Radiation Environment Emulation for VLSI

Designs: A Low Cost Platform based on Xilinx
FPGA’s

I. Napoles, H.Guzman, M. Aguin"el, ,J.N. Tombs, F. Muiioz, V. Baena, A. Torralba, L..G.Franquelo

Escuela Superior de Ingenieros Universidad de Sevilla. Camino de los Descubrimientos s/n 41092
Sevilla (SPAIN){aguirre.jon,fimunoz,baena,torralba} (@gte.esi.us.es

Abstract—As technology shrinks, critical industral
applications have to be designed with special care. VLSI
circuits become more sensitive to ambient radiation: it affects
to the internal structures, combinational or sequential
elements. The effects, known as Single Event Effects (SEEs),
are modeled as spontanecus logical changes in a running
netlist. They can be mitigated at netlist design level by means
of inserting massive redundancy logic in the IC memory
elements, as well as designing robust deadlock-free state
machines. Current techniques for the analysis and verification
of the protection logic for VLSI are inefficient and expensive,
lacking either speed or analysis. This paper presents the FT-
UNSHADES system. This system is a low cost emulator
focused on bit-flip insertion and SEE analysis at hardware
speed, based on a Xilinx Virtex-II. Radiation tests are emulated
in a highly controlled process, using a non-intrusive method.
As a result the system can insert and analyse at least 80K faults
per hour in a system with 2 million test vectors.

Index Terms— Fault Tolerant, FPGA, Radiation, Partial

Reconfiguration, Reliability, VLSI design.

[. INTRODUCTION

LSI designs for critical industry applications like

automotive, health support, aeronautics, and others
have to consider new effects when they are implemented
using nanometric technologies, like 90nm, 65nm or less.
Ambient neutrons have enough energy to change the logic
state of a logic gate or the state of a flip-flop . Although the
probability for the phenomena is extremely low, the above
applications are managed using large electronic silicon areas
and widespread implemented into many applications.
The impact of radiation particles can force transient changes
in electronic structures that can modify their electrical
states. One consequence is that internal flip-flops can
spontaneously change their state (bit-flip). These errors are
known as Single Event Upsets (SEUs) and they do not
represent any physical damage to the circuit but produce an
abnormal functioning (they a re also called soff errors). The
typical techniques for improving circuit reliability are based
on redundancy insertion. For example, Triple Modular
Redundancy (TMR), triplicates every flip-flop and inserts a
majority voter to resolve the actual state of the Flip-flop.

Another example is Error Detection and Correction (EDAC)
subcircuit for memories. VLSI designs consequently grow
m size with a factor of 3.2, and power consumption. Costs
are increased design time and Non Recurring Engineering.

One solution reduce the impact of redundancy insertion is
to search the hierarchical modules of the circuit that are
critical for the global system and insert protections only to
those sections. This technique is known as selective
protection. A deep analysis of the circuit is then needed.

Several problems have been addressed in the introduction
of redundancies [2]. The main problem comes from the
essence of the synthesis tool, where the netlist is optimized
for redundancy elimination, second, because the TMR is
mserted manually without any restriction and verification.
The tools for this latter purpose are too slow.

In space applications, tests are made by means of
reproducing the out space environment using radiation
chambers, testing the circuit “in system”. Radiation effects
are measured using a fully functional hardware system and
faults are detected by IO comparison cycle-by-cycle
between the tested system and a non ex-posed twin system.
These techniques are expensive and mnon affordable for
mdustry applications. Radiation effects analysis has been
traditionally performed using simulators that work using a
model of the effect, called bit-flip. The radiation
environments are reproduced using fault-injection
techniques. They are slow and need many trials to detect a
weak FF [3][4]. Prototyping is a technique for netlist
validation at design level. Some simulation techniques have
been proposed and, but in practice they are very slow.

Hardware approaches are attractive due to its significant
speed-up of the injection rate. The

A new prototyping platform focused on the detection and
analysis of fault tolerance in designs is being developed
under the name FT-UNSHADES. FT-UNSHADES (Fault
Tolerant — UNiversity of Sevilla HArdware DEbugging
System) i1s a hardware/software platform that takes
advantage of the configuration circuitry present in all of
Xilingx Virtex technology. It has been specialized on
producing functional testing of a design, using a test vector
database contained in on board memory banks, but with a
careful control of the clock signal. Time is represented as an
ordered set of stimuli that are injected into the FPGA, SEUs
are inserted using a read-modify-write strategy of the

configuration memory of the FPGA. This scheme is an
application of the previous experience UNSHADES-1 and
UNSHADES-2 [6-7].

This paper is organized as follows: first, we introduce to
the SEU measurement problem. Next we describe the
internals of the FT-UNSHADES solution. The fourth
section describes the tools for producing testers and fifth
section shows results of the FT-UNSHADES behavior.

II. SEU AS FAULT INSERTION PROBLEM

The fault insertion problem is exposed in this section in
order to achieve a solution for the implementation strategy.
It is accepted that when energetic particles hit to sensitive
areas of a digital circuit, it produces soft errors, that are
equivalent to one or several bit-flips in the set of FFs (flip-
flops), changing the currently stored value at the same clock
cycle of the impact. The state is corrupted and can be
propagated to primary outputs, if the sequence of inputs
drives the circuit to an unexpected behavior of its I/Os
(primary input/outputs), this fault can cause a damage to the
system. Another possibility is that the fault remains latent in
the circuit without any effect to the system. The fault
activity should be detected if the complete circuit state is
compared with the theoretical state, at the end of the test
cycle.

Reliability against radiation of a circuit depends on circuit
architecture and the functionality which the circuit is
designed for. Designers can protect every FF using
redundancy techniques. Circuit protections increase the area
and power consumption. It is desirable to select the critical
FFs as candidates for being protected or guarantee that the
complete circuit is reliable. In both cases the fault injection
study has to be performed.

Several techniques have been proposed in literature for
design dependability evaluation. Software based techniques
[4] are based on HDL simulators. Tests are performed
recording the state at every clock cycle and making
comparisons with the state in gold simulations contained in
a previously recorded database. Simulations are too slow
when compared against the huge number of test cycles that
are needed to produce a large enough test and to extract
conclusions.

Opposed to software approaches, tests performed by
hardware emulators (eg. using FPGAs) are an attractive
solution that allows speeding-up the tests. The main
problem is that additional circuits have to be inserted during
synthesis for hardware access to the FF contents.
Additionally a poor analysis can be performed because the
observability is oriented to external pin observation and
little internal information is obtained.

The present approach is based on Xilinx Virtex
technology. It has two unique features that can be exploited
intensively for solving the problem. The first feature is
called the capture and readback mechanism, described in
[xx], and provides a non intrusive way to observe the entire
internal state without any design modification and overhead
in time or resources. The second is that the configuration
can be partially read and written. Using an adequate
approach, it is possible to force the desired values into
selected FFs whilst the rest of the system state remains

constant.
A. FPGAs emulating a radiation fest.

Our study is made on a post-synthesis description of the
design, being valid because an incremental synthesis tool is
used for the design for test to. Other radiation upset effect
such as latch-up is not covered as they must be protected by
means of technological solutions and are out of the scope of
this paper. The study is concentrated over the flip-flops, so
the results can be referred to the VLSI circuit itself.

FPGA f
MUT
(GOLD)
S (| n| TEST
ETvULL eyl TEST
DATABASE)
MUT
(FAULTY)
F

Host Comer
Figure 1 Testing approach

Figure 1 shows the proposed testing scheme. The module
under test (MUT) is a post synthesis description of the
design. Two copies of the MUT are forms the test system.
One is dedicated to produce the right outputs (GOLD) and
other will be the candidate to receive the SEUs (FAULTY).
If s is a feasible (a reachable configuration of the design
state with a set of vectors) state of all the FF for a test, that
is at a particular moment represented by the set of stimuli T,
and G(s,T) is the set of responses theoretically given by the
system without any perturbation. If siis the state s with the
FF i modified (a bit-flip), this modification can be produced
at different moments, so if Tj is the time to inject the SEU.
F(si, Tj) is the set of responses of the system when the
perturbation is inserted.

The system is robust against that fault if F(si, Tj) is
identical to G(s, T). Any discrepancy should lead to an
abnormal behavior, and the fault is classified as damage.
Sco[F(si, Tj)] and Sao[G(s, T)], are each module state at the
end of every test. If fault is not damage and any discrepancy
is found between both configurations, the fault is classified
as latent.

The goal of the tester is to generate a fault dictionary,
where every pair (fault, instant) is classified into three
categories obtaining the following information:

+ Sensitive FF

* Time of fault insertion

+ Outputs modified

* Time of output discrepancy

This information characterizes every fault for a more
detailed analysis.

B. FTUNSHADES hardware framework

The framework has been designed in order to achieve a
fully controlled test conditions. Because of the necessary

readings and writings in the configuration memory, a Xilinx
VirtexIl called the System FPGA (S-FPGA) has been
selected to do all the workload. Within it, two versions of
the MUT will play the role of the design ex-posed to
radiation and the shielded version of the circuit. Outputs are
compared cycle by cycle, to detect damage faults.

One important issue inside this scheme is time. Time is
controlled in terms of clock cycles applied to both, faulty
and gold emulations, which is obviously represented by a
counter. In the same way, time is the way to address vectors
stored in SRAM memory banks. When Tj is achieved for
fault injection or a fault is detected, the circuit has to be
frozen in order to perform the necessary internal
manipulations in the configuration of the S-FPGA. In other
words, clock has to be carefully stopped at a precise clock
cycle and continued when the accesses are completed. A
second FPGA (called C-FPGA) acts as a high performance
link between system and computer. Both FPGAs are
connected using the SelectMap port and receive from the
PC data and commands through parallel or USB port.

Extarnal System

Expansicn Bus

Laptop camputer

Figwre 2. FT-UNSHADES Framework

This scenario needs a highly controlled data transfer
scheme between a host computer and the emulated system.
A software tool is dedicated to decide which FF is candidate
to receive a bit-flip, and the insertion time and fault effects.

C. Testing Software framework

Analysis over S-FPGA is controlled by the host
computer. Software tools have to provide all the necessary
services to control the testing board. These services are:

» Board performance control: Select current Computer-
bord link, system clock rate, detect other boards in
multiboard link, etc

» Vector download: Program on board SRAM memories.
The S-FPGA is configured using a dedicated vector loader
bitstream and the computer transfers the vector file.

* Handle debug lines for detecting fault events [4-5].

» Generate automatically the ready-for-synthesize netlist

* Define ftesting strategy: Test is defined by two

parameters: WHERE the fault will be inserted inside the
complete netlist and WHEN it will be inserted during the
test cycle. HOW these parameters are controlled by the
computer is the basis of FT-UNSHADES software tools.

* Elaborate a fault dictionary.

» Provide analysis tools.

1) WHERE, WHEN and HOW

Three problems have to be solved in the SEU testing
campaigns. Fault locations are called the WHERE problem.
In terms of an RTL netlist the problem consists on deciding
which FFs are candidates for being modified. Using the
mformation contained in the bit allocation file {generated by
Xilinx Design Flow), a relationship between the FFs logical
name joined to its hierarchical path can be established with
the layout location in the S-FPGA configuration. The
knowledge of the hierarchical path allows the designer to
concentrate the testing effort selectively into a subset of the
FFs in the netlist.

The configuration frames that contain the information
related to selected FF are read from the S-FPGA, modified
to infer the desired state, and transferred into the S-FPGA.
To avoid synchronization problems the clock signal must be
frozen using a glitch free procedure. This procedure is
directly controlled by the time counter, where the WHEN
variable is defined. For the sake of clarity a single test runs
as the following pseudo code:

Initial: Assert MUT Reset
Program time counter with fault insertion cycle;
Release MUT Reset
Start test cycle. Reset Circuit;
if time counter equal to fault insertion cycle
freeze MUT;
read (FF state) /*the state of the desired FF*/
insert not (FF state);
end if;
Resume clock:
(/O discrepancy is true)
read counter;
read [/O;
classify fault as damage;
else continue;
end if;
Read STATE if latent;
Goto Start test cycle; /* Next cycle */

The third variable is HOW. It represents the fault
msertion criteria and represents a model of the radiation
reception. The most restrictive should be the bit-flip
mduction for all FFs and for all clock cycles; on the other
hand the user can define periods and time windows over
submodules in the design hierarchy for a more efficient
msertion strategies.

ITII. TEST SHELL

Test shell is a set of hardware resources required for the
control of the test procedure. Three blocks are:

* Time counter. This block maintains the number of
clock cycles that activate the MUT.

* Clock handler. This block has to stop the MUT, re-
launch the test, produces the necessary signals to indicate
fault detection, activates the VIRTEX2 CAPTURE circuit
and, finally handles the debug signals for single stepping
analysis.

» Vector addressing. At every clock cycle an address
derived from the Time counter points to the corresponding
vector stored in the on-board memories. Vector can easily
be compressed by means of simple techniques to increase
storing capacity.

