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Abstract. The interaction of matter–wave solitons with a potential barrier
is a fundamentally important problem, and the splitting and subsequent
recombination of the soliton by the barrier is the essence of soliton matter–wave
interferometry. We demonstrate the three-dimensional (3D) character of the
interactions in the case relevant to ongoing experiments, where the number of
atoms in the soliton is relatively close to the collapse threshold. We examine
the soliton dynamics in the framework of the effectively one-dimensional (1D)
nonpolynomial Schrödinger equation (NPSE), which admits the collapse in a
modified form, and in parallel we use the full 3D Gross–Pitaevskii equation
(GPE). Both approaches produce similar results, which are, however, quite
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different from those produced in recent work that used the 1D cubic GPE. Basic
features, produced by the NPSE and the 3D GPE alike, include (a) an increase
in the first reflection coefficient for increasing barrier height and decreasing
atom number; (b) large variation of the secondary reflection/recombination
probability versus barrier height; (c) pronounced asymmetry in the oscillation
amplitudes of the transmitted and reflected fragments; and (d) enhancement of
the transverse excitations as the number of atoms is increased. We also explore
effects produced by variations of the barrier width and outcomes of the secondary
collision upon phase imprinting on the fragment in one arm of the interferometer.
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1. Introduction

Ongoing studies of atomic Bose–Einstein condensates (BECs) have contributed numerous
fundamental insights in a wide range of phenomena [1, 2]. This may be largely attributed to
the precise control afforded by experiments, and to the existence of accurate, yet quite tractable
models based on the Gross–Pitaevskii equation (GPE) [3, 4]. Many of the theoretical and
experimental investigations have strong connections to other areas, such as condensed matter
physics, nonlinear optics, superconductivity and superfluidity. Furthermore, ultracold gases
trapped in external potentials may be utilized as quantum simulators of real materials [5].

Inter-atomic interactions in a BEC enable the examination of a wide variety of nonlinear
effects that have been summarized in a number of reviews and books such as [4]. Basic types of
coherent structures built by the nonlinearity are bright solitons and soliton complexes [6–10],
dark solitons [11], vortices and vortex lattices [12–15]. Bright solitons were proposed for
matter–wave interferometry [16], which is itself an active field of research [17]. Recent work
has focused on the role of the condensate’s effective nonlinearity [18] as well as on advanced
applications [19]. Solitons may provide 100-fold improved sensitivity for atom interferometry,
where their long lifetime, of the order of seconds, may enable precise force sensing [20] and
measurement of small magnetic field gradients [21]. Robust bright solitons, appropriate for
these applications, have been created under well-controlled conditions in BECs with attractive
[16, 22, 23] and repulsive [24] inter-atomic interactions (in the latter case, these were gap
solitons [7] supported by the optical-lattice potential). A topic of particular interest has been
the splitting and subsequent recombination of solitons due to collisions with potential barriers.
This was studied theoretically in detail [25–28], as summarized in a recent review [29].
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However, it is relevant to stress that the analysis has been thus far carried out for a one-
dimensional (1D) model, i.e. the 1D GPE with cubic nonlinearity (although some features
such as solitary-wave collisions have also been recently explored in a three-dimensional (3D)
setting [30]). In the same framework, the quasiparticle–wave duality of solitons and their
tunneling through a potential barrier have been recently considered [32, 33].

The subject of this work is the interaction of the incident soliton with a potential
barrier, acting as a beam splitter, and the subsequent recombination of the split fragments
in the 3D setting. The three-dimensionality strongly affects the results in comparison with
the 1D setting adopted in the above-mentioned recent studies. Bright matter–wave solitons
are experimentally created in cigar-shaped (nearly 1D) potential traps in which the self-
trapping is driven by intrinsic attractive nonlinearity solely in the axial direction. The
number of atoms in the soliton, N , will be considered to be relatively close to the value
at the collapse threshold, Nc, and the actual shape of the solitons will be three-dimensional
in the considerations that follow. Accordingly, the solitary waves do not reproduce the
conspicuous elongation of the underlying trapping potential, as known from previous studies
[6, 16, 22, 23]. Thus, the character of the splitting and subsequent merger may be essentially
three-dimensional too—in particular, transverse modes may (and will, as we show) be excited.

