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Abstract 
A useful technique fot the study of loti'll bifurcatioM is the center manifold theory because Ii dimell

sional reduction is achieved. The computation of Taylor .series approximations of center manifolds giv~8 

rise to .several difficulties regarding the operational complexity and the computational effort. Previous 

works pl'oceed ill such e. way that the computational eft'orl is not optimized. In this paper an algorithm for 

«nter numifolds wen suited to symboJic COlllPutation is pI'Ef«!nted. The t\lgorithm is organized aeoording 
to an iterative scheme making good use of the previous steps, tbereby minimizing the number of opera
tiOllS. The results of two examples obtained through e. REDUCE 3.2 implemeutation Qf the algorithm are 

induded. 

1. Introduction 
The quaiitative 8.11aiysi8 of dynamical systems -in particular, the characterization of 

local bifurcations- requires auxiliary tool. to facilitate it. fulfilment. The center manifold 
theory is a usefni technique because a dimensional reduction of the problem is achieved. 
This paper deals with the practical computation of Taylor series approximations of center 
lll!II1ifolds. 

Consider the system 

:i: = Ax + f(x,y) 

iI=By+g(x,y) 
(1.1) 

where x E IR", Y E IRm, and A,B are constant matrices such that all the eigenvalues of A 
have zero real parts while ail the eigenvalues of B have negative reai part •. The function. 
f and 9 are Cr with f(O,O) = 0, D flO, 0) = 0, g(O,O) = 0, Dg(O,O) = O. The origin 
i. obviously a nonhyperbolic equilibrium. In this .ituation there exist. a 10csI invariant 
manifold: y = hex) with h(O) = 0, Dh(O) = 0 and h is c r ; it i. the so-named center 
manifold. The flow on this manifold is governed by 

'" = Ax + f(x, hex»~ (1.2) 

which constitutes the so-named reduced (n-dimensional) system. It contains all the neces
sary information to determine the asymptotic behavior for the flow near the origin of the 
(n + m)-dimensionai system (1.1). 
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As the center manifold is invariant for the flow, the following equation must be held 

M(h(xn '" Dh(xHAx + f(x,h(x))} - Bk(x) - g(x, hex)) '" 0 (1.3) 

The center manifold can be approximated ... a Thylor expansion .erle. at x '" 0, 
in the following sense (Carr [2]); if a function </I(x) with </1(0) = O,D</I(O) = 0, verifies 
M(</I(x» = O(lxl' ) where I > 1, then hex) = </I(x) + O(lxl') ... x ..... O. 

In pradice we consider a polynomial approximation </I and its computation proceeds 
... follows. Let V(k, n, m) denote the Hnear space of all m-vector functions v(x) of the 
,,..vector x which are homogeneous polynomials in x of degree Ie. Thus </I can be expressed 

km .. x 

</I(x) = L Vk(X) where !lk(X) E V(Ie, n, m) (1.4) 
k=2 

and NUl .. is the degree of accuracy. To compute "k(X) we .... ume that v.(x), 2:5 i :5 Ie, 
have been obtained and we set </Ik(X) = E~=2v,(X). 

If we define 
L(h(x» = Dh(x)Ax - Bh(x) 
N(h(x» = g(x,h(x» - Dh(x)f(x, hex»~ 

then (1.3) can be rewritten as L(h(x» = N(h(x»). 
Note that L is a linear operator and L(V(k,n,m)) C V(k,n,m) for all k. 

required that 
L(</Ik(X)) = N(</Ik(X») + O(lxlk+I) 

and as L(</Ik(X») = E~U2 L(v;(x») ,then 

Lk(Vk(X») = nk(x) 

(1.5) 

So it is 

(1.6) 

(1.7) 

where Lk is L restricted to V(k, n,m) and nk(x) represents the k-degree terms of Taylor 
expansion of N(</Ik(X» -and so nk(x) i. an element of V(k,n,m). The equation (1.7) 
constitutes a linear system. to be solved in V(k, fl, m) whose dimension is m. (k+~-I). 

