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The generalized traveling wave method (GTWM) is developed for the nonlinear Schrodinger equation
(NLSE) with general perturbations in order to obtain the equations of motion for an arbitrary number of
collective coordinates. Regardless of the particular ansatz that is used, it is shown that this alternative approach
is equivalent to the Lagrangian formalism, but has the advantage that only the Hamiltonian of the unperturbed
system is required, instead of the Lagrangian for the perturbed system. As an explicit example, we take 4
collective coordinates, namely the position, velocity, amplitude and phase of the soliton, and show that the
GTWM yields the same equations of motion as the perturbation theory based on the Inverse Scattering
Transform and as the time variation of the norm, first moment of the norm, momentum, and energy for the

perturbed NLSE.
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I. INTRODUCTION

With great generality, and in many phenomena, such as
scattering and diffusion, solitons, and other nonlinear coher-
ent excitations in extended systems behave like particles
[1,2]. This fact allows one to reduce the infinite number of
degrees of freedom of the extended systems to only a few,
when we are interested in the behavior of the soliton excita-
tions. E.g., the dynamics of topological solitons of the non-
linear Klein-Gordon equations (NLKGEs) in the simplest
case can be described in terms of one so-called collective
coordinate (CC) [3,4], typically the center of the soliton.
More sophisticated Ansétze take into account other degrees
of freedom, using two CCs [5,6], three CCs [7], or even
more [8].

The dynamics of nontopological solitons of the nonlinear
Schrodinger equation (NLSE) is more complicated: The
bright one-soliton solution, which has an internal oscillation,
depends on four parameters [2]. Therefore, typically four
CCs, namely position, amplitude, velocity and phase, have
been used.

There are several methods to determine the equations of
motion that the CCs satisfy. For instance, for modified
NLSEs several perturbation theories can be applied [9-12],
for certain systems one can use the perturbed inverse scatter-
ing transform (IST) [13,14], and if a Lagrangian density ex-
ists one can derive Lagrange equations, which are the evolu-
tion equations of the CCs [15-17]. Moreover, the time
variation of M conserved quantities of the unperturbed sys-
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tem generally is related with the evolution of M CCs [18,19].

There is another method, the so-called generalized travel-
ing wave method (GTWM), in which a certain projection
technique is used to obtain the equations of motion of the
CCs. The GTWM was introduced in a general way in Ref.
[20]: only the Hamilton equations of the unperturbed system
must be known and the unperturbed system need not be in-
tegrable. The method was applied to the zero-temperature
dynamics [20] and the thermal diffusion [21,22] of magnetic
vortices in the two-dimensional (2D) anisotropic Heisenberg
model. The GTWM was also applied to the dynamics of
topological solitons in NLKGEs [23]. Together with the Rice
ansatz [5,6], which introduces the position and the width of
the soliton as CCs, the method explained resonances due to
the action of an ac force [23-25] and described transport
phenomena of ratchet type in sine-Gordon and ¢* models
with biharmonic driving and damping [26,27]. The sine-
Gordon model was applied, e.g., to long Josephson junctions,
where the fluxons play the role of the solitons, and the
ratchet effect was confirmed by experiments [28].

The aim of this work is to develop the GTWM for an
arbitrary ansatz with M CCs for the perturbed NLSE, see
Sec. II. Furthermore, we show in Sec. III that in cases where
the Lagrangian density for the perturbed system exists, the
GTWM is equivalent to the variational approach. In particu-
lar, by using only 4 CCs we show in Sec. IV that the GTWM
is also equivalent to the results obtained from the perturba-
tion theory based on the inverse scattering transform [14],
from the adiabatic perturbation theory [29] and from the
variation of the norm, the first moment of the norm, the
momentum, and the energy of the perturbed NLSE. Finally
in Sec. V, we summarize our main results.
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II. GENERALIZED TRAVELING WAVE METHOD

The perturbed NLSE actually consists of two equations
for the real and imaginary parts, or for u(x,r) and u*(x,7).
Namely,

ity + ty + 2|u)?u = R[u(x,1);x,1], (1)

and its complex conjugate equation, where R[u(x,f);x,?]
represents a general perturbation, which may also depend on
u” and the spatial derivatives of u and u*. This system has
very many applications in practically all fields of physics,
which are listed and discussed in several reviews articles
[14-16,30]. In the case of optical solitons, ¢ and x are re-
placed by the propagation distance and the pulse duration,
respectively.
For our purpose, we rewrite Eq. (1)

