Generalized Analytical Approach of the Calculation of the Harmonic Effects of Single Phase Multilevel PWM Inverters

J.I. León ${ }^{1}$, L. G. Franquclo ${ }^{2}$, Steriwr Member, IEEE, , E. Galván ${ }^{3}$, Member, IEEE , M. M. Prats ${ }^{4}$ and J. M. Carrasco ${ }^{5}$, Member, IEEE
${ }^{1}$ J.1. León, Dept. of electronic engineering. University of Seville, SPAIN e-mail: jileon ©gte.esi.us.es
${ }^{2} 3.45$ Dept. of elcetronic engineering. Universiry of Seville, SPAIN

Absiraci This paper introduces a generalized analytical approach for calculating the total harmonic distortion THD and its weighted value WTHD for multilevel PWM inverters. The calculation considers one single phase und it ean apply to any number of levels of the inverter ln general. Allhough the analysis is based un the assumption of a high number of pulses, the developed equations can also be applied for lower frequency ratios isffl. The analytical formulas require the characterlstic parsmeters of the PWM only, which are the modulation factor m, the swikching frequency fs, the fundamental frequency fl, the effective inductance I. and the DC. link voltage. Voltnge inverters with a number of tevels N are considered. It must be noticed that some differences appear between the case of N add and V even. Severnl parametric curves are calculated to define the specifications of an inverter with li levels in order to fulfill the harmonie voltage recommendations trying to reduce the output signal filtering.

I. INTRODUCTION

Multilevel PWM inverters find increasing interest for high power $D C$ to $A C$ conversion $[1-4]$. The calculation of THD and WTHD of multilevel inverters is the main subject of some authors. In [5] this calculation was presented but was not generalized. Only the results of several levels of the inverter were presented. Besides, the presented results were completely individuals and the formulas were not generalized for a number N of levels. Using the way of calculation presented in this paper, THD and WTHD can be calculated by generalizing the formulas and studiying all the cases.

Figure I shows one passble singlephase topology of a 6 - level inverter. The analysis in this paper is based on the assumption of constant DC voltages. One possibility of generating the control signals for a multilevel iuverter is the carrier based pulse width modulation.

Fig l. Six-level PWM (diode clamped) inverter

II THD AND WTHD

The performance of different PWM techniques and the influence of parameter variations can be best compared by the total harmonic distortion TIID and the weighted total harmonic distortion WTHD. The THD is defined by the root of the sum of all squared harmonics of the pulse width modulated voltage L(t).

$$
\begin{equation*}
T H D=\sqrt{\sum_{i=\frac{\Sigma}{2}}^{\infty}\left[\frac{\dot{U}_{1}}{\hat{V}_{i}}\right]^{2}}=\sqrt{\sum_{r=2}^{\infty}\left[\frac{\tilde{U}_{i} \sqrt{2}}{m \hat{U}_{0}}\right]^{2}} \tag{1}
\end{equation*}
$$

It is normalized to the fundamental amplitude $\hat{U}_{t}=m \mathrm{Co}$ where m is the modulation factor. The goal of this paper is to calculate same important parameters of a multilevel inverter depending on the number of levels N of the inverter. These parameters are the duty cycle, the averaged ripple of the current in the single phase leg and the factor (U/Vo) ${ }^{2}$. Calculating these parameters, THD and WTHD can be found easily. The weighted total hammonic distortion WTHD is also based on the sum of all squared harmonics but it considers the order of the harmonics in addition. The higher order (i) of the harmonics, lower their influence to the WTHD tactor.

$$
\begin{equation*}
R T 7 D=\sqrt{\sum_{==1}^{-}\left[\frac{\vec{U}_{1} \sqrt{2}}{i m U_{0}}\right]^{2}} \tag{2}
\end{equation*}
$$

It must be noticed that floor($\mathrm{N} / 2$) will be denoted as N_{ce} in firture. The floor (x) operator detemsines the greatest integer less than or equal to the number x. in order to carry out these calculations, we must discriminate between the cases of N even and N odd. Positive output voltages are only considered due to the fact that the system is completely symmerrical. In [5], this way of calculation is presented but it is generalized in this paper studying all the possible cases. It is defined u as the average output voltage over a period.