In the applica.tions (1.1) can be a large system (the value of m + n is high)j further, 
one can consider linear degeneracies of codimension greater than one (high value of n). 
In other cases, as in presence of symmetries, we deal with high.codimension nonlinear 
degeneracies, forcing a growth in the order of neceoaary accuracy (high value of kmox ). In 
sum, the linear system (1.7) might be a very large system and so its compute!' algebra. 
resolution should be elfectively impossible unIess a careful insight i. provided. 

In order to .olve (1.7) we need a matrix representation of Lk and nk and this task 
involves COIllPutational complexities. Notice that a direct substitution of </Ik(X) in the 
Taylor expansion of N to obtain nk produces not only k-degree terms but lower and 
higher ones which are not required and consequently the computational elfort would not 
be optimized. 

Previous known works «(4], (5J, [10]) essentially proceed in this way. Therefore it seems 
interesting to design new approaches which overcome the limitations above mentioned. 
In this paper an algorithm for center manifolds well suited to symbolic computation is 
presented. The algorithm is organized according to an iterative scheme ma.king good 
use of the previous steps, thereby minimizing the number of operations and the memory 
requirements. 
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2. Deseription of the algorithm 
In the study of the behaviour near a. degenerate equilibrium of a dynamical system 

is of great interest to use certain coordinate changes by means of which it is possible to 
"simplify" its differential equation, so obtaining the so-called normal forms. These forms 
at·" simpler than initial system to the effect that nonlinear terms which are not essential 
have been removed. 

The coordinate transformations yielding normal forms can be used for center manifolds 
calculations (see Chow & Hale [3]). Let us make the following near-identity transformation 
in (1.1): 

where if E lR",y E lRm and h(0) = O,Dh(O) O. The new differential equations are: 

where 

re = AX + !(x. Y) 
Ii = By H(x, til 

1(x, y) = I(x, fi + h(x)) 
g(x, y) = - {Dii(x)Ax - Bh(x)}+ 

+ {g(if, fi + ii(x» - Dh(x)/(x,y + h(x»} 

(2.1) 

(2.2) 

(2.3) 

We choose hex) such th"t y = 0 were an invariant hyperplane for (2.2). This condition 
i. equivalent to g(x,O) = 0 and therefore, we deduce that hex) must verify the equation 
(1.3) corresponding to center manifolds; from now, we identify h and h. Furthermore the 
system 

re '"' Ax + 1(x, 0) 

becomes the reduced system. So center manifold computation for (1.1) is eqwVllIE'nt to 
calculate the tratlsformation (2.1) leading to (2.2) with the above condition. From a 
geometrical point of view the playing role of coordinate transformation is to flat the center 
manifold. 

In Meyer & Schmidt [8] and Chow & Hale [3J, an approach to the tratlsformation 
theory leading to normal forms -using Lie tratlsforms- is presented. They arrive to a 
recursive algorithm to obtain the transformed equations from original ones. It follows a 
review of ideas behind their algorithm and how to use them in our problem. 

Suppose the following formal expl\1l'Sions: 

I(x,y) = Lfk(x,y), fk E V(k,n+m,n) 

g(x,y) = Lgk(X,y), gk E V(k,n+m,m) 
k~2 

hex) = Lhk(x), hk E V(k,n,m) 
k?:2 

(2.4) 
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It must be noticed that hk can be identified to Vk (see 1.4). And we will also suppose 

ii(if,y) = Liik(if,y), iik E V(k,n+m,m) 
k~2 

Comparing (2.3) and (1.5) it must be concluded that 

In the above notation our objective is to obtain hk' !k. 
If x = fX, Y = fY, f E lit in (1.1), then 

where 

Y = BY + L Gk(X, 1') f k jk! 
k~l 

Fk(X,1') = k! !Hl(X, Y) 

Gk(X,1') = k! Uk+l(X, Y), k ~ 1 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and they are homogeneous polynomials in (X, Y) of degree k + 1. Also define 
Fo(X,1') = AX and Go(X,1') = BY. 

