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Abslrcscd-The hardware implementation of an 
optimization network with restrictions to perform 
real-time Generalized Predictive Control (GPC) 
is described. The use of space-efficient stochas- 
tic architecture allows a a realization on a pro- 
grammable logic device. As a result a pro- 
grammable neural chip coprocessor that solves 
optimization problems subject to restrictions has 
been developped. Expressions for network param- 
eters are provided to implement GPC. An adap- 
tive controller is achieved using RAM memories 
to store the network parameters. Experimental 
results from a simple implementation of the con- 
troller are included. 

I. INTRODUCTION 

Robust, real-time control is essential to most processes 
in industry. Modern control methods have proved to be 
very efficient [l]. However they are high-time consuming 
specially when considering constraint satisfaction, there- 
fore more powerful processors are needed. The GPC al- 
gorithm consists of optimizing a cost function in order 
to achieve the best expected control sequence [2]. New 
approaches [3] consider constraints in control sequences 
leading to  constrained optimization problems. 

We suggest the use of Hopfield networks to override the 
computational effort to implement such controller. Ap- 
plications of this class of neural networks can be found 
elsewhere [4]. Artificial neural networks consist of a set 
of very simple computing elements highly interconnected 
that perform an overall duty. Due to the simplicity of the 
computational elements it is worth trying to make spe- 
cific electronic implementations rather than using a gen- 
eral purpose digital computer to simulate its behaviour. 

Electronic realization of neural networks can be faced 
in different ways. On one hand analog aproaches are very 
simple in terms of circuitry and have fast convergence 
times, specially when they are compared with digital im- 
plementations, hut on the other hand their programming 

flexibility is very low. Digital implementations perform 
high programming flexibility and easy interface with gen- 
eral purpose computers but their efficiency in terms of 
consumed silicon area is very low, as a floating point mul- 
tiplier is needed in every neuron to  calculate the presy- 
naptic activity. One way to  circumvent this problem is 
employing stochasticism to evaluate presynaptic products 

Our aim is to design a neural coprocessor which releases 
the control computer in the factory from this algorithmic 
computational burden. The simplicity of stochastic neural 
networks architectures [?I minimizes the amount of hard- 
ware needed, therefore allowing the use of programmable 
logic devices for its implementation. 

This paper is organized as follows. In Section I1 it is 
discussed how Hopfield’s Neural Network can be utilized 
to solve constrained linear quadratic optimization prob- 
lems and how such problems can be posed in terms of 
adimentional quantities, yielding a formulation that can 
be implemented in stochastic architecture. In Section I11 
it is shown that generalized predictive controllers apply a 
control sequence to  the system that is being regulated in 
order to minimize a quadratic cost function. Due to the 
fact that all actuators have a limited range of actuations 
and slew rates, linear restrictions must be imposed to this 
optimization problem. In Section IV the stochastic archi- 
tecture that has been used to implement the Hopfield neu- 
ral network and why this architecture is suitable for GPC 
is described. Section V is devoted to the actual hardware 
that has been used to realize the neural network and why 
a programmable logic device has been used. In Section 
VI we consider specific examples to demonstrate the neu- 
ral net coprocessor performance. Finally, conclusions are 
drawn in section VII. 

[51, PI. 

11. CONSTRAINED HOPFIELD NEURAL NETWORK. 

The way in which neural networks could be applied to 
solve linear programming networks was first described by 
Tank and Hopfield [4]. They suggested an optimization 
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network, that is able to minimize a cost function The General Predictive Control algorithm consists of a p  
plying a control sequence that minimizes a multistage cost 

- - I  

T = A * V  (1) function of the form 
Na 

where A' is an N-dimensional vector of coef@ients for the J(N1, Nz) = E{ tY(t + j I t )  - w(t  + j)12 
N variables which are the components of V. This mini- 

straints among the variables: 

j=N1 
mization is accomplished subject to a set of M linear con- Na-d 

+ A[Au(t + j  - (9) 
j=l 

(2) where E {.} is the expectationbperator and y(t+j  I t )  is 
an optimum j-step ahead prediction of the system output 
on data up to time t. u(t) and y(t) are the control and Gj = [Zjl, 6 j 2 , .  . ., 3 j n l T  (3) 

where the 6,, for each j ,  contain the N variable coefficients 
in a constraint equation and the Bj are the bounds. 

For the case of a linear quadratic optimization problem, 
it can be considered an energy function of the form 

M-1 

where F ( z )  is a primitive of f(z)  given by 

kz for z > 0 
0 for z <= 0 ( 5 )  

Consider equation 4. We shall denote the typical val- 
ues of Gj;, Ij  and vj by Go, IO and VO. These numbers 
are such that the adimentional quantities xji, pj and qj 
defined in 6 take absolute values ranging from 0 to 1. 

output sequence of the plant. NI and Nz are the minimum 
and maximum costing horizons. A is weighting coefficient 
and w(t+j) is afuture set-point or reference sequence. The 
objective of predictive control is to compute the future 
control sequence u(t), u(t+l), ... in such a way that the 
future plant output y(t+j) is driven close to w(t+j). This 
is accomplished by minimizing J(N1, Nz). However, it can 
be computationally prohibitive for real time applications. 

In practice, the normal way of using GPC is to compute 
u(t) and apply it to the process. If ~ ( t )  violates the con- 
straint it is saturated to the bounds, either by the control 
program or by the actuator. The case of u(t + l), - - e ,  

u(t + N) violating the constraints is not even considered 
as in most cases the signals are not even computed. This 
way of operating restricts the optimallityof the GPC when 
constraints are violated. Furthermore, the main purpose 
of the GPC, which is to optimize equation (9), is no longer 
valid and the best expected control is not achieved. 

Most processes in industry can be described by the fol- 
lowing transfer function: 

Substituiting in 4 

Xij  = Xji (8) 

If VO is chosen so that = 1 we obtain the same 
linear-quadratic optimization problem in terms of adimen- 
tional quantities. This formulation is suitable to be im- 
plemented in a stochastic architecture as it will be seen 
later. 

111 APPLICATION TO CONSTRAINED GENERAL 
PREDICTIVE CONTROL. 

If an optimal predictor is used, as shown in [8], the dead 
time can be ignored for designing purposes. 

If we compare the energy function (4) of a Hopfield net 
to the cost function (9) of the GPC, considering that the 
output of the neural net V;. corresponds to  the control s e  
quence uj, we obtain the expressions for the parameters of 
the network as funtions of the system parameters, control 
parameters and the system input and output sequences for 
a given control horizon [9]. As an example, results of this 
procedure are shown in Appendix I for systems described 
in (10). 

It is remarkable that equations which define the conduc- 
tances Zj only depend on the systems parameters, whilst 
equations defining the net inputs also depend on the sys- 
tem input and output sequences and the reference. The 
values of Ci and R, are chosen arbitrarily. We+can_define 
the constraint subnet identifying the terms of 0, 2 Bj 
for each restriction. 
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Figure 1: Control Scheme 

The resulting control scheme is shown in Fig. 1. The 
neural controller provides the input signal sequence to the 
plant. The identifier estimates the plant model parame- 
ters from its input and output signals.These values are fed 
into block T that represents the calculus of the polynomi- 
als to obtain the conductances of the neural controller. In 
block I intensity dependent sources are calculated accord- 
ing to the current reference. As it will be explained later, 
block I computations are also performed by the neural 
network while identification and Tij evaluations are car- 
ried out by the control computer. 

IV ARCHITECTURE. 

A constrained Hopfield neural network will be consid- 
ered in this article as a set of saturating linear integrators 
whose inputs are linear combinations of other integrators’ 
values and time varying terms. The dynamics of these 
terms are supposed to be much slower than net dynamics 
so that they may be regarded as constants during inte- 
gration. Analog versions of this controller can be found 
elsewhere [lo], but they lack of programmability. 

Stochastic systems use stochastic signals whose values 
randomly take the value 0 or 1.  The average of these 
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Figure 2: Stochastic Neural Net Processor 

values can be viewed as an analog value in the range [- 
l,l]. Stochastic signals can be multiplied using only a 
simple AND gate. 

Therefore, product terms in the newral networks can 
be caculated by a stochastic multiplier. The optimiza- 
tion problem should be posed in terms of adimentional 
quatities as constants and variables are to be translated 
into stochastic streams of pulses. This has been done in 
section 11. 

The high-level architecture is shown in Fig. 2. It con- 
sists of a stochastic neural processor, which is basically 
composed of a stochastic product evaluator and a state 
machine controller, and two random access read and write 
memories. Notice that neuron activity values evolve due 
to either other neurons’ activity values or net inputs. At 
any rate these terms may be considered as products that 
can be computed by the stochastic product evaluator. 

Constrained Hopfield neural network’s interconnection 
weights and net inputs’ constant terms are stored in one of 
the memories and neuron activities and variable terms of 
the net inputs are stored in the remaining one. All these 
magnitudes may either take positive or negative values. 

Two kinds of neurons are involved in the network’s evo- 
lution: system neurons and restriction neurons. System 
neurons are saturating linear integrators that can either 
take positive or negative values. Restriction neurons are 
saturating nonlinear integrators. They take negative val- 
ues when the problem restrictions are violated and force 
the system neurons to evolve in such a way that constric- 
tions are fulfilled. 