OH,
i, = — + Rlu(x,0)3x,7], (2)
ou’
where
+o0 400
Hy= f dxHy= J dx(ua — uu™?). (3)

For the following, only this Hamiltonian of the unperturbed
system must be known. We now assume that the time depen-
dence of u(x,r) and u*(x,7) in Eq. (2) and its complex con-
jugate equation only appears via a set of M real collective
coordinates {Y(z),Y,(7),... Y, ()}:= Y(©)

w* (1) = u'lx, Y(1)]. (4)

Then, we multiply Eq. (2) by du*/dY,, and its complex con-
jugate equation by du/dY,, add the resulting equations and
integrate over the system, yielding

u(x,t) = ulx, Y()],

M
> Iynyij =F,(Y)+R,(Y), n=12, ..M, (5)
Jj=1

with
| ou out dut du
I y= | di] L2 _ 2L ©6)
2 ) T Ly, ey, oy, v,
- | SHydu"  SHy du
Fo(Y)=- f de| 22—+ 22—
o ou” Y, ou dY,
e OH d
= f dx—" = ——H,, (7)
L oy, v,
R +e ou* d
Rn(Y)=—J dX(R +R*—u), (8)
» oy, ay,

where the overdot denotes the derivative with respect to
time. Equations (5)—(8) represent a set of M first-order ODEs
for our M CCs. We note that for certain systems it is neces-
sary to assume that the time dependence of the fields can also

appear via YI,YZ, ,YM, which are formally treated in the
same way as the CCs. This yields M second-order ODEs for
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the M CCs. Examples are magnetic vortices [20] and topo-
logical solitons in NLKGEs [23,31]; in both cases the width
of the excitations depends on the velocity of the excitations.

In order to have an example which can be tested by the
perturbation theory based on the IST [14] we now take the
one-soliton solution of the unperturbed NLSE and make the

following specific ansatz for u(x,Y(1)):
u(x, 1) = 2i7 sech[27p(x = ) Je” -0+, ©)

with the 4 CCs soliton position {(z), phase ®(z), amplitude
7(1), and velocity &(r). The soliton energy reads

16
Ho=;n(3§2— 7). (10)

Setting Y,=¢, Y,=®, Y;=7 and Y,=¢ in Egs. (5)—(8), we
obtain for n=1

+R*—

o oL

where 27 is the soliton mass, and —4&(r) the soliton velocity
[30]. Therefore this equation has the form of the Newtonian
equation of motion for a point particle with variable mass.
The rhs of Eq. (11) represents the time-dependent force
obtained by means of the average of the perturbation R over
space, where the “weight function” is just the variation of
the ansatz with respect to the first CC, the soliton position.
In addition to the point-particle representation, the evolution
of ¢ and ® takes into account other degrees of freedom.
Then, in a similar way, i.e., setting Y,=¢, Y,=®, Y;=9 and
Y,=¢ in Egs. (5)—(8), we obtain for n=2,3,4

u” &u)

87‘7§+877§=J dx(R (11)

*®

47)= fmd(Rﬁ” R*a—“> (12)
n=- B X (9¢+ 6)°

4D -2¢) =4(p+28d)
=- 16(772—52)+f

—00

+o0

( u* *&u>
dx| R +R*— ),
an an

(13)

ou*
+
23

. e Lou
8nl=- 3277§—j dx(R R —), (14)
respectively, where ®=¢@+2£. Hence, the evolution of %
and { is given directly by Egs. (12) and (14), respectively.
Substituting 7 from Eq. (12) in Eq. (11) the equation of
motion for ¢ is attained. Finally, using the obtained equation

for £ in Eq. (13) the time evolution of ® is found. Equations
(11)—(14) are equivalent to the results of the adiabatic per-
turbation theory [29]. They are also equivalent to the Egs.

(3.17)=(3.20) of Ref. [14] for #, &, ¢, and ¢ obtained by the
IST with arbitrary perturbations. However, the GTWM has
the following advantages:

(1) Tt does not require that the IST can be applied to the
unperturbed system. In fact, the specific form of H, in Eq.
(3), which is related to the unperturbed NLSE, is not used in
the derivation of the evolution Egs. (5) for the CCs.
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(2) The GTWM works for an arbitrary number of CCs.
For example the ansatz of Ref. [37] with 6 CCs can be used.
See also the remarks at the end of the conclusions section.

(3) The procedure which yields the evolution Egs. (5) for
the CCs is extremely concise. After having chosen a specific
ansatz, the calculation of the integrals Eq. (6) and the forces
Eq. (7) is straightforward. The same holds for the perturba-
tion terms Eq. (8) when the perturbation R has been speci-
fied.

III. VARTATIONAL APPROACH AND GTWM

An advantage of the GTWM is related to the fact that it
can be applied in cases where the Lagrangian density
L(u,u* ug,u;,u,u,) of the perturbed system is unknown.
However, if £ exists and if, in addition, £ and the ansatz
Eqgs. (4) satisfy certain conditions [see Egs. (22) and (23)
below], we show that the variational approach and the
GTWM are equivalent, i.e., both methods yield the same
equations of motion for the CCs.

In order to prove this statement, we separate the perturba-
tion R[u(x,?);x,t] in two parts

Rlu(x,t);x,t]=—iBu + Blu(x,1);x,1], (15)

such that the dissipation in the system appears only in the
first term, —i Bu. We assume that the perturbed NLSE Eq. (1)
is equivalent to an Euler-Lagrange equation, generalized by a
dissipative term on the rhs,

doL doL JIL OF

* + P x * 9 (16)
dtou, dxdu, Ju" bu,
with the dissipation function
F=—if(uu; —u'u,), (17)

and similarly for the complex conjugate of Eq. (1). We note
that more complicated dissipation terms than the simple term
—iBu in Eq. (15) can also be treated by generalizing the
Euler-Lagrange formalism [17].

Now, inserting the ansatz Eq. (4) in £ and F [32,33] and
integrating, we obtain

+o0 .
L= f dxL(uu* u i) =L(Y:Y),  (18)

—00

+00 .
F= J dxF(uu* u i u,uy) = F(Y:Y). (19)

Hence, the M collective coordinates satisfy M generalized
Lagrange equations

d JL JL oF
ST, (20)
dt ay, ay, ay,
or equivalently
e d oL oL IF
dx| ——-—-—1|=0, (21)
o dt 3y, Y, 3y,
where n=1,...,M. From now on we denote Y=Y, and as-
sume {see Eq. (4) in [32]} that
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dL du dL du
— -l =0, (22)
u, dY | U 0Y |
L ou* L ou*

d i ad 0. (23
(91/[,( 24 dx—+40 L {9“)-( 24 X—s—00

As the following relations hold

doL d(dLou\ dfIL u*

== = e =), (24)
dt gy dt\odu,dY/) dt\du, Y

aL dLou 9L ou" IL du,

= +
Y oudY ut Y du, Y
L ou, (3’/3% L du;

+— + +— ,
aul Y du, 9Y  oul 9y

(25)

OF O0Fou OF ou™

= + - ,
gy  ou, Y  du; Y

(26)

and taking into account the relations Egs. (22) and (23), Eq.
(21) becomes

f*‘” d(&ﬁ) d(&ﬁ) oL IF | ou
==+ —=|-—=-=—1=
o dt\du,) dx\du, du Jdu,|dY

+e d{ L d{ L aL  OF | ou®
+ dxy — |+ — - =0.
e dt\ du, dx\ du du” du, | Y

(27)

Inserting the Lagrangian density £ and the dissipation func-
tion F in Eq. (27), the first and second curly brackets become
the NLS Eq. (1) and its corresponding complex conjugate
equation, respectively (up to a constant factor), where R is
given by Eq. (15). Then, Eq. (27) represents the integration
of the sum of the first NLSE Eq. (1) multiplied by du/dY and
the second NLSE, i.e., the complex conjugate of Eq. (1),
multiplied by du*/dY. This projection procedure is exactly
the same as that which has produced the M Egs. (5) in Sec.
II. Thus, the Lagrangian approach is equivalent to the
GTWM and vice versa. However, in practice the GTWM
requires more work if M >3, because M(M—1)/2 integrals
IYnY/ and M integrals R,(Y) in Eqgs. (6) and (8), respectively,
must be calculated. In the Lagrangian method one has to
perform only M +3 integrals to obtain L and F. On the other
hand, the GTWM is more general since the Lagrangian den-
sity of the perturbed system need not be known.

IV. GTWM AND MODIFIED CONSERVED QUANTITIES

A very peculiar property of GTWMs is related to its
relationship with the so-called modified conservation laws
(MCL) (the time evolution of the quantities which are con-
served for the unperturbed system) [18]. Such an equivalence
was already shown for NLKGEs in [23] since usually the
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equations of motion for M CCs are related with the first M
MClLs.

In this section, we show that in the case of the NLSE the
GTWM with the ansatz

w(x,0)=u*(x =, P, 7,8,
(28)

u(xa t) = u(x - 4/7(1)7 7, g)’

yields at first only 3 MCLs, namely the time variation of the
norm, the momentum, and the energy. In Eq. (28) { denotes
the soliton position and @ represents a phase, (so that
oul 0P =—iu and Ju”/IP=iu"). We stress that we need not
yet make a specific ansatz for u. With M=4 and setting n
=1 in Egs. (5)—(8) we obtain

+o0 .
d i

dxag[utu* —uu], (29)

—00

4
. dP
IyY,=—+
j=21 gYJ. J dt f

* 9H,
Fi({,®,7,8)= dx——, (30)
e ox
+00 ou’ 9
R1<§,<b,n,§)=f dx(R - +R*—”), (31)
o ox ox
where P is the momentum
+00 l
sz d)cg[uu;k —u'u,]. (32)

Substituting Egs. (29)—(31) in Eq. (5) and taking into account

that
o9
f_w dxa E[utu* —uu]—Hy (=0, (33)
we obtain
ap (™ u* du
—= dx| R +R*—, (34)
dt e ox ox

which represents the variation of the momentum with respect
to time for the perturbed NLSE Eq. (1) and its complex
conjugate equation.

Taking n=2 in Egs. (5)—(8), we obtain

4
. dN +e
EICIJYij=_Z’ N=f dxlul?, (35)
1 -
9H, J (™ s
F2(§,¢,ﬂ,§)=—£=—£ dx(Ju,|* - |u|*) =0,

(36)
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Ry(LD, 78 = de(R‘E R*ﬂ>
2D, 7.8 =- B X a¢)+ 2D

=— J+°° dx i(R"u — Ru"). (37)

—00

Hence, substituting Egs. (35)—(37) in Eq. (5) our second
modified conservation law reads

dN e
e f dx i(R"u—Ru"), (38)

and represents the variation of the norm N.

Finally, we insert in Egs. (5)—(8) Y,=¢, Y,=®, Y3=17, and
Y,=¢, with M=4. Then, we multiply these equation by D,
7, and £ respectively; adding them yields

4 4
E E IYanYan =0, (39)

n=1 j=1

.. . 4aH
F|§+F2¢)+F37]+F4§=—d_t0, (40)

+00
R1§'+R2<I'>+R317+R4g'=—J dx(Ru; +R'u,), (41)

so that the evolution of the energy is given by

dH i * *
7;0 =- f dx(Ru; + R*u,), (42)
which can be written as
4
dH (T ou* d
—0=_2ij dx(R K +R*—”). (43)
dt = e dY; dY;

Equation (43) represents the third MCL for NLSE.

We would like to find a fourth MCL, since we are using
four CC equations from our GTWM. It is natural to expect
that these equations are related not only to the first three
conservation laws but also to the fourth one. The infinite
sequence of conservation laws of the unperturbed NLSE can
be obtained via the following recurrence relation for densi-
ties, which was obtained in the framework of the IST [34],

d(b
D1 = ”*_<_’:> + 2 bib;, (44)
dx\u ketj=m—1
with by= |u 2 m=0,1,.... A similar relation, with b:m, holds

for the complex conjugate of Eq. (1) with R=0. In this way,
for m=0 the momentum density P=—(i/2)(b,;—b]) is ob-
tained [34], which is identical with that in Eq. (32). For m
=1, we obtain the energy density and for m=2 a new density,

1= (012)(bs = ) = 3lul ] = ) + 0= ).

(45)

Using the one-soliton solution for the unperturbed NLSE,
i.e., Equation (9) with constant velocity and amplitude and
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the linear functions in time (={y—4¢& and P=d,
—4(&+1P)t, this yields a new conserved quantity H,
=[*dxp,(x,t)=329&&~1). Due to the perturbations R
and R* in Eq. (1) and its complex conjugate equation, respec-
tively, the evolution of H, is determined by [18]

dH +e .
o f AR (6, + 1, + R(6JulPu” + 7)1,

(46)

where H, is the Hamiltonian for the first integrable hierarchy
of the NLSE [35]. Comparing the rhs of Eq. (8) with the rhs
of Eq. (46) we realize that in the former equation the pertur-
bation R is multiplied by the first derivative of u™ with re-
spect to a given CC, whereas in the latter one the third spatial
derivative of u* appears. So, the MCL Eq. (46) is not equiva-
lent to any equation or combination of equations of the sys-
tem Egs. (5)—(8) obtained by means of GTWM.

However, we can achieve our goal by considering the
evolution of the first moment of the norm [19],

le - % * - 2
E:2P+ dxx(R'u—Ru*), N;= dx x|ul?.

(47)

We now show that Eq. (47) together with the first three
MCLs yields the four CC Eqgs. (11)—(14). Here we use the
specific ansatz Eq. (9) for which the norm

N=4ng, (48)
the first moment of the norm,
Ny=4n(, (49)
the momentum
P=-8n¢, (50)

and the energy is given by Eq. (10). Substituting Egs.
(48)—(50) and (10) in the Egs. (38), (34), (47), and (43),
respectively, we obtain

40
41']=f dx i(R"u— Ru"), (51)

: (T " du
—-8né—8&n= dx| R +R*— |, (52)
- ox ox

+00
4ni+4¢n=—167t+ if dxx(R'u=Ru’),  (53)

4 +00 *
. . u du
—16(77 = &)+ 32néé=— Yf d(R—+R*—).
(7 = &)+ 327éé E} i) ARGy R Gy

(54)

From Eq. (51) and the identity du/dé=-2i(x—{)u, Eq. (53)
becomes
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ou* d
- +R*—”>, (55)

877@':—327]§—f_Oc dx(R py: py:

which provides the evolution equation for L Taking into ac-
count Egs. (51), (52), and (55), Eq. (54) becomes

7'7{4((15 —28&0) - 16(& - 7%) - f dx(Rau‘ + R*ﬂ)} =0,
— an an

(56)

yielding the evolution equation for @ since # evolves in
time. From Egs. (51) and (52) we obtain the equation of
motion for 7 and & From Egs. (55) and (56), the equations
for { and @ can be obtained. In fact, these four equations
agree with Egs. (11)—(14) obtained via GTWM.

V. CONCLUSIONS

We have developed the GTWM for the perturbed NLS
Egs. (1) and the complex conjugate of Eq. (1) (this is differ-
ent from earlier applications of the method which started
from the Hamilton equations for magnetic vortices and for
solitons in NLKGEs). The GTWM is based on a projection
technique: The NLSEs Eq. (2) and the complex conjugate of
Eq. (2) are multiplied by derivatives of u* and u with respect
to one of the CCs, respectively. Then the resulting equations
are added and integrated over the system. This yields the
evolution equations for an arbitrary number of CCs, Eqgs.
(5)—(8), without using a specific ansatz. This method is more
general than the variational approach because it is not nec-
essary to know the Lagrangian density £ of the perturbed
system. E.g., see Eq. (1) of [36], where the Lagrangian den-
sity does not exist, but the Hamiltonian H, of the unper-
turbed system is known. In cases where £ exists and condi-
tions Egs. (22) and (23) are satisfied, we have shown that the
GTWM and the variational formalism are equivalent, i.e.,
from both theories the same evolution equations for the CCs
are obtained.

Using 4 collective coordinates with the ansatz Eq. (9),
namely, the position ¢, velocity & amplitude # and phase ®
of the soliton, we have explicitly shown that the GTWM is
equivalent to the results obtained from the IST, from the
adiabatic perturbation theory and from the time variation of
the norm, the first moment of the norm, the momentum, and
the energy of the system. However, we stress that the
GTWM is very concise, and more general than the IST and
the time-variation of the conserved quantities since it can be
applied when we have an ansatz with more than 4 CCs (see
the ansitze with 5 CCs in Refs. [36,38] for soliton propaga-
tion in optical fibers and with 6 CCs used in [37]). Moreover,
the perturbations considered in Refs. [36,38] include several
dissipative terms which present no additional difficulty for
the GTWM, in contrast to the variational method. Work
along this line is in progress.

