
the analog one.

Statistically, mean value estimator has a Gaussian dis-
tribution with a mean value equals to the mean value of
the discrete Bernouilli sequence and a standard deviation
that decreases with root-square of the length N of that se-
quence (equation 2)

mean value estimator : AN(�;
�
p
N

) (2)

Figure 2 illustrates an analog signal extracted from
a stochastic pulse stream generated with the general
scheme LFSR plus a comparator. A complete study of this
circuit can be found in [8]. Analog to stochastic conver-
sion is a more complicated operation to perform. All the
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Figure 2: Analog mean value of a stochastic pulse stream

circuits proposed are based in a negative feedback scheme
in which the analog input is compared with the analog
signal obtained from the digital stochastic pulse stream
[9]. The problem is that the RC integration of the digital
pulse stream of figure 3 is not a fast integration, because
cut off frequency of the RC filter must be low to recover
the mean value. So, the bandwidth of the converter is lim-
ited below 1kHz for 8-bit accuracy and a digital clock fre-
quency of 10 MHz [9]. In [10] has been proposed a novel
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Figure 3: Analog to stochastic conversion

conversion circuit based on sigma-delta modulation that
improve bandwidth and accuracy. The reason is that, in
figure 4, we integrate the error signal between the analog
input and the stochastic pulse stream, without a previous
RC filtering. Once we have presented the converters be-
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Figure 4: Analog to stochastic conversion based on sigma-
delta modulation

tween analog and digital domain and stochastic domain,
it is possible to define a stochastic processing system in
which, given a set of analog or digital inputs, they are

stochastically converted, then processed, and finally re-
covered from the stochastic pulse stream as an analog
or digital value. Figure 5 is a block diagram that illus-
trates the whole processing system. The main advantage
of the stochastic processing system is the possibility of do-
ing pseudo-analog functions working with the mean value
of the pulse stream, but with a digital implementation.
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Figure 5: Stochastic processing system

3. STOCHASTIC ARITHMETIC

3.1. Basic operations

Traditional operations defined in the literature are prod-
uct and summation [11]. This is because they are the typ-
ical operations involved en each arithmetic computation
and they are also extensively used in neural networks,
which is one of the applications of stochastic logic.

Particularly, the product is performed by an AND gate,
provided that the input stochastic pulse streams are un-
correlated. If p1 and p2 are the input pulse streams of the
AND gate, the output pulse stream will only have a high
level when both p1 and p2 have a high level. Then the
output of the AND gate has a probability equals to the
product of the input probabilities.

Summation is a more complicated operation to perform.
The reason is that, using an OR gate, the operation car-
ried out is not actually addition but p1 + p2 � p1 � p2. As
an adder, the OR gate has the disadvantage of satura-
tion when a pulse overlapping occurs. The OR gate is
well suited when we are working with low pulse densities.
In the circuits proposed, it will be used a signed adder
scheme, based on the truth table 1. It is a combinational
block, with the following logic equations (3):

add(p1; p2) = p1 � p2 + p1(sig(p1)� sig(p2)

sig[add(p1; p2)] = p1sig(p1) + p2sig(p2)
(3)

Finally, integration is performed by an up/down
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Figure 6: Stochastic integrating circuit



ADDER block
p1 sp1 p2 sp2 (p1 + p2) s(p1 + p2)

0 0 0 0 0 -
0 0 0 1 0 -
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 -
0 1 0 1 0 -
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 0 -
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 -
1 1 1 1 1 1

Table 1: Truth table of ADDER block

counter that stores in time the stochastic pulse stream
(fk; sig(fk)). By comparing the counter with a LFSR (fig-
ure 6), we have an output pulse stream representing in-
put signal integration (Ik; sig(Ik)) [12].

3.2. Supplementary operations

Based on circuits for product and summation, we will ex-
tend traditional basic stochastic operations by means of a
division circuit and a square root circuit.

Division circuit is showed in figure 7. It is a negative
feedback scheme in which we are looking for a stochastic
pulse stream p1=p2 that, multiplied by p2, is compared
with the input pulse stream, increasing or decreasing the
counter according to the error pulse stream ek; sig(ek). As
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Figure 7: Stochastic division circuit

we are using a negative feedback, the error signal tends
to zero. So, the use of the adder block is justified because
we are working with low pulse densities. As we can only
multiply by a value in the range [0,1] (the value codified
is a probability), it must be verified that p1 � p2.

Experimental results has been obtained using a digital
programmable device, with the converters of section II,
a counter size of 10 bits and a digital clock frequency of
12 MHz. Figure 8 shows experimental results as a func-
tion of p2 for different values of p1, and compared to the
theoretical result.

Square root circuit has a similar (figure 9) scheme but
using the possibilities of redundancy in information of
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Figure 8: Experimental results of the stochastic division
circuit as a function of p2 for different values of p1

stochastic logic. Two different pulse stream can represent
the same value with a different pattern of pulses. We are
looking for a stochastic pulse stream that, multiplied by
itself using an uncorrelated version, tends to the input
pulse stream. The counter is increased or decreased ac-
cording to the error signal, the same than the previous
circuit. The pulse streams y1 and y2 are redundant and
both of them represents the square root of the input pulse
stream p1. Experimental results has been obtained us-

sig(e  )k

e
"+" COUNTER

LFSR 1

COMP

COMP

LFSR 2

y

y

k

2

ADDERp 1

p 1
1

Figure 9: Stochastic square root circuit

ing the converter of section II, leading to the figure 10
(counter size n=10 and clock frequency Fclk = 12MHz).
The dynamical response of both division and square root
circuit depends on three parameters:

� Digital clock frequency Fclk.

� Counter size n.

� p2 or y2 value in division and root square circuit, re-
spectively.

Equations (4) and (5) are the time constant for division
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Figure 10: Experimental results of the stochastic square
root circuit

and square root circuits [13]:

�div =
2n

p2Fclk

(4)

�root =
2n

y2Fclk

(5)

In order to obtain a reasonable speed in both circuits,
the clock frequency must be much higher than the sig-
nal dynamic we want to process. This restriction is due
to the fact of representing the information as a probabil-
ity in a sequence of binary pulses. Nevertheless, notice
that we are performing pseudo-analog operations work-
ing with the mean value of the random pulse stream. By
using the conversion schemes of section II, we are able to
implement a very simple and purely digital solutions to
real applications, like the ones referenced in [6] and [7].

4. CONCLUSIONS

The use of stochastic logic has provided a set of very sim-
ple arithmetic circuits constituting a design library suit-
able to solve algebraic and differential equations. Some
applications has been recently developed using stochastic
arithmetic. Particularly. a set of algebraic equations has
been solved in [6] and a set of differential equations has
been solved in [7].

There are other digital and analog techniques to solve
division and square-root operations [14]. The main ad-
vantage of stochastic approach is that can be used mas-
sively in conjunction with other stochastic circuits, car-
rying out a serialized information and with a very sim-
ple analog and digital interface. This approach allows for
the realization of quasi-analog functions but taking ad-
vantages of digital circuits properties.
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