Now consider a transformation of variables: 

where the Hk are homogeneous in X of degre k + 1. Then the differential equations for 
(X, Y) are 

g = AX + LF'keX,f')fkjk! 
k~l 

Y=BY+ LGk(X,Y)fkjk! 
k~l 

(2.10) 

where the ih, Gk are homogeneous polynomials in (X, Y) of degree k + 1. Consequently, 
the changes ofvaxiables x = EX, Y = EY; if = EX, Ii = EY and (2.9) yield the system (2.2) 
provided that 

k~l (2.11 ) 



IUld BO we obtain 

22~ 

Fk(X.Y) = kl!k+l(X.Y) 

Gk(X,Y) = k!iik+l(X,Y) 
(2.12) 

In fact, trlUlBforming (2.7) by the changes defined by (2.9) is equivalent to trans
forming (1.1) by the changes of the form (2.1). The reason justifying the above set of 
transformations is that the Fk, Gk can be recursively computed !'rom Fi , G i , Hi, i 5 I., j 

and so, the relations (2.8), (2.11) and (2.12) enable us to calculate recursively A, 9k. 
We introduce now the following notation: 

(2.13) 

Notice that this convention is related to the Lie bracket operator when applied to the 
two particular functions above. 

If we define the sequence 

by the recursive relations: 

then it can be proved ([3], [8]): 

( ~D, I, i = 0,1,2, ... 

Ie = 1,2,. .. 

1= 0,1,2, ... 
i = 1,2,3, .. , (2.14) 

(2.15) 

We remark that the computations (2.14) can be accomplished by considering the 
!JO.ocalled Lie triangle: 

zg 

Zf zt 

z~ Zl 
I Z~ . (Fi) where Z/ = Gi ' 

Zo 
3 Zl Z2 

I zg 
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and each element can be calculated by using the elements in the column one step to the 
left and up. From (2.15) the searched elements are zt, which are on the diagonal of Lie 
triangle. Note that in each row the terms involved have always the same degree. 

Remember that our objecti!e i. to obtain h., 1., Ie ~ 2, and now, since (2.11), (2.12), 
i~ i. !!he same to compute H., Flo, k ;?: 1. From (2.12), the condition ii(if, 0) = 0 becomes 
Gk(X,O) = O,";?: 1, and then We can write (see 2.6 and 2.11): 

(2.16) 

We recognize in (2.16) the equation satisfying the k-approximation of the center man
ifold, which is obtained in a recursive way as the second component of z/f element on the 
diagonal of Lie triangle. Furthermore, the fir.t component of zt is precisely F. (see (2.15» 
which leads us to the reduced system. 

We can rewrite (2.16) as 

(2.17) 

where Nk+I(-) = k! n.+! O. A key observation is that we can split the algorithm in two 
branches, i.e. it i. more convenient to compute LhH on one hand and N'H on the other 
hand. Thus, oUt' aim will he now to obtain separately the two side. of (2.17). 

We now turn to perform BOIlle adaptations which permits us to achieve N.H' For 
that we Bet 

Ie? 1, (2.18) 

and then it can be strictly proved that .. recursive ralation analogous to (2.14) holds for 
the W'e. In fact the Jast term in the summatory leading to Zl_1 (Le. with j = Ie - 1) 
becomes 

(2.19) 

and then, 

W' = F. + "" -: 1 F}.-i-I X 0 ( ) k-' (" ) ( ) ( ) .-1 Gk ~ J Gk-j-I Hj+1 
(2.20) 

Furthermore, taking into account that 

we obtain 

z. x ( 0 ) - Wi X ( 0 ) 
I HiH - I HiH 

(2.21) 
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ahd therefore 

k-i (k ') () i i-I - to i-I 0 
Wk _ i = Wk _ H ' + E ' Wk - i - i x H, ' 

1=0 J ;+1 
(2.22) 

for all k <:: 1. With this notation, we construct a similar triangle without the first column: 

w:' 0 

W' , w:2 
0 

W' 2 wf w:3 
0 

wi wi wp wJ 

, Note that (2.16) together with (2.18) impliea that the first n compmrents of wJ' and 
ZG are the same, giving us fA, and the last m components now provide us Nk+!. This 
strategy along with the determination of LHI for each Ie (see (3.1» allows us the setting 
of the linear system (2.17). 

hl practice, the final objective is usually the reduced system and it should be noticed 
that computing the first n components of the next row ill the above triangle up to Wf+l' 
the (k + 1 )-approximation to the reduced equation is obtained. 