Neurons’ information (activity value, sign and type of 
neuron) are serially adressed by the controller and loaded 
in the up/down counter N and latches S and T. The 

1729 



0 

aooo 

1000 

0 

-1000 

-2000 

----.-.-.-. .-.- .-.- -.-. -.-.- --. 
I I I I I I T r f  

o zoo00 ~ o o o o  60000 eoow io0000 iaoooo u o o o o  160000 iaoooo ZOQOOO 
-3000 

I of It.r.tioP. 

Figure 4: Controller’s chip transient response. 
Figure 3: Test board photograph. 

stochastic product evaluator calculates the inhibitory or 
excitatory influence that neurons ( u j ,  j = l . .n)  (and in- 
put time varying terms) have over the one which has been 
loaded (u i ) .  To achieve this goal these values and their 
related constants are serially adressed by the controller 
and read. Random numbers are then generated and com- 
pared with them, producing two stochastically indepen- 
dent streams of pulses that are ANDed and fed to logic 
block B. This logic block either increments or decrements 
the up/dowm counter according to the signs of the three 
numbers involved and the kind of neuron that is being in- 
tegrated. It also changes the sign bit (S latch) whenever a 
zero crossing takes place. When the process has finished 
the new computed value of of vi is written in the external 
memory and another neuron is loaded. 

v PHYSICAL REALIZATION. 

A neural optimization problem accelerator has been devel- 
opped (Fig. 3) and tested following the described struc- 
ture. The stochastic neural processor has been imple- 
mented in an Erasable Programable Logic Device. EPLDs 
can be designed and programed in-house, eliminating the 
long engineering lead times and high tooling efforts and 
costs of full custom or semicustom devices. They are 
also very appropriate for short series fabrication where 
an Application-Specific Integrated Circuit would be un- 
economical. An Altera EPM5130 device has been chosen 
to develop this application [lo]. 

The number of system restriction neurons and net- 
work input signals are fully programmable. Two external 
RAMS have been used for data storage, one for neurons’ 
values and other for synaptic weight values. Net inputs’ 
time-varying terms are sampled by the host computer and 

written within the neuron RAM. Their associated con- 
stants are plant model parameters which were stored by 
the host computer in the weight RAM when the net was 
configured. Net configuration is accomplished by simply 
loading the net’s interconnection weights and net inputs’ 
constant terms in one of the external memories and by 
loading the initial neurons’ activity values and net inputs’ 
time varying initial values in the other one. 

The system’s clock may be either external, in case moni- 
toring the net’s evolution is desired, or internal, for normal 
operation. Most industrial processes have slow dynamics. 
For this reason high speed memorim have not been used, 
yielding a system’s clock speed of 5MHz. 

VI APPLICATION. 

As an example the system to be controlled has a pure 
delay of one sampling period and is described by the fol- 
lowing polynomials: 

A(.-’) = 1 - 0 . 4 ~ - I  - 0 . 3 2 . ~ - ~  
B(z-1) = 0.1 

For the first set of tests the future reference was consid- 
ered to  be a previously known square wave. The weighing 
factor A was made equal to 0.0001. The maximun control 
signals were constrained by f10, the slew rates were con- 
sidered to be limited by f 5  and a control horizon of 5 has 
been used. 

The transient response of the neural network is shown 
in Fig. 4 when calculating the first control signal se 
quence. When the stable state is reached, V(5) represents 
the control signal to be applied to the system. R(l)  and 
R(2) are the outputs for the restricctions V(5) < 10 and 
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Figure 5: System's closed loop behaviour. 

V(5) - V(4) < 5 respectively. This stable state matches 
theoretical result and its computation time has been 0.3 
seconds. 

In order to check the performance of the neural con- 
troller, the response of the closed loop system has been 
studied when changing the reference. In Fig. 5 'ref' rep- 
resents the applied refernce signal''V(5)' the steady state 
of the first system neuron in the controller and 'Y' the 
output of the plant as functions of the number of the con- 
troller's actuations. 

VI1 CONCLUSIONS. 

Digital stochastic architectures are a very efficient way 
to realize neural networks as they significantly reduce the 
needs of silicon area. We have implemented a general pur- 
pose version of a constrained Hopfield network on a pro- 
grammable logic device. This coprocessor solves any con- 
strained quadratic optimization problem. It  has been used 
to implement the General Predictive Control problem in 
order to release the control computer from the heavy com- 
putational burden of this algorithm. Expressions of net 
parameters are provided for a common plant model which 
permit an adaptive control. The chip has been incorpo- 
rated into a personal computer. Results obtained with 
this experimental chip have been reported. 

APPENDIX I 
NETWORK PARAMETERS 

For this system, the net parameters are given by the fol- 
lowing equations: 

i = l  

+ 2Aut-1 

if j odd 

if j even 
2n--i 

. .  
1=J 

n-j+l 

where odd(i)  = remainder ( i /2 )  and even(i)  = 1 - odd(i) .  
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