In the recently studied 1D counterpart of this setting, the results of an earlier study [34]
were used in [26] to predict the transmission and reflection coefficients and the phase shift
resulting from the interaction with a narrow barrier. A sinusoidal dependence of the transmission
coefficient on the relative phase of two solitary waves colliding on the barrier was identified.
In [27], both the primary splitting of a single solitary wave and the secondary collision of
the two fragments were studied using the truncated Wigner approximation, with emphasis on
the comparison of the mean-field dynamics with the quantum dynamics. Significant deviations
between the two were identified for a relatively small number of atoms in the solitary wave. A
stepwise (discontinuous) variation of the reflection and transmission coefficients due to quantum
superposition has been recently reported [28, 31, 32]. The deviation between the quantum
and mean-field approaches is significant only for relatively small N , becoming negligible for
large N . In this paper, we consider N close to collapse, where Nc ' 105. For this reason,
quantum effects are not crucially important to us.

Collisions of 1D solitons with an attractive potential well, rather than the repulsive barrier,
have also been studied recently, revealing a fairly complex phenomenology. The latter features
alternating windows of transmission, reflection and trapping with abrupt transitions between
them as the potential depth varies [35, 36].

Our analysis is performed in two stages. Firstly, we use the well-known 1D nonpolynomial
Schrödinger equation (NPSE) [37, 38], which, unlike the cubic 1D GPE, captures the 3D
phenomenology in some approximation (in particular, it admits the possibility of collapse,
although not in the same way as the 3D GPE). We will refer to this NPSE setting as a quasi-1D
description to clearly distinguish it from the 1D GPE setting where collapse is absent. Secondly,
we report the results obtained from the full 3D GPE. To the best of our knowledge, both
equations are used for the first time in this context. Our main interest is to consider relatively
large atom numbers N (N = 80 000 ' 0.85Nc), for which the phase coherence of the condensate
is maintained and the soliton dynamics are most interesting. We explore the dependence of
the results on N , as well as on the height of the barrier, E . There exist significant differences
between the dynamics described by the ordinary cubic 1D GPE and predictions of the full 3D
equation, as the excitation of transverse oscillations (the feature that is obviously absent in the
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1D description) becomes prominent for N → Nc. On the other hand, the quasi-1D NPSE is
found to be in reasonable agreement with the 3D GPE in regard to both its static properties
(although the stable branch of solutions at low N is captured more accurately than the unstable
collapsing one of high N ) and the dynamics of soliton–barrier interactions.

The paper is structured as follows. In section 2, we introduce the quasi-1D and 3D models,
compute their stationary solutions and define the diagnostics used to examine the dynamics.
In section 3, we report numerical results in detail, varying the barrier height and width,
atom number as well as phase imprinting applied to one of the fragments for simulating the
interferometry. Section 4 concludes the paper.

2. Model equations and stationary solutions

We start by introducing the quasi-1D NPSE for the mean-field wave function, ψ , of the
condensate of 7Li atoms loaded into a cigar-shaped trap with axial coordinate z,

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂z2
+ V (z)ψ +

1 + (3/2)g|ψ |
2√

1 + g|ψ |2
ψ, (1)

where g = 2as/a⊥, with the typical scattering length as = −0.3a0, where a0 is the Bohr
radius, and transverse trapping radius a⊥ =

√
h̄/(mω⊥)= 2.25µm, which corresponds to a

confinement frequency ω⊥ = 2π290 Hz and atomic mass m = 7 amu. The longitudinal potential
V (z) includes a weak parabolic trap, which we assume has a typical value of the strength,
ωz = 2π5.6 Hz, and the Gaussian barrier of height E and width ε, which will be varied below:

V (z)= (1/2)mω2
z z2 + E exp (−2z2/ε2). (2)

The total number of atoms, given by N =
∫ +∞

−∞
dz |ψ(z)|2, will also be varied.