3. Programming aspects 
The above "pproooh permits us to Bet up" computer algebra algorithm which proceeds 

iteratively up to a settled order. It is possible to implement the algorithm by selecting the 
appropriate primitives of a computer algebra system merely reproducing the mentioned 
steps, However, as noted in the introduction, it is more efficient and leas expensive to use 
a vectorial representation of the functions involved, 

We constrain ourselves to work in V(k + 1,n,m) choosing an ordered basi •• In par
ticular, we will use a lexicographic ordered basis, 

3.1. Representation of LHI 
Let us denote d the number of different (k + 1 l-degree monomials in ,,-vector .' and 

let Pk+1 = {pI, p",. •. , p4} be the ordered set of n-indicCB with module k + 1. If el" stands 
for the loth element of a canonical m-dimenslonal basis, then 

t i i ; 

is a basi. of V(k + 1, n, m) where "'v = Xf'X~' .. , :t~". 
To determine the matrix representation of LHI over 81+1 observe that 
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, a(xp ' • em) I 

LHI(:vP • eY') = ax I A:v - BxP • eY' = 

. . n n p' . 

( h p' b p' ~ ~( i X) b p' b p')T -!IX ,- 2lX '."'~~ PIJa,rX",- - 11% , .•. ,- miX 
6=1 r_l re" 

(3.1.1) 

where 

Thus (3.1.1) provides the image of «/- l)d + 1).th basic Vector in BHI. To obtain the 
Bk+l·representatioll of above m-vector we can organize the matrix representation of LHI 
as a matrix of m X m blocks, each block being a d X d matrix. Then We can identify 

-hlmI ) 
-bzmI 

A-LmI 

(3.1.2) 

where I is the identity of order d and A is a. square matrix independent on / which arises 
from the double Bummatory in (3.1.1). 

Regarding (3.1.2), it i. obvious the importance of the .tructure of matrix B. In fact, 
if B is triangular we can solve the corresponding system (2.17) by means of .. backward· 
substitution process. Without loss of generality, we can suppose that the matrix B i. in 
its Jordan form, and then we might adopt specific methods to solve (2.17). 

The matrix A conditiones strongly the structure of A that should make possible in 
several typical cases we might adopt specific resolution methods. In any case A is certainly 
sparse and a deeper study of its structure can be of interest. 

3.2. Computing NHI 
Now we will denote d' the nwnber of different (k + I)-degree monomials in (n + 

m)-vector (x,y) and let QHI = {ql,q', ... ,qd'} be the ordered set of (n +m)-indices 
with module.k + 1 while ei+m stands for the I·th element of .. canoulcal basis in lRn+m. 
To represent adequately the W'. expressions a.ud (Fk, Gk), we can construct a basis of 
V(k+ 1,n+m,,,+m) by 

B~+I = {(x,yi ·.,r+m
: 1 ::;i::;d', q' E Qk+l, 1 ::; I::;" +m} 

In this context to perform (2.20) and (2.22), we will split the correaponding expl'eeions 
in terms of basic element. and as the X -operation i8 clea.rly linear it i. interesting to verify 
its behaviour over those elements. Thus if 1 ::; I. ::; tn, q E Qk" and p E Pk, one can 
obtain 



= 

where 

226 

(x'Y)'.e.+mx( 0 ) 'I xP. em = h 

q.+,. --x . e" - Pit x, Y _. e.+I.' for 1 :5 /1 :5 n, 
111, $11 

1 
(x, y)1 p n+m ()I:);' n+m 

q.+1, (x, 11 )i ",1' • e:!:-: ' for n + 1 :5 h :5 n + m. 
YI, 

(:c, y)O' _ { xf x~' ... x~ .. 11:"+1 .. . Y;2"+l: -1 ••. y~+m , 

YI. ("" y)", otherwise. 

if q.+l, ~ 1, 

(3.2.1) 