The factor $U(u)^{2}$ can be easily calculated using the next formula where $\mathrm{U}(\mathrm{t})$ is the output voltage of the single plase in a period.

$$
\begin{equation*}
\tilde{\eta}(\bar{u})^{2}=\int_{0}^{T} U J(t)^{2} d t \tag{3}
\end{equation*}
$$

The RMS value of the fundamental voluge $\hat{\mathrm{C}}$ ((t) is simply given by $\hat{U}_{I}=m U_{0}$ while the RMS value of the PWM voltage U can be determined. U^{2} is identical to $\mathrm{U}(\mathrm{u})^{2}$ averaged over a period. For symmetrical reasons it is sufficient to consider one quarter of a period only. It is denoted a as the duty cycle. The hamonic content of
current $I-(t)$, the current ripple peak to peak (N) and the RMS value of $\mathrm{f}(\mathrm{t})(\mathrm{I}-\mathrm{f} u \mathrm{i})$ can be determined as

$$
\begin{gather*}
I_{-}(t)=\frac{1}{L} \int_{0}^{r}\left(U(t)-\bar{u} U_{0}\right) d t \\
\Delta I=\frac{1}{L_{1}} \int_{\frac{1-0}{2}=0}^{\frac{t_{0}}{2}}\left(U(t)-\bar{u} U_{6}\right) d t(4) \tag{4}\\
\tilde{I}_{-}(\bar{u})=\frac{1}{2 \sqrt{3}^{3}} N(\bar{u})
\end{gather*}
$$

The function u can be considered in general $u=m[\sin (a)$ $-k_{3} \sin \left(3 \Omega+f_{3}\right) i k g \sin \left(5 a+f_{s}\right)$. Therefore, this study can include reference voltages with third and fifth harmonic content. So, several cases are studied.

A. Calculation of the parumeterx

1. Nodd

The possible cutpur voltages of a multilevel inverter
 Therefore, Nec possible intervals can be defined as

```
Interval 1? {0, U|, (N
```



```
Interval Nce-1? {(N N
Interval Nce? {(N N}\mp@subsup{\textrm{Nec}}{0}{-
```

It must be noticed that it can he denoted ack as the duty cyele of interval $\mathbf{k}, \Delta \mathbf{I}_{\mathbf{\alpha}}$ as the ripple of the current in the interval k averaged over a period and ($\left.U / \mathrm{J}_{\mathrm{o}}\right)_{k}^{2}$ with $k=1,2$, ... , $\mathrm{N}_{c o}$ These parameters have been calculated by increasing iterative operations with N levels using the formulas commented before.

$$
\begin{align*}
& a_{k}=\frac{(N-1 \bar{k}}{2}-k+1 \tag{5}\\
& \frac{\Delta U_{k} f_{2} L}{U_{u}}=\frac{2 k(1-k)}{N-1}+\bar{m}(2 k-1)-\frac{(N-1) \bar{\pi}^{2}}{2} \\
& \left(\frac{\tilde{U}}{U_{\mathrm{c}}}\right)_{k}^{2}=\frac{\left(\frac{\bar{u}(N-1)(2 k-1)}{2}+k(1-k)\right)}{(N-1)^{2}}
\end{align*}
$$

2. Neven

The possible cutput voluges of a multilevel inverter with N even are $\left.-\mathrm{U}_{\sigma}(\mathrm{N}-1), \mathrm{U}_{0}\{(\mathrm{~N}-1)\}, 2 \mathrm{U}_{0}(\mathrm{~N}-1)\right\}, \ldots,\left(\mathrm{N}_{\mathrm{ce}}-\right.$ 1) $_{\mathrm{D}}$ ($\mathrm{N}-\mathrm{I}$), Uo. Therefore, N_{c} intervals can be defined as

Interval 0?	$\left\{-\mathrm{U}_{0} /(\mathrm{N}-1) . \mathrm{U}_{0}(\mathrm{~N}-1)\right\}$ (central interval)
Interial I?	\{ $\left.\mathrm{U}^{\prime}(\mathrm{N}-1), 2 \mathrm{C}_{0}(\mathrm{~N}-1)\right\}$
Interval 2?	[$\left.2 \mathrm{U}^{\circ}{ }^{\prime}(\mathrm{N}-1), 3 \mathrm{U}_{0} /(\mathrm{N}-1)\right\}$

```
Interval Nce-2? {( }\mp@subsup{\textrm{N}}{\textrm{ce}}{-2}-2)\mp@subsup{\textrm{U}}{0}{}/(\textrm{N}-1),(\mp@subsup{\textrm{N}}{\textrm{ce}-1}{-1)}\mp@subsup{\textrm{U}}{0}{\prime}(\textrm{N}-1)
Interval Nce-1? {( }\mp@subsup{\textrm{N}}{\textrm{ct}}{}-1)|\mp@subsup{\textrm{U}}{0}{}/(\textrm{N}-1),\mp@subsup{\textrm{U}}{\textrm{o}}{\prime}
```

It must be noticed that a central interval appears. This special interval has an output voltage negative (its value is $-U_{\mathbb{T}}(\mathrm{N}-1)$) and the other is positive (its value is $\mathrm{E}_{\mathrm{il}}(\mathrm{N}-1)$).

We can also calculate the parameters $\mathrm{z}_{\mathrm{k}}, \Delta \mathrm{I}_{\mathbf{k}}$ and and ($\left.\mathrm{U} / \mathrm{U}_{\mathrm{0}}\right)_{\mathbf{k}}{ }^{2}$. These parameters have been calculated where $\mathbf{k}=$ $0,1,2, \ldots, \mathrm{~K}_{\mathrm{ce}^{-1}}$.
$a_{k}=\frac{(N-1) \pi}{2}-k+\frac{1}{2}$
$\frac{\Delta d_{k} f_{x} I^{2}}{U_{0}}=\frac{1-4 k^{2}}{2(N-1)}+2 k \vec{A}-\frac{(\mathrm{N}-1) \bar{\mu}^{2}}{2}$
$\left(\frac{\tilde{U}}{U_{0}}\right)_{k}^{2}=\left(\frac{1}{2}-\frac{(N-1) \pi}{2}+k\right) c_{n}^{2}+\left(\frac{1}{2}+\frac{(N-1) \pi}{2}-k\right) t_{d}^{2}$
These expressions are completely valid for the central interval taking into account that in this case k is equal to zero. Therefore, the expressions for the central interval are the following.

$$
\begin{gathered}
a_{0}=\frac{(N-1) \bar{u}}{2}+\frac{1}{2} \\
\frac{\Delta{I_{0}}_{0} f L}{U_{0}}=\frac{1}{2(N-1)}-\frac{(n-1) \bar{u}^{2}}{2} \\
\left(\frac{\tilde{U}}{U_{0}}\right)_{0}^{2}=\frac{1}{(N-1)^{2}}
\end{gathered}
$$

B. Calculation of $\mathrm{K} U \mathrm{f}$ factor

The KU factor is defined as

$$
\begin{equation*}
K U=\frac{1}{U_{0}^{2}} \sum_{t-2}^{\infty} \tilde{U}_{i}^{2}=\frac{1}{U_{0}^{2}} \sum_{i=1}^{\infty} \tilde{U}_{t}^{2}-\frac{\tilde{U}_{i}^{2}}{U_{0}^{2}}=\frac{U^{2}-\tilde{U}_{1}^{2}}{U_{0}^{2}} \tag{8}
\end{equation*}
$$

and U and U_{1} are determined as

$$
\begin{equation*}
\tilde{U}_{1}=\frac{m U_{0}}{\sqrt{2}} \quad \tilde{U}^{2}=\frac{2^{\frac{\pi}{2}}}{\pi} \int_{0} \tilde{U}(\bar{u})^{2} d \alpha \tag{9}
\end{equation*}
$$

It must be noticed that firstly it will be considered $\mathbf{u}=$ $\mathrm{m}[\sin (\mathrm{a})]$. Therefore, third and fifth harmonics will be considered in the nextsection of this work.

1. N odd

For the first interval, applying the formula described before, it can be used the following expression

$$
\begin{equation*}
U c_{1}=\frac{2}{\pi} \int_{0}^{\frac{5}{3}} \frac{2 \bar{u}}{N-1} d \alpha \tag{10}
\end{equation*}
$$

If the number of levels of the inverter is greater or equal than 5 , a second interval appears and an angle β must be calculated. β is the angle where the modulation changes the lov level to the up level. Therefore, for example if the number of levels is equal to S, β is the angle where m changes between $\mathrm{m}=0.5$ and $\mathrm{m}>0.5$. In general, Nce angles β_{k} must be colculazed with $\mathrm{N}=5$. These angles follow the rext expression.