SFPGA

r p
TEST

|—> MUT (GOLD)
VECTORS
DATABASE L

MUT (FALLTY)

CLOCK
ADDRESSING +— TIME COUNTER [CONTRCILLER
TEST SHELL DEBUG LINES

\ J

Figure 3. Test shell insertion

The test shell uses very little resources for control,
equivalent to around 300 system gates, and as they work
over resources that only control the clock no delay penalty
over the system behaviour is introduced.

A. Preparation of the Design for Test Emulation

The most important issue for introducing such a system in
a design flow is to avoid special requirements in the design.
Figure 5 depicts a complete design flow. The test shell is
generated automatically from a toolbox when the designer
indicates the top level. Software reads the entity for
detecting inputs, outputs and bidirectional signals. The test
shell adopts its parameters to allow:

» Input signal sharing between Gold and Faulty copies of
the MUT

» Outputs comparison

» Bidirectional signals handling

» Adds debugging control and test vector handling

» Creates the corresponding user constraint files to map
pins and set clock rates etec.

The tool creates a new top level call Design for Test
Emulation (DTE) that reproduces the schematic of figure 3.
After this, the DTE is synthesised by means of the Xilinx
standard design flow (ISE, Alliance,...), and the physical
design flow is launched to obtain the bitstream and the bif
allocation file, which link the FF locations in the
configuration of the FPGA with the instance names given in
the HDL Hardware Description Language) source. Note that
the MUT description can be a postsynthesis description,
making the approach fully non intrusive.

B. Bidirectiona I/Os treatment

Inputs are used for vector injection, outputs are used for
making the comparison and fault detection, but,
bidirectional I/Os have potential contention if the input and
output are mapped to the same pin, because there are two
possibilities:
s The fault is in the pin definition (eg.. in faulty it is
defined as output and gold it is defined as input)
e The fault is in the pin value.
Figure 4 shows a schematic the solution adopted. In order to
avoid a fail in the contention the outputs never drives
memory pins and values are filtered using this circuit and
storing in memory the theoretical values. Three extra pins
are used to compare the bidirectional connected to two
external resistors as depicted. When both signals are inputs,
the comparator receives the same value, but if a fault is
detected in the pin definition and/or the output value, then
the comparator detects the discrepancy safely for the S-
FPGA external pins.

SFPGA

B
D

330
ahm

D

aan
ohm

MEMORY

o

GOLD EMULATION

Y

FAULTY EMULATION

(A

PIN
COMPARATOR

Figure 4. Test circuit for bidirecctional signals
IV. FT-UNSHADES SOFTWARE

The uvser interface is the host computer, where all tools
run and the fault database is created. All tools are classified
in four kinds of services:

» Test vector services. Creates the vector database using
a test bench that produces the vector file, formatted for the
on board memories. A program called gererateTVF.exe
creates a new Test Bench that generates the test vector files
containing the stimuli of the DTE. Also a MUT.pin and
DTE.ucf files are generated, containing input pin allocation
and design constraints file respectively, at this stage that
will be used in the DTE generation phase.

* Test definition services. As explained above, the DTE
is automatically generated using a MUT description,
MUT pin and DTE ucf.

» Test handling services. The bit allocation file keeps the
complete instance path of all FFs. This important feature
allows the selection of subsets of FFs inside the whole
configuration. The command WHERE is then extended to
concentrate the test over certain desired modules. Also the
time (WHEN commands) can be han-dled in certain

predefined windows. All possibilities can be mixed
producing refined test method known as the HOW method.

* Post testing analysis tools. The fault dictionary has
enough information for re-producing the test using a step-
by-step method. A detailed analysis is possible, even using a
waveform viewer.

A command line environment has been created for
software services. Figure shows a scheme of the complete
environment.

V. EXPERIMENTAL RESULTS

The actual system uses 80MHz crystal oscillator, and
SFPGA is fed at 160MHz. The C-FPGA functions act as
interface with PC links. The current version works over
either EPP 1.9 (1.6MB/sec) or USB 2.0 high speed
(1.5MB/sec). Let us assume that the DTE design works at
50MHz and uses 2 million of compressed test vectors.

A single fault mjection needs at least 3 reading and
writings of VirtexIl frames. For a VirtexIl XC2V6000, the
size of a single frame is 984 bytes (this number changes if
other VirtexIl device is soldered on the board). A bit-flip
insertion therefore requires 40 microseconds. With these
conditions 20.000 faults per second could be injected,
obviously it’s given on the basis that the circuit is robust for
the faults, because in other case system halts when a fault is
detected.

The system has also been tested using huge and complex
benchmark circuits as Leon2 that can be found in [9]. Using
different stimuli database the final fault rate has been that
fault rate has been reduced to 200 faults per second. A
detailed analysis of the system shows that the bottleneck is
located in the commumication link between the computer
and the board.

The system can perform a detailed analysis of how an
injected fault is propagated through the netlist. How it is
affected until it reaches a primary output. Both, campaign
and single fault analysis are supported in the same
framework.

CONCLUSIONS

A new framework for fault tolerance measurement has
been presented. Xilinx FPGA plays an essential role
because of its partial readings and writings of the
configuration circuit and the capture and readback scheme
accelerates the bit-flip insertion and circuit analysis.

The framework has a sofiware toolbox that allows fault
tolerance measurement at any stage of the design. The test is
100% non intrusive, even a post synthesis model of the
module under test can be the input of the system. No extra
work is needed.

As future work more effort in characterization of the tool
is needed. Secondly a study of where are the weaknesses of
the technique should lead to an improvement of the tool
performance. Finally a study for determine the size of the
MUT in which the tool must be used.

REFERENCES

M. Whirthlin, E. Johnson and N. Rollins, M. Caffrey and P.
Graham. “The reliability of FPGA Circuit Designs in the Presence of

(1]

(2]
(3]

(4]

(5]

[12]

Clotk port name
Gomponent name

Radiation Induced Configuration Upsets” IEEE Symp. On Field
Programmable Custom Computing Machines 2003 (FCCM’03)

A. Fernandez-Leon “Field Programmable Gates Arrays in Space”.
IEEE Instrumentation & Measurement Magazine. Dec 2003.pp 42-

HR. Zarandi, S.G. Miremadi, A. Ejlali, “Dependability Analysis
Using a Fault Injection Tools Based on Synthesizability of HDL
Models”, Proceedings 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT°03), Boston

1.C. Baraza, J. Gracia, D. Gil, P.J. Gil, "A Prototype of a VHDL-
Based Fault Injection Tool. Description and Application". Journal of
Systems Architecture, 47(10):847-867. Abril 2002.

L. Berrojo, F. Como, L. Entrena, . Gonzalez, C. Lopez, M. Sonza
Reorda, G. Squillero “An Industrial Environment for High Level
Fault-Tolerant Structures Insertion and Validation”. VTS2002: 20th
IEEE VLSI Test Symposium, Monterey, CA (USA), 28 Aprl - 2
May, 2002, pp. 229-236

M.A Aguirre, IN. Tombs, V.Baena, .M. Camrasco, A. Torralba and
L.G. Franquelo. "Mi-croprocessors and FPGA interfaces for in-system
co-debugging in field programmable hybrid systems” Accepted for
Elsevier Microprocessors and Microsystems. Special issue on FPGAs.

M.A. Aguirre, JN. Tombs, A. Torralba and L.G Franguelo,
"UNSHADES-1: An advanced tool for In-System Run-Time
Hardware Debugging”. Proceedings of the Field Programmable Logic
and Applications. Lisbon 2003. pp 1170-1173.

R. Velazco, R. Leveugle and O. Calvo. “Upset-like Fault Injection
in VHDL Descriptions: A Method and Preliminary Results”.
Proceedings on the 2001 IEEE international Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’01)

Leon2 datashhet. GAissler Research.

Xilinx application notes 138 and 151.

P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M.
Violante. “Exploiting Circuit Emulation for Fast Hardness
Fvaluation” TEFE Transactions on Nuclear Science, Vol 48, n® 6,
2001

J. W, Wilson, I. W. Jones, D. L. Maiden and P. Goldhagen
“Atmospheric Ionizing Radiation (AIR):Analysis, Results, and
Lessons Learned.From the June 1997 ER-2 Campaign” NASA/CP-
2003-212155. February 2003.

th_MUT vhd
(vhdl file)

vl

generateTVF. exe

wa_th_MUT whd th_WUT pin User synthesis
constraints

WHDL SIMULATOR
(MedalSim) generate DTE axe
memery1.dat
Tamory? dat

Do not Insert e bufiers
Do not eonver ports inte pads

Synthesis fokder
(shell, constraints,
top, debugger, ...}

MUT.ngd
(netlist filz)

Implementation
(DTEJ\ALITD\(((DTE_MLUT.I (

Figure 5. DTE generation flow