The above expressions enable us to work only with vectorial coefficients instead of 
the corresponding polynomial by means of their representation in 13k" 13k,' For that it 
is uaeful to have defined some auxiliar procedures to handle the basic elements. One can 
argument that with this aproach we waste the possibilities of symbolic computation, but 
the experience suggests that in most cases computer algebra cannot be effectively used by 
merely transcribing formulas. Note that symbolic computation is still needed because the 
mentioned coefficient. can involve additional parameters. II we adopt no such scheme (i.e. 
working directly memory polynomials) we can exhaust rapidiy the memory space (thereby 
increasing the number of "garbage colleetion" or what should be worse, causing a machine 
"hang-up"). Furthermore the frequent built-in function calls (v.g. derivatives) would be 
very time~oonsuming, 

3.3. Program structure 
Thus we can summarize the algorithm as follows: 

(a) Read data problem A,B,f,g (see (Ll)). 
(b) Set kmax , the wanted I\Ccuracy degree. 
(e) Build the basis 13k for 2:5 k :5 kma •. Note that 13k i. easily localized into 13k, 
(d) Set up the vectorial coefficient. of data functions /,g. 
(e) Loop: fork=I, ... ,kma.-l 

(e. 1) Determine A corresponding to k + 1 
(e.2) Compute W~_I according to (2.20) and (3.2.1) 
(e.3) Loop: for / "" 2, ••• , k compute wLI following (2.22) and (3.2.1) 
(e.4) Segregate N k+ 1 from W ~ 
(e.5) Solve (2.17) using (3.1.2) to obtain Hk. 

(f) Write results. 

4. Oomputational results 
We have obtained .. !irat implementation of the above algorithm on REDUCE 3.2 [7}. 

Now we present the result. achieved for two examples. We want to mention that ill both 
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c!lBes the use of the algorithm has heen crucial. Previous caleulations by hand (we do not 
recommend it) or by reproducing (1.3) directly on a computer algebra system required 
tedious work, even though a deeper analysis to remove unnecessary terms had been made. 

4.1. Example 1 (n = 3,m = l,k", .. =4) 
In [I], a system dynamics model representing the evolution of three urban zones with 

a diffusion mechanisln anlong zones i. presented. After a certain change of variables, the 
model can be written as 

-x' Il 2xz 

0) = (-r o 
-311 
o ~J G) +al 

y'6+y'6+va 
2xy 2yz 
y'6+va 

x' y' z· 

+a. 

+a3 

x 3 :l"Y? 'l a;2 z y?'z 
-+-+"z --+-2 2 .,r2.,r2 

va+va+va 

y' • x 2y y' Z J;;: 
-+yz --+-+v2xyz 
2 2.,r2 
-x' + xy' + z· +x'z+y'z 
3.,r2 .,r2 3 

4 4. -'(- 2 2) 1 (5X •• y 8xz 2 2, 2 .) 4xz x + y ) 
-y'6 --6- + x Y + 2 + -3.,r2-2 + z ~y - x + --'-.,r2';=2'-"--" 

1 2y(x3 + 3xy2) 8yx' 4xyz'(x' + y') 4yz(x' + y') 
-.,r2( 3va + -3y'6-6 + va + y'6 ) 

1 x' U' z, 4z(",' 3",y') -( _ + x'y' + _ + _ + 2z'(x' + y') - - ) 
va 2 2 3 3.,r2 

(4.1.1) 

where x, y, z are related with the urban development of each zone, It stands for the diffusion 
coefficient and "",aha.,a, are parameters defining the nonlinearity involved. We adopt 
II as the bifurcation parameter, and then we must add to (4.1.1) a new equation: u = O. 

It can be easily seen that the critical value of the bifurcation paramete1' is tic = 0 and 
that (4.1.1) i. in corre.pondence with (1.1) if we set XI = x, X2 = y, x, = II, III = z, 
where A is now a tridimensional zero-matrix and B (ao). 

The model i. equivariant under a simmetry group (the dihedral group D3) and this 
fact made possible -by using a specific basis obtained with the use of complex variableB- to 
compute by hand the corresponding center manifold. We present here the results obtained 
up to fourth order with our algorithm that are in full concordance with the previous 
calculations [9]: 
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h( ) 
a, 2 al 2 6 a, 2 r.::2aoa2 + 2ai 2 

"',y,u = - --y - --'" + --y u - V" xy v'3a. v'3ao v'3~ 2ag 

+ 6~",2" + v'2aoa2 + 2aJ ",3 _ 36~ 2,,2 
v'3~ 6a~ v'3~ y 

_ ,rzaOa3 + ala2 y' + 3,rz3ao~ + 10a1 xy2u _ 36~X2U2 (4.1.2) 
2.,j6a5 2a3 v'3a& 

r.::2a.a3+a,~ 22 r.::23aoa2+10a13 r.::2 aoa3+ al a2 < 
- V~ '" Y - V~ X U - V~ '" + ... 