$$
\begin{gathered}
\beta_{\mathrm{a}}=0 \\
\beta_{A}=\arcsin \left(\frac{2(k-1)}{m(N-1)}\right) \quad \text { (11) } \\
\beta_{\text {Nkea }}=\frac{\pi}{2} \quad \text { will } k-1 \ldots \mathrm{~N}_{\mathrm{se}}-1
\end{gathered}
$$

In general, Ucg can be determined as

$$
\begin{gather*}
U c_{j}=\frac{2}{\pi} \sum_{A=1}^{\beta_{A-1}} \int_{A_{1}}^{\beta_{0}}\left(\frac{\tilde{U}}{U_{k}}\right)_{k}^{2} d \alpha \\
U c_{j}=\frac{2}{\pi} \sum_{i=1}^{3} \int_{p_{k-1}}^{\alpha} \frac{4\left(\frac{\bar{u}(N-1)(2 k-1)}{2}+k(1-\pi)\right.}{(N-1)^{2}} d \alpha \tag{12}\\
\text { with } \mathrm{j}=1 \ldots N_{c k}^{2}
\end{gather*}
$$

The parameter Uq_{g} is associated with the interval $j N_{c c}>m=(j-1) / N_{c c}$. The function U is defined as the sum of terms U_{g} with $\mathrm{j}=1,2, \ldots, \mathrm{~N}_{\boldsymbol{c}}$. Therefore, U is a function where in can change between 0 and 1 . Finally, factor KU and factor THD can be calculated as

$$
\begin{equation*}
K U=U-\frac{m^{2}}{2} \quad I H D=\frac{\sqrt{2 K U}}{m} \tag{13}
\end{equation*}
$$

The evolution of KU factor and THD factor with the number of levels of the inverter can be calculated. It is shown in figures 8 and 9.

Fig 8. KU fact or evolution for \mathbb{N} odd

Fig 9. THD factor evolution for N odd

3. Neven

For the central interval the factor Ub_{b} can be easily calculated.

$$
\begin{equation*}
U c_{0}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{(N-1)^{2}} d \alpha \tag{14}
\end{equation*}
$$

For the first interval (this interval only exists if $\mathrm{N}=4$) the angle β where the mudulution cbanges the low level for the high level must be calculated. So, for example, in the case $\mathrm{N}=4$, this angle marks the change hetween $\mathrm{m}=1 / 3$ and $\mathrm{m}>1 / 3$. In general, the number of angles β_{k} that must be deternined is $\mathrm{Nce}-1$ where $\mathrm{N}=4$. The analytical expression of β_{k} is

$$
\begin{gather*}
\beta_{0}=0 \\
\beta_{k}=\arcsin \left(\frac{2 k-3}{m(N-1)}\right) \quad(15 \tag{15}\\
\beta_{\mathrm{cs}}=\frac{\pi}{2} \quad \mathrm{k}=1 \ldots \mathrm{~N}_{\mathrm{cc}}-1
\end{gather*}
$$

It is defined z_{f} as the initial output voltage of interval k , u_{f} as the final outpul voltage of interval k.. So, in general it can be calculated the expressions

$$
\begin{aligned}
& U c_{k}=\frac{2}{\pi} \sum_{k=1}^{j} \int_{\beta_{1}}^{\beta_{k-1}}\left(\frac{\bar{U}}{U_{\mathrm{o}}}\right)^{2} d \alpha{ }^{\text {(16) }} \\
& U c_{j}=\frac{2}{\pi} \sum_{n=1}^{\infty} \int_{n}^{\beta_{n}}\left(\left[\frac{1}{2}-\frac{\bar{u}(N-1)}{2}+k\right]_{x}^{2}+\left[\frac{\bar{\pi}(N-1)}{2}-k+\frac{1}{2}\right]_{4}^{2}\right) d \alpha \\
& \text { with } j=0 \ldots . . \mathrm{V}_{\mathrm{m}_{\mathrm{C}}} \text { - }
\end{aligned}
$$

It must be taken into account that the factor ten only exists in the interval $1 /(\mathrm{N}-1)=\mathrm{m}=0$. For the other intervals, Ugjexists in the interval $(2 j+1) /(\mathrm{N}-1)>m=(2 j-1) /(\mathrm{N}-1)$. So, the function U can be built as the sum of this Uq factors with $\mathrm{j}=0,1, \ldots, \mathrm{~N}_{\mathrm{ec}}$ l . Therefore, U is a function where m changes between 0 and 1 . Finally, factor KU and factor THD can calculated using (13).

So, the evolution of KUU factor and THD factor with the number of levels of the inverter can be calculated. It is shown in figures 10 and 11.

Fig 10. KL factor evolution for N even

Fig 11. THD factor evolution for N even

C. Calculation of KI faclor

1. Nodd

In gencral, the factors Ic can be calculated as

$$
k_{j}=\frac{2}{\pi} \sum_{k=1}^{1} \int_{\rho_{k+1}}^{\beta_{1}}\left(\frac{\mathrm{~N}_{k} f_{\mathrm{f}} L}{U_{\mathrm{a}}}\right)^{2} d \alpha
$$

$I c_{j}=\frac{2}{\pi} \sum_{k=1}^{j} \int_{B_{2+}}^{M}\left(\frac{2 k(1-k)}{N-1}+\bar{u}(2 k-1)-\frac{(N-1) \bar{u}^{2}}{2}\right)^{2} d \alpha(17)$
with $\mathbf{j}=1 \ldots \mathrm{~N}_{\mathrm{ww}}$
These factors I_{j} exist in the interval $\mathrm{N}_{\mathrm{ce}}>$ mif($\left.\mathrm{j}-1\right): \mathrm{N}_{\mathrm{ce}}$. So, the function I can be built as the sum of these parameters I , with $\mathrm{j}=1, \ldots$, Nce Therefore, I is a function where m changes between 0 and 1. Finally, factor KI and factor can be calculated WTHD as

$$
\begin{equation*}
K I=\frac{2 \pi U f_{1}^{2}}{3 / s^{2}} \quad W T H D=\frac{\sqrt{2 K I}}{m} \tag{18}
\end{equation*}
$$

Using these formulas, the calculation of the parameters is very fast and easy. So, the evolution of KI factor and WTHID factor with the number of levels of the inverter can be calculated. It is shown in figures 12 and 13.

Fig 12. KI factor cyolution for N odd

Fig 13. WYHD factor evolution for N odd

2. Neven

In general, it can bc used

$$
\begin{equation*}
I_{j}=\frac{2}{\pi} \sum_{k=1}^{K} \int_{j_{1}}^{A}\left(\frac{\Delta U_{k} f_{j} L}{U_{0}}\right)^{2} d \alpha \tag{19}
\end{equation*}
$$

$I c_{j}=\frac{2}{\pi} \sum_{k=0}^{1} \int_{\beta_{1}}^{\beta_{11}}\left(\frac{1-4 k^{2}}{2(N-1)}+2 k \bar{u}-\frac{(N-1) \bar{z}^{2}}{2}\right)^{2} d \alpha$
with $\mathrm{j}=0, \ldots, \mathrm{~N}_{\mathrm{rc}}-1$.
The factor Ic_{0} only exists in the interval $\mathrm{I} /(\mathrm{N}-1)>\mathrm{m}=0$. For the other intervals, Ig exists in the interval ($2 j+1$) $/(N)$ $1)>m=(2 j-1) /(N-1)$. The function Ican be build as the sum of this I_{g} factors with $\dot{j} 0,1, \ldots, N_{\mathrm{cc}}-1$. Therefore, I is a function where m changes berween 0 and J . Finally, factor KI and factor WTIID can be calculated with (18).

So, the evolution of KI factor and WTHD factor with the number of levels of the inverter can be calculated, It is shown in figures 14 and 15.

Fig 14. KI factor evolution for N even

Fig 15. WTHD factor evolution for Ni even

III. COMPARISION BETWEEN N ODDFEVEN

In order to compare the THD and WTHD of the inverter with N olll and N even, several figures can be shown. THD factor is showin in figures 16 and 17.

Fig 16. THD [actor evolution with $0.05<\mathrm{m}<0.5$

Fig 17. THD factor evolution with $I>m>0.5$

It can be observed clearly that inverters with an even number of levels present IHD factors greacer than inverters with an odd number of levels when m is small. This phenomenon nccurs due to the fact that inverters with N odd present zero vectors whereas inverters with N even do not present that kind of vectors. When m is small, these vectors make easy to follow the reference vector and the error is low.