ACKNOWLEDGMENTS

We thank Yuri Gaididei (Kiev) and Edward Arevalo
(Dresden) for very useful discussions on this work. N.R.Q.

016606-5



QUINTERO, MERTENS, AND BISHOP

acknowledges financial support by the Ministerio de Edu-
cacién y Ciencia (MEC, Spain) through Grant No. FIS2008-
02380/FIS, and by the Junta de Andalucia under Project Nos.
FQM207, FQM-00481, P06-FQM-01735, and P09-FQM-
4643. F.G.M. acknowledges the hospitality of the University

PHYSICAL REVIEW E 82, 016606 (2010)

of Seville and of the Theoretical Division and Center for
Nonlinear Studies at Los Alamos Laboratory. Work at Los
Alamos was supported by U.S. DOE. F.G.M. acknowledges
financial support by IMUS and by the Plan Propio of the
University of Seville.

[1] A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Physica D
1, 1 (1980).
[2] A. C. Scott, Nonlinear Science (Oxford University, Oxford,
1999).
[3] D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652
(1978).
[4] A. Sénchez and A. R. Bishop, SIAM Rev. 40, 579 (1998).
[5] M. J. Rice and E. J. Mele, Solid State Commun. 35, 487
(1980).
[6] M. Salerno and A. C. Scott, Phys. Rev. B 26, 2474 (1982).
[7] V. Stehr, P. Miiller, F. G. Mertens, and A. R. Bishop, Phys.
Rev. E 79, 036601 (2009).
[8] M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. Krum-
hansl, Phys. Rev. B 15, 1578 (1977).
[9] A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479
(1979).
[10] D. J. Kaup and A. C. Newell, Proc. R. Soc. London, Ser. A
361, 413 (1978).
[11] D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
[12]J. Yan, Y. Tang, G. Zhou, and Z. Chen, Phys. Rev. E 58, 1064
(1998).
[13] V. I. Karpman and E. M. Maslov, Sov. Phys. JETP 46, 281
(1977).
[14] Y. Kivshar and B. Malomed, Rev. Mod. Phys. 61, 763 (1989).
[15] B. Malomed, in Progress in Optics, edited by E. Wolf (North-
Holland, Amsterdam, 2002), Vol. 43, p. 71.
[16] A. Hasegawa, Chaos 10, 475 (2000).
[17] S. Chdvez Cerda, S. B. Cavalcanti, and J. M. Hickmann, Eur.
Phys. J. D 1, 313 (1998).
[18] V. I. Karpman, Phys. Scr. 20, 462 (1979).
[19] W. L. Kath, Methods Appl. Anal. 4, 141 (1997).
[20] F. G. Mertens, H. J. Schnitzer, and A. R. Bishop, Phys. Rev. B
56, 2510 (1997).
[21] T. Kamppeter, F. G. Mertens, A. Sénchez, F. Dominguez-
Adame, A. R. Bishop, and N. Gronbeck-Jensen, Eur. Phys. J.

B 7, 607 (1999).

[22] T. Kamppeter, F. G. Mertens, E. Moro, A. Sanchez, and A. R.
Bishop, Phys. Rev. B 59, 11349 (1999).

[23] N. R. Quintero, A. Sanchez, and F. G. Mertens, Phys. Rev. E
62, 5695 (2000).

[24] N. R. Quintero, A. Sénchez, and F. G. Mertens, Phys. Rev.
Lett. 84, 871 (2000).

[25] N. R. Quintero, A. Sanchez, and F. G. Mertens, Phys. Rev. E
62, R60 (2000).

[26] L. Morales-Molina, N. R. Quintero, F. G. Mertens, and A.
Sénchez, Phys. Rev. Lett. 91, 234102 (2003).

[27] L. Morales-Molina, N. R. Quintero, A. Sanchez, and F. G.
Mertens, Chaos 16, 013117 (2006).