.,j6a~ 2~ 2.,j6a~ 

4.2. Example 2 (n = 4,m = 1,km .x = 3) 
Our .""ond example arise from the study of a.n el""tronic circuit partially a.nalyzed in 

[6]. The equations of the model are: 

(~)_(-(f3+I1)/r f3/r 0)("') (_:3"'3+~(II_X)3) II - f3 -f3 -1 II + b ( )3 
i: 0 10 z -3 11

0
- X 

(4.2.1) 

where x, y, z are the state variables corresponding to voltages a.nd currents in the circuit 
and r,aa,ba are additional pBJ'ameters while f3,11 a.re bifurcation parameters. We try to 
compute the center manifold corresponding to f3c = -II, = ,Jr. In such case, the lin""" part 
of (4.2.1) presents a double-zero eigenvalue with ruesz index 2 and a simple eigenvalue equal 
to -,Jr. To achieve a formulation according to (1.1), we must perform some preparations. 

Firstly we make a translation over f3, v; 13 = f3 - f3c, ii = v - VC, BO that bifurcation 
occurs in a neighbourhood of 13 = 0, ii = O. Also we must include in (4.2.1) the equations 
p = 0, i; = O. Furthermore, we make a change of vw:iables 

G) = P (;:). "'a = 13, "" = v 

wWch leads us to the Jordan form of lin .. .a.r part in (4.2.1) (P is the matrix of principal 
vectors for f3 = f3c, II = lie) and now we are in correspondence with (1.1). 

In a previous work [4], we followed the approach in [5] but we exhausted the computing 
facilities at our disposal without success. Only after a strong guidance of the symbolic 
computations we achieved our purpose. By uoing the algorithm we obtain the solution in 
a few cpu-minute. of microVAX-II: 
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-r + 1 r + 1 1 r + 1 (r - 2)' > • 

h(Xtt X2,Xa,X4) = t;:.:. $2$4 + . r,;. aX2X'a. - aX1X4 - -,-XIXa - 13 X-Z X4 
Vrt VT'r r r r 

r' + 2r' 5r 8 2r' + 1.' + 9r + 4 2 + 6 $ZX aX4 - 6 $2:tlS r r 
-a,r' + 3a,r' + 6(h, - a,)r + 6(h, + a,), -r + 3 • 

+ r.;; 5 <1)2 + r.;; & XIX. vrr vrT' 

r2+5r+6 r'+4r2 +6r+3 2 (4??) + r.; 5 :1:,:1:,:1:4 + r.;; 5 <1),<1), .->~ 
vrr vT'r 

3
a,r2 + 2(6, - a,)r + 2(h, + a,) 2 

- S $1$2 
r 

a(b,-a,)r+(b,+a,). b,r+(b,+a.). 
+ .,ji'r4 "" "" - r 4 ", 

5. Concluding remarks 
A new algorithm for symbolic computation of center manifolds is introduced. Using 

Nl. algorithm to compute normal forms, we derive a recursive algorithm to calculate center 
mlUlifolda. Rand and Keith [10) use this approach but not arriving to IUl iterative scheme 
and so making not adVlUltagea of full capability of normal form trlUlsformations. 

In our opinion this algorithm is a good exponent of the way computer algebra DlIIst 
be guided to perform effectively a complex calculation. We have tested the algorithm with 
different example. already solved by other means (two of them are presented here) IUld it 
has overcame several computational difficulties in previous approaches. The program used 
-written in REDUCE 3.2- i. avsilable at request to authors. 

Future research should be directed to some enhacement. already mentioned. In partic
ular, we must investigate what polynomial internal representation is best for our purposes 
and the possible amelioration. depending on the actual bifurcations involved. Further 
in presence of .immetry a choice of adequate bases should be fruitful, by lowