
RAISE: A Detailed Routing Algorithm for
Field-Programmable Gate Arrays

V. Baena-Lecuyer, M. A. Aguirre, A. Torralba, L. G. Franquelo and J. Faura*
Dpto. de Ingenierı́a Electrónica
Escuela Superior de Ingenieros,

Avda. Reina Mercedes s/n, Sevilla–41012 (SPAIN)
Tel.: +34 (9)5 455 68 57
FAX: +34 (9)5 455 68 49

e–mail: baena@gte.esi.us.es
*SIDSA

C/ Isaac Newton 1, Parque Tecnológico de Madrid, Tres Cantos, Madrid–28760
Tel.: +34 (9)1 803 50 52
e–mail: faura@sidsa.es

Conference Topic: FPGA Design and Applications

Abstract— This paper describes a new detailed routing algorithm,
specifficallydesignedfor those types of architecturesthat are found on
the most recent generations of Field-Programmable Gate Arrays (FP-
GAs). The algorithm, called RAISE, can be applied to a broad range
of optimizations problems and has been used for detailed routing of
symmetrical FPGAs, whose routing architecture consists of rows and
columns of logic cells interconnected by routing channels.
RAISE (Router using AadaptIve Simulated Evolution) searches not
only for a possible solution, but tries to find the one with minimum
delay. Excelentrouting results have been obtainedover a set of several
benchmark circuits getting solutions close to the minimum number
of tracks.

I. INTRODUCTION

In the last years, the use of Field-Programmable
Gate Arrays (FPGAs) has been widely accepted as
an attractive means of implementing digital cir-
cuits. There is a wide range of comercial FPGAs,
but one of the most important types is the symmet-
rical FPGA, which consists of rows and columns of
logic blocks with horizontal routing channels be-
tween rows and vertical routing channel between
columns. This type of FPGAs was first introduced
by Xilinx in 1986, but currently it can be found in
some of the Altera and Quicklogic families.
Symmetrical FPGAs can reach very high logic ca-
pacities; for this reason, a key problem in the de-
sign of this kind of FPGAs is the structure of their
routing channels. The use of short segments im-
prove chip area (less segment length is wasted us-
ing short segments) but to provide long connec-
tions, the interconnection of short segments via
programmable routing switches is required, re-
ducing speed performance. On the other hand,
the uses of long segments wastes chip area but im-
proves speed performance (less segments are re-
quired to make long connections passing through
only a few switches).
This tradeoff forces the design of complex rout-
ing channels, with different lenght segments,

which requires sofisticated Computer Aided De-
sign (CAD) Tools.
Five stages are usually involved in mapping a cir-
cuit: design entry, logic optimization technology
mapping, placement and routing. The last one is
made in two step: global routing and detailed rout-
ing. This paper presents RAISE, a new detailed
router adapted for generic symmetrical FPGAs.

II. RAISE: ROUTER USING ADAPTIVE SIMULATED EVOLU-
TION

RAISE is based on SILK [3], a simulated evolu-
tion program for channel routing. Before running
RAISE, for each point to point net, a set of pos-
sible paths is generated (for example, using the
technique called Coarse Graph Expansion (CGE)
[1] [2]). RAISE takes this set and searches for a
path subset that make possible the routing of all
the nets, while minimizing the delays.
Theese steps are carried out by RAISE:

1. Initial Routing.

2. Rip-Up and Rerouting.

3. Postoptimization.

A. Initial Routing

The algorithm, of statistical nature, needs a seed
to start the iterative process. This seed or solution,
does not need to be feasible, that is, it can have
conflicts, which have to be solved in the following
steps. Our detailed router takes for each point to
point net the path with minimum delay. The delay
can be calculated with the RC-Tree algorithm of
[4].

1



B. Rip-Up and Rerouting

The rip-up and rerouter solves the conflicts gener-
ated in the initial routing. To this purpose, RAISE
uses the Simulated Evolution technique.
Basically, a cost is generated, for each point to point
net using a special function cost, which accounts
for the paths delay and the conflict with other nets;
then this cost is scaled in the range [0:1; 0:9]; for
each point to point net, a random number between
0 and 1 is generated, if this number is less than the
scaled cost of the routed path, the path is removed.
After end of this process, there will be a set of
routed point to point nets and another set of non-
routed point to point net. Next, for each multipoint
net, in a random order, all the non-routed point
to point nets are routed, choosing the path with
minimum cost. This process is repeated until a
solution with no conflicts is obtained or until a
maximun number of iterations is reached.
Using a random number generator to select the
non-routed nets, allows the algorithm to exit from
local minimums. Note that in the selection process,
the nets with a high costs have a high probability
of being removed. However randomly removing
some good nets also helps to avoid getting stucked
at a local minimum.
A key point in such algorithms is the function cost.
This function should contain at least a delay and
a conflict term. But other terms can be added to
improve the convergence:
From the problem definition, we know that point
to points nets from the same multipoint net can
share segments. To improve chip area, the number
of shared segments in a point to point net should be
maximized, as this we consume less FPGA routing
resources.
Besides, it would be desirable to get out some ad-
vantages of each iteration, i.e., if for each iteration
we know if the nets are valid or not, we could learn
not to do the sames errors we made in previous it-
erations.
This is included in the following function cost:

cost = � � (num shared wires)

+� � (history cost)

+
 � (
path delay

min path delay
)

+� � (
num non shared wires

min num non shared wires
)

each term is explained as follow:

� num shared: number of multipoint nets shared
segments.

� history cost: demand of each segment in pre-
vious iterations.

� path delay: self explanatory.

� min path delay: minimum path delay of the set
of possible paths for this point to point net.

� num non shared wires: number of non shared
segments between this point to point net and
the others of the same multipoint net.

� min num non shared wires: minimun number
of non shared segments between this point to
point net and the others of the same multi-
point net.

The history cost term can be calculated easily if we
remember wich segments were shared in previous
iterations. In our case, it is calculated as follow:

HistCost(Wi;K) = 0:5 �HistCost(Wi;K � 1)
+NetsUsingW (Wi ;K)

where NetsUsingW is the number of multipoint
net that use wire Wi, and K is the number the ac-
tual iteration. The minimum number of not shared
segments between one point to point net and the
others of the same multipoint net, can be calcu-
lated from the netlist of the global router suppos-
ing each corner of the net can be reached with only
1 segment.
The �, �, 
 and � parameters have to be well tuned
to reducte the number of iterations and to get a fast
convergence.

LBLOCK LBLOCK

LBLOCK LBLOCK LBLOCK

LBLOCK LBLOCK LBLOCK

LBLOCK

SBLOCK SBLOCK

SBLOCK SBLOCK

Figure 1: FPGA structure

C. Postoptimization

This phase is reached when a feasible solution has
been formed. Then, for each point to point net in a
random order, the paths with the least delay from
those that do not conflict with present solution, are
selected. This phase is repeated until no a change
is accepted in an iteration.

2



Circuits Channel Density RAISE SEGA Area SEGA Speed Sega Anneal
9symml 9 9 11 12 11
term1 10 10 11 11 13
C499 10 12 12 15 12

C1355 11 12 12 14 13
vda 14 15 15 15 16

Table 1: Minimum number of tracks per channel required for a successfully routing

W RAISE SEGA Area
Av. Delay Max. Delay Exec. time (s) Av. Delay Max. Delay Exec. time (s)

9 3.599 32.414 159.80 - - -
10 3.837 35.316 4.80 - - -
11 3.863 37.063 3.07 3.949 32.571 0.53
12 3.895 35.167 2.09 4.350 36.549 0.64
13 4.120 39.930 1.73 4.384 45.569 0.71
14 4.310 40.658 1.86 4.563 45.771 1.03
15 4.349 41.386 1.90 4.363 37.691 1.14

Table 2: Average and maximum delays generated by RAISE and SEGA Area for 9symml and different channel density

III. RESULTS

To test the performances of RAISE, different rout-
ing solutions have been obtained with a set of
benchmark circuits. The FPGA structure we used
can be seen in figure 1, the C blocks have a switch
for each segment, i.e. in SEGA terminology, fc=W;
the routing structure of an S block is shown in fig-
ure 2: all segments excepted the first of each chan-
nel (segment 0 in the picture) have a connection
pattern like segment 1, then fs > 3. For simplicity,
the vertical and horizontal routing channels have
only one track group with W segments, offset 1,
and lenght 3.
As well we set � parameter to 2.0 , � parameter to
0.5, 
 to 1.0 and � to 1.0.

0 1

Figure 2: S block routing structure

We can see the results in table 1 for a set of bench-
mark circuits. For this FPGA architecture, the
number of wiresegments in each routing channel,
needed to route the circuits is very close to the min-

Figure 3: 9symml RAISE routing solution with nine track per channel

imum number told by the global router. Note that
RAISE reaches solutions that other routers can’t
find. In figure 3 we show a RAISE solution for
the 9symml circuit with nine track per channel.
From table 2, we see the maximum and average
path delay for different number of wiresegments
per channel, for the 9symml circuit. We can see
that RAISE normally obtains better solutions than
SEGA Area router and can be used to find solutions
in dificult circuits with hugely saturated channels.
The price to be paid for this better performances is
computetime cost. Like other statistical based op-
timization programs, RAISE take a time searching
for new solutions, as can be seen in the execution
time column of table 2.

3



IV. CONCLUSIONS

This paper has presented RAISE, a simulated evo-
lution router for FPGAs. RAISE uses a statistical
technique to explore the solutions space. It has
been shown that RAISE normally obtains better
solutions than different versions of SEGA. Further-
more it find solutions that other routers can·t find.

V. ACKNOWLEDGMENTS

The authors would like to acknowledge financial
support by the European Union through the ES-
PRIT project FIPSOC and by CICYT through the
TIC86-0860 project.

REFERENCES

[1] Stephen Dean Brown, “Routing Algorithms
and Architectures for Field-Programmable
Gate Arrays”,Thesis, Department of Electrical
Engineering, University of Toronto, Canada.
January 1992.

[2] G. Lemieux and S. Brown, “A Detailed Router
for Allocating Wire Segments in FPGAs”, ACM
Physical Design Workshop, Lake Arrowhead,
California, pp. 215-226. April 1993.

[3] Youn-Long Lin, Yu-Chin Hsu, and Fur-
Shing Tsai, “SILK: A Simulated Evolu-
tion Router”,IEEE Transactions on Computer-
Aided Design, Vol. 8. NO. 10. October 1989.

[4] M. Khellah, S. Brown, and Z. Vranesic, “Mod-
elling Routing Delays in SRAM-Based FP-
GAs”,Proc. 1993 CCVLSI, Banff, Canada, pp.
6B.13-6B.18, Nov.1993.

4