The results produced by the NPSE (1) will be compared with those obtained from the
radially symmetric 3D GPE, written in cylindrical coordinates (ρ, z) as

ih̄
∂ψ

∂t
= −

h̄2

2m

(
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2

)
+ V (ρ, z)ψ +

4π h̄2

m
as |ψ |

2ψ (3)

with N = 2π
∫

∞

0 ρ dρ
∫ +∞

−∞
dz |ψ (ρ, z)|2 and the 3D potential

V (ρ, z)= (1/2)m(ω⊥ρ
2 +ω2

z z2)+ E exp (−2z2/ε2). (4)

Equation (4) implies that we consider only fundamental axially symmetric solitons, but not
ones with intrinsic axial vorticity, which are also possible in this setting [38]. Axial widths of
the solitons generated by the quasi-1D NPSE and 3D GPE are defined as

W1D = 2

√
N−1

∫ +∞

−∞

dz z2|ψ |2, W3D = 2

√
N−1

∫
∞

0
ρ dρ

∫ +∞

−∞

dz z2|ψ |2. (5)

Stationary solutions with chemical potential µ were sought as ψ(r, t)=

exp(−iµt/h̄)ψ(r). Figure 1 compares the N (µ) and W (N ) curves for soliton families,
produced by both the quasi-1D and 3D equations. In these plots, N is normalized to the critical
atom number, Nc, which initializes the collapse, i.e. the largest number of atoms accessible
(in terms of stable solitons) in the given setting [39, 40]. Both equations yield nearly the
same value, Nc ≈ 94 000. The same plot includes the curves for the usual 1D cubic GPE,
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Figure 1. (a) The number of atoms, normalized to its critical value at the collapse
threshold, N/Nc, versus the chemical potential, for the stable (µ > µc) and
unstable (µ < µc) soliton families; µc = 147.9 Hz for the quasi-1D NPSE (1),
and µc = 130.5 Hz for the 3D GPE (3). (b) The axial widths, defined as per (5),
versus N/N c, for the stable soliton family. The dark dashed horizontal curve in
the right panel corresponds to the width of 4.5µm, which is a typical width
of the barrier in what follows. The reference value of chemical potential µ
for vanishing interaction is given by the transverse oscillator frequency, here
ω⊥/(2π)= 290 Hz. The limit value of the width for the vanishing interaction
strength is the confinement length of the longitudinal trapping potential, W =
√

2h̄/mωz = 22.8µm. Both panels also display the comparison with the results
produced by the usual 1D cubic GPE; as expected, that equation is only able to
reproduce results for a relatively small number of atoms, N . 0.5N c.

demonstrating that the latter model progressively deviates from the NPSE and the 3D GPE
for N/N c & 0.5. It is relevant to note that the solitons of the former model have a monotonic
dependence of N on µ corroborating their dynamical stability for all values of the chemical
potential, contrary to the instability of the latter two models for N > Nc. It is for these reasons
that for the range of atom numbers examined herein, we will restrict our considerations to the
latter two models. The change of the soliton properties with the increase of N also illustrates
the crossover from the nearly 1D to nearly 3D situations in the present setting.

A straightforward analysis demonstrates that the general condition for the validity of the
NPSE approximation is N/Nc ' N |a|/a⊥ < 1. Indeed, it is observed in figure 1 that stable
solution branches generated by the NPSE and 3D GPE are very close, while the discrepancy is
conspicuous for unstable branches. In the right panel of figure 1, a horizontal line is drawn
at W = 4.5µm, which corresponds to the typical width of the barrier ε in the simulations
reported below. It is seen that stable solitons are narrower than 4.5µm only at N > 0.98Nc.
Consequently, solitons are typically wider than the considered barrier.

In what follows, we will keep the trap strength fixed and will vary the number of atoms N .
We will be interested in the regime of large N (and close to the onset of collapse), where the
mean-field approximation is expected to adequately describe the system. In contrast, for cases of
tighter confinement or of lower atom numbers, the effects of quantum fluctuations are expected
to progressively become more important [27].
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Figure 2. The first reflection coefficient, R1 (see (6)), versus barrier height, E ,
and the normalized number of atoms, N/N c, in the quasi-1D (a) and 3D (b)
settings. Blank regions correspond to barrier-induced collapse. Panel (c) shows
the value of the barrier height at which equal splitting (R1 = 0.5) is attained, as
a function of N/Nc. The barrier width is ε = 4.5µm.

3. Numerical simulations

3.1. Effect of changing the number of atoms

We first consider simulations for the solitons launched with zero velocity at the distance
A = 251µm from the central position where the barrier is placed. In the present setting, this
amounts to the initial potential energy equal to 678 Hz. The barrier is here taken with a fixed
width, ε = 4.5µm. The number of atoms in the soliton and the barrier height E are varied and
the outcome of the soliton–barrier interaction is monitored. The splitting is characterized by the
time-dependent reflection coefficient,

R1D(t)= N−1

∫ 0

−∞

dz |ψ |
2, R3D(t)= N−1

∫
∞

0
ρ dρ

∫ 0

−∞

dz |ψ |
2, (6)

which shows the fraction of atoms remaining in the incident arm of the interferometer. Below,
we focus on R taken at two specific times, R1 ≡ R(t = π/ωz) and R2 ≡ R(t = 2π/ωz). The
former value measures the fraction of atoms that remain in the original arm after the interaction
of the incoming soliton with the barrier, because t = π/ωz corresponds to a half-period of
oscillation of the soliton in the weak longitudinal trap, thus ensuring that its first collision with
the barrier (occurring roughly at a quarter of the period) is completed. The latter value, R2,
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measures the relevant fraction after the second interaction, i.e. the collision of the returning
fragments with the potential barrier. This occurs at roughly three quarters of the oscillation
period, while R2 is measured at a full period (defined in the absence of the barrier).

Figures 2 and 3 show, respectively, R1 and R2 versus the number of atoms, N , and the
barrier height, E , with the blank regions denoting the presence of collapse. Collapse occurs
for N < Nc in these cases due to interaction with the barrier. It is observed that the quasi-
1D NPSE and 3D GPE dynamics show similar trends for the first reflection. Namely, the
reflection increases with the growth of the barrier height and with decreasing N . The second
reflection coefficient, R2, presents a more complex functional dependence, which, in terms of the
quasi-1D NPSE and 3D GPE alike, features an oscillatory variation with N and E for
sufficiently large N . Nevertheless, we observe good qualitative and even semi-quantitative
agreement between the quasi-1D and the fully 3D models in this context. This behavior can
be attributed to the number-dependent variation of phases and amplitudes of the fragments
emerging from the first collision, which, upon their recombination, leads to outcomes ranging
from the nearly perfect reflection of the recombined soliton to its nearly perfect transmission.
This is a more complex manifestation of the feature observed in [26] and is a nonlinear effect
stemming from the interference of the phases of the two fragments, becoming progressively
more pronounced as N → N c. This phenomenon is especially visible for N/Nc & 0.3, leading
to a series of resonant peaks of full reflection. Another interesting feature is the presence of
finger-like gaps in the quasi-1D setting where collapse occurs after the second interaction with
the barrier, when N/N c & 0.85. Those gaps do not appear in the 3D setting (not shown here in
detail), indicating that they originate from an inherent limitation of the NPSE approximation.
This is explained by the fact that in the framework of the NPSE (1) the soliton collapses when
the denominator vanishes, at the critical value of the peak density (contrary to the genuine
collapse of the fully 3D setting). This difference also explains the apparently wider range of
parameters (in the (E, N/Nc) parametric plane) leading to collapse for the quasi-1D problem
in comparison to the fully 3D one. Finally, the right panel of figure 3 shows the increase in the
second reflection with increasing N , for the case in which E is adjusted to give 50% splitting
after the first reflection.

While the reflectivity provides a measure of the asymmetries between the atom-number
fractions emerging to the left and right of the barrier, we have used additional diagnostics
to quantify the dynamics. In particular, as a measure of the asymmetry of the reflected and
transmitted waveforms, we define

ζ ≡
At − Ar

At + Ar
, (7)

where Ar and At are the oscillation amplitudes within the trap of the reflected and transmitted
fragments, and both are taken to be positive. The dependence of ζ on N/Nc and E is presented
in figure 4, along with its dependence on N/Nc when E is adjusted to give 50% splitting. An
interesting feature is that ζ > 0 for every N and E , i.e. the transmitted fragment always reaches
a higher value of |z| and, consequently, has a higher kinetic energy, independently of whether it
is the larger or smaller fragment. This can presumably be attributed to the original direction of
motion (and associated momentum) of the incoming solitary wave. It should also be noted that
typically the most pronounced asymmetries occur for larger values of N/N c, appearing to be
predominantly a feature of the 3D nature of the interactions in that case.

To assess the impact of the width of the barrier on the above results, we have performed
a complementary study for the 1D NPSE, considering a narrower barrier whose width is
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3D setting. The barrier-induced collapse occurs in blank areas. Panel (b) shows
the typically increasing trend of R2 as a function of N/Nc when R1 = 0.5. The
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Figure 4. (a) Oscillation asymmetry, ζ (see the definition of (7)), after the first
barrier interaction as a function of E and N/Nc, in the 3D setting (as with
previous panels, the contour plot is essentially identical for the quasi-1D case of
the NPSE). (b) ζ versus N/Nc when R1 = 0.5. The barrier width is ε = 4.5µm.

ε = 1µm, a value much less than the axial width of the soliton. Figure 5 shows the dependence
of R1 (a), R2 (b) and ζ (c) with respect to N and E as before. The qualitative nature of the
dependence of these quantities does not seem to change in comparison to the case of ε = 4.5µm.
Nevertheless, there is a quantitative shift of the principal features toward higher values of the
barrier height E , as expected.

A basic feature of the 3D dynamics, which may be naturally expected, and is indeed
produced by the 3D GPE, is the excitation of radial oscillations after splitting. This feature
is, by construction, not incorporated in the 1D GPE, where the transverse shape is assumed to
be ‘frozen’. On the other hand, it is incorporated in a simple (yet reasonably accurate) way in
the quasi-1D description of the NPSE, through the assumption of a space- and time-dependent
width of the transverse direction of the ground state that is directly controlled (according to
the Euler–Lagrange equations) by the longitudinal wave function. This feature is partially
responsible for the good agreement between the quasi-1D NPSE and the fully 3D GPE, as
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Figure 5. First reflection coefficient R1 (a), second reflection coefficient R2 (b),
and the oscillation asymmetry ζ (c) versus E and N/Nc, in the quasi-1D setting
of the NPSE when ε = 1µm.
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Figure 6. (a) Amplitude ρ0 of radial oscillations in the 3D setting excited by
the first interaction with the barrier, as a function of E and N/N c. In (b), the
value of ρ0 is plotted versus N/Nc, while R1 = 0.5 is fixed. The barrier width is
ε = 4.5µm.

observed above. We quantify the radial vibrations in the 3D case by evaluating a measure of
their amplitude

ρ̄(t)=
2π

N

∫
∞

0
ρ dρ

∫ +∞

−∞

dz ρ|ψ |
2, (8)
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Figure 7. Interaction with a barrier of width ε = 4.5µm giving R1 = 0.5 and
small R2 (i.e. even splitting of the incident soliton followed by the recombination
of fragments into a nearly single transmitted one) in the 3D GPE (3). (a)
Integrated density plots. (b) Amplitudes of the fragments divided by amplitude of
the initial soliton (c) Time-dependent reflection coefficient. The present results
were obtained with N ≈ 0.17N c and E = 696.95 Hz. The smallest value of the
second reflection coefficient is R2 = 0.17. The outcome for the quasi-1D NPSE
is essentially similar.

and defining ρ0 as the maximum value of ρ̄ (over time for a given set of parameters). Figure 6(a)
shows the dependence of ρ0 on N/Nc and E , together with its value at the barrier height
Esp corresponding to R1 = 0.5 (b). It is clearly observed that with the increase of N/N c

and E , the excitation of transverse oscillations becomes very significant, with the amplitude
attaining values ' 0.5µm. The same conclusions are suggested by the right panel for the case
of even splitting. Hence, it can be inferred that the role of higher dimensionality (captured
qualitatively within our quasi-1D NPSE approach and properly incorporated in the fully 3D
setting) is of particular relevance for N close to Nc (a case of central interest to ongoing
experiments).

Figures 7 and 8 show the outcomes of simulations corresponding, respectively, to small
and large values of R2, in the 3D setting (results for the quasi-1D NPSE are quantitatively
similar). The figures display longitudinal (z-dependent) density, resulting from the integration
of the density in the transverse plane (denoted as nz), along with amplitudes of the fragments
and the time-dependent reflection coefficients, which exhibit jumps upon the interaction of one
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Figure 8. As in figure 7, but for the case of R2 close to 1, i.e. the recombined
soliton returning in the incoming arm. N ≈ 0.88Nc and E = 686 Hz, resulting in
R1 = 0.44 and R2 = 0.96.

(during the first event) or of two (during the second event) solitary wave(s) with the barrier. As
these figures show, the amplitudes of the fragments can be different even when the numbers
of atoms in them are equal. Naturally, the width is larger for the fragment with the lower
peak density. Furthermore, in addition to the two limiting cases, our results suggest that one
can manipulate the parameters (such as E , N , etc) controlling the interaction of the incident
soliton with the barrier to produce any desired outcome within a wide range in the sequence
of two collisions. While there appear to be two waves in figure 7 for z < 0, after the second
soliton–barrier interaction, this feature can be controlled (and avoided) through the use of a
narrower barrier (results not shown here).

3.2. Effect of changing the initial position of the soliton

In this subsection the number of atoms is fixed to N = 0.8N c, which is a typical, experimentally
reachable value where the 3D nature of the condensate is crucial to the observed dynamics.
Hence, we expect the 3D GPE to be a suitable model, and the quasi-1D NPSE to be a good
qualitative (and reasonable quantitative) approximation. We also expect transverse excitations
to be present in the dynamics.

We display here the dependence on initial displacement A from which the soliton is
launched with zero velocity (a parameter that effectively characterizes the kinetic energy of
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Figure 9. Dependences of characteristics of the interaction on the initial
displacement of the incident soliton, A, for N = 0.8Nc. (a) The barrier height,
Esp, necessary for 50% splitting after the first collision. In the following plots,
E = Esp: (b) secondary reflection coefficient, R2; (c) asymmetry coefficient ζ ,
defined as per (7); and (d) amplitude of the radial oscillations, ρ0. The displayed
results are produced by the 3D GPE (3).

the incident soliton). For the sake of completeness, we do this for different barrier widths in (4),
ε = 1, 2, 3, 4 and 5µm, in the 3D setting. Figure 9 shows the dependence on A for the barrier
height Esp giving even splitting, the second reflection coefficient (R2), the asymmetry parameter
(7) and the radial oscillation amplitude (ρ0). As expected, figure 9(a) shows that Esp increases
with increasing A. Under these conditions of strong nonlinearity (N = 0.8Nc), however, Esp

depends only weakly on the barrier width ε, with the exception of the narrowest barrier.
Figure 9(b) shows that R2 has the least sensitivity to A for the narrowest barrier with the required
height being larger for smaller width, while R2 is larger (as may be expected intuitively) for a
larger width. An increase in A generally leads to only a weak modification of the asymmetry
factor ζ , which is chiefly decreasing with A for wider barriers, presumably due to the larger
speed of the soliton impinging upon the barrier, and correspondingly smaller interaction times.
For narrow barriers, the dependence on A is more pronounced and non-monotonic. Figure 9(d)
shows that transverse excitation is stronger for more energetic solitons and narrower barriers,
where the interaction with the barrier is more impulsive. We expect transverse excitation to be
more probable when the atomic kinetic energy is comparable with the transverse mode spacing
h̄ω⊥. This occurs when A = 164µm, which is reasonably consistent with the sudden increase
in ρ0 observed for A ' 100µm.
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Figure 10. Second reflection coefficient, R2, in the case of the initial 50%
splitting, as a function of the phase difference introduced between the fragments
at the time of their largest separation. The panels correspond to (a) N ≈ 0.06Nc

(near the linear limit, shown for comparison) and (b) N ≈ 0.8N c. Notice that in
the former case, the results for 1D and 3D settings coincide for ε = 4.5µm. In
all cases, the initial displacement of the soliton was A = 251µm.

We note that the most significant, although small, differences between the quasi-1D setting
of the NPSE and the full 3D setting arise in the case of narrow barriers. This is intuitively
reasonable, as a narrow barrier induces dynamics on length scales closer to the transverse
confinement and hence enhances the degree of transverse excitations, thus affecting the quality
of the approximation of the 3D behavior by the quasi-1D NPSE. Nevertheless, between the two,
there is still a reasonable qualitative agreement.

3.3. Effects of phase imprinting

Finally, we briefly analyze the effect of imprinting a phase difference at a certain time, t = π/ωz,
onto the initially transmitted fragment, thereby emulating the operation of an interferometer.
The phase difference is introduced when the fragments are located at the largest distance
from the barrier. Figure 10 shows the second reflection coefficient, R2, in the case of small
(for comparison) and large atom numbers, as obtained from the simulations of the quasi-
1D NPSE (1) and the 3D GPE (3). It is seen that, in the regimes of small N , the absence
of a phase shift provides a nearly complete transmission, while a relative phase shift of π
leads to almost perfect reflection. The contrast is considerably reduced for strong nonlinearity
and sufficiently wide barriers, as shown in the right panel of figure 10, although a wider
range of transmittivities/reflectivities is accessible for narrower barriers. In that light, although
highly nonlinear waves (such as solitons) may be deemed less useful for interferometric
purposes, their relevance may be (at least partially) restored in the context of suitably narrow
barriers.

4. Conclusion

We have explored the collision of matter–wave solitons with a central barrier of variable width
and height, inserted into a shallow harmonic-oscillator axial trap, and the subsequent collision
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of the split fragments upon their return to the defect. This configuration forms the basis of a
soliton interferometer. The non-monotonic variation of R2 with N and E , evident for strong
nonlinearity in figures 3 and 5, is detrimental to the sensitivity of an atom interferometer.
Figure 10, however, indicates that the sensitivity to phase variation can be regained by smaller
nonlinearity and that the adverse effect of strong nonlinearity can be partially mitigated by a
narrow barrier. Narrow in this context evidently means in comparison to the axial size of the
soliton.

Our analysis accounted for relatively large atom numbers, which are not much smaller
than the collapse threshold. This strong nonlinearity necessitates a full 3D solution, in contrast
to the 1D GPE setting studied in previous work. The analysis was carried out, in parallel, in
the framework of the quasi-1D NPSE and the full 3D GPE, indicating good qualitative and
even reasonable quantitative (at least not too close to N = N c) agreement between the two. A
detailed computational map of the ensuing phenomenology has been generated as a function
of the number of atoms in the soliton, its initial distance from the barrier (which determines
the collision velocity), and the height and width of the splitting barrier. Additionally, the effect
of a phase shift imposed on the fragments at the moment of the largest separation was also
examined.

A number of general conclusions, obtained in the framework of the quasi-1D and the full
3D settings, and their similarities and differences have been reported. While the results are
similar between these two cases, they are essentially different from those generated by the 1D
cubic GPE, which was used previously. The quasi-1D NPSE and the 3D GPE produce similar
values for the first reflectivities, systematically increasing with increasing barrier height E and
weakly decreasing with increasing number of atoms N . The second reflectivity (corresponding
to the collision of the fragments after the first interaction with the barrier) oscillates strongly
from complete reflection to high transmission as a function of the barrier height (and atom
number). These oscillations are a fundamentally nonlinear effect, most pronounced for large N .
The excitation of the transverse breathing mode was also characterized in the framework of
the 3D GPE. This effect was found to become progressively more significant as the critical
number of atoms, corresponding to the onset of the collapse, was approached. Phase imprinting
was found to play a critical role in the outcome of the second collision, especially for small
nonlinearity, modifying it between nearly complete transmission and full reflection. The highly
nonlinear realm seems less sensitive to such variations, but the sensitivity may be restored for
narrower barriers.

It is important to corroborate these findings experimentally. Regarding further theoretical
analysis, a challenging problem is to study deviations of the results from the mean-field
approximation in the 3D geometry as a function of the atom number N , in analogy to the recent
studies in the 1D setting [27, 28, 31]. An additional issue of interest is the use of potential
wells, rather than barriers, for which more complex phenomenology may be expected in the
3D setting [35, 36]. Lastly, extending such considerations to dark solitons in condensates with
self-repulsive nonlinearity [41], and to multi-component systems [33, 42] are also compelling
topics for further investigation.
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