When in grows this phenomenon loses importance and the evolution of THD factor is completely logical. Therefore, for example, THD factor with $\mathrm{N}=6$ is greater than the TIID factor with $\mathrm{N}=7$ and lower than THD factor with $\mathrm{N}=5$.
In the same way, it can be shown the evolution of WTHD factor with the number of levels. 1 l is shown in figures 18 and 19.

Fig 18. WTHD factor evolution with $0.5>m>0.05$

Fig 19. WTHD factor evolution with $1=-1 n>0.5$
In the same way on that it was commented previously, it can be observed clearly that inverters with an even number of levels present WTHD factors greater than inverters with an odd number of levels when m is small. Equally, when m grows this phenontenon loses imporance and the evolution of WTHD factor is completely logical.

[V.THIRD AND FIFIH HARMONIC CONTENT

Now, it will be considered that the function u including hamпnnics. $S n$, in general, $u=m\left[\sin (a)+k_{3} \sin \left(3 a+f_{3}\right)+\right.$ $\left.k_{5} \sin \left(5 a+f_{5}\right)\right]$. Therefore, this suady includes reference vulinges with third and fifth harmonic content.

The evolution of the factors with harmonic content can be easily calculated using the same formulas commented before. As an example, third harmonic content will be considered. The evolution is represented in the plane m-k3. The results are shown in figures, 20-23. It must be noticed that these curves include the figures 16-19 because the 2-D presented figures of THD and WTHD are the figures 20-23 with k3equal to zern. So, these 3-D parametric curves are the summary of the calculation.

V. CONCILLSIONS

In this work, a fast and easy method to calculate the TIID and WTHD facorors has heen developed. This method is completely generalized and any number of levels can be studied. This calculation cam be carry out in order to know the inverter specifications to fulfill the harmonics recommendation. Resides, the filtering reduction of the output signals can be done thanks to decreasing THD and WIHD harmonics. In this paper, it is shown that inverters will a number cyen of levels present THD and WTHD faclors higher than inverters with a number odd of levels when in is small. It must be noticed that inverters with $\mathrm{n}>11$ achieve harmonic parameters very same and it has not sense the use of inverters with more levels.
There are several practical uses for the method. Firstly, it can be determined the number of levels of a prototype in order to achieve the specifications of distortion knowing the switching frequency $f s$. Secondly, it can be determined the maximum switching frequency $f s$ of a real protolype with N levels to fulfill the distortion specifications. Thirdly, the maximum modulation index m cun be calculated knowing the specifications of the prototype ($f s, W$).

Fig 20. THD factor cvolution with third harmonic content with $\mathrm{N}=4$ and $\mathrm{N}=\mathrm{h}$

Fig 21. THD factor evolution with third hammonic content with $\mathrm{N}=5$ and $\mathrm{N}=7$

Fig 22. WiTHD factor evolution with third harmonic content with $N=4$ and $N=6$

Fig 23. WTHD factor evolution with third barmonic content with $\mathrm{N}=5$ and $\mathrm{N}-7$

So, this method is a very useful tool to know a real protorype or to determine a possible protutype that fulfilis the distortion specifications. Besides, the method includes the study of any possible harmonic content. The evolution of THD and WTHD factor can be easily shown.

VI. REFERENCES

[1] K. Teodorescu, F. Blaabjerg, J.D. Pedersm, E. Cengelci, S.U. Sulistijo, B.O. Woo, P. Enjeti, "Multilevel Converters - Λ Survey" Proc. of EPE'99. Lausanne, FraNce, 1999
[2] J.von Bloh, O.F. Kashani, R.W. De Doncker "Optimisation of multilevel voltage source converters for Medium-Voltage DC Transmission Systems" International Symp. on Ind. Electronics, ISIE2000, Puebla (Mexico) 2000
[3] Dai, S., vor Jouame, A., "A Simple Methoul for Halancing the DC-link Voltage of Three-Level Inverters" ConfereNce Proceedings PESC 2001
[4] Calais, M., Agelidis, V.G.,, Borle, L., "Aralysis of Multicartier PWM Methods for a Single-Phase Five Level Inverter" ConfereNice Proceedings PESC 2001
[5] van der Broeck, H.W., "Analytical calculation of the hamnonic effects of single phase multilevel PWM inverters", 29th Annual ConfereN'se of the IEEE Industrial Electronics Society, IECON03, pp 243-248, November 2003, Roanoke, Virginia, USA.