[28] A. V. Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, and M.
Salerno, Phys. Rev. Lett. 93, 087001 (2004).

[29] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego,
2001).

[30] L. D. Faddeev and L. Takhtajan, Hamiltonian Methods in the
Theory of Solitons (Classics in Mathematics) (Springer-Verlag,
Berlin, 2007).

[31] L. Morales-Molina, F. G. Mertens, and A. Sdnchez, Phys. Rev.
E 72, 016612 (2005).

[32] O. Legrand, Phys. Rev. A 36, 5068 (1987).

[33] N. R. Quintero and E. Zamora-Sillero, Physica D 197, 63
(2004).

[34] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Za-
kharov, Theory of Solitons: The Inverse Scattering Method
(Springer-Verlag, Berlin, 1984).

[35] A. Hasegawa and Y. Kodama, Solitons in Optical Communi-
cations (Oxford, New York, 1995), pp. 70-72.

[36] J. Santhanam and Govind P. Agrawal, Opt. Commun. 222, 413
(2003).

[37] A. V. Maimistov, Sov. Phys. JETP 77, 727 (1993).

[38] Z. Chen, A. J. Taylor, and A. Efimov, J. Opt. Soc. Am. B 27,
1022 (2010).

016606-6


http://dx.doi.org/10.1016/0167-2789(80)90003-2
http://dx.doi.org/10.1016/0167-2789(80)90003-2
http://dx.doi.org/10.1103/PhysRevA.18.1652
http://dx.doi.org/10.1103/PhysRevA.18.1652
http://dx.doi.org/10.1137/S0036144597317418
http://dx.doi.org/10.1016/0038-1098(80)90254-9
http://dx.doi.org/10.1016/0038-1098(80)90254-9
http://dx.doi.org/10.1103/PhysRevB.26.2474
http://dx.doi.org/10.1103/PhysRevE.79.036601
http://dx.doi.org/10.1103/PhysRevE.79.036601
http://dx.doi.org/10.1103/PhysRevB.15.1578
http://dx.doi.org/10.1088/0031-8949/20/3-4/024
http://dx.doi.org/10.1088/0031-8949/20/3-4/024
http://dx.doi.org/10.1098/rspa.1978.0110
http://dx.doi.org/10.1098/rspa.1978.0110
http://dx.doi.org/10.1103/PhysRevA.42.5689
http://dx.doi.org/10.1103/PhysRevE.58.1064
http://dx.doi.org/10.1103/PhysRevE.58.1064
http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1063/1.1286914
http://dx.doi.org/10.1007/s100530050098
http://dx.doi.org/10.1007/s100530050098
http://dx.doi.org/10.1088/0031-8949/20/3-4/023
http://dx.doi.org/10.1006/jmaa.1997.5307
http://dx.doi.org/10.1103/PhysRevB.56.2510
http://dx.doi.org/10.1103/PhysRevB.56.2510
http://dx.doi.org/10.1007/s100510050653
http://dx.doi.org/10.1007/s100510050653
http://dx.doi.org/10.1103/PhysRevB.59.11349
http://dx.doi.org/10.1103/PhysRevE.62.5695
http://dx.doi.org/10.1103/PhysRevE.62.5695
http://dx.doi.org/10.1103/PhysRevLett.84.871
http://dx.doi.org/10.1103/PhysRevLett.84.871
http://dx.doi.org/10.1103/PhysRevE.62.R60
http://dx.doi.org/10.1103/PhysRevE.62.R60
http://dx.doi.org/10.1103/PhysRevLett.91.234102
http://dx.doi.org/10.1063/1.2158261
http://dx.doi.org/10.1103/PhysRevLett.93.087001
http://dx.doi.org/10.1103/PhysRevE.72.016612
http://dx.doi.org/10.1103/PhysRevE.72.016612
http://dx.doi.org/10.1103/PhysRevA.36.5068
http://dx.doi.org/10.1016/j.physd.2004.06.007
http://dx.doi.org/10.1016/j.physd.2004.06.007
http://dx.doi.org/10.1016/S0030-4018(03)01561-X
http://dx.doi.org/10.1016/S0030-4018(03)01561-X
http://dx.doi.org/10.1364/JOSAB.27.001022
http://dx.doi.org/10.1364/JOSAB.27.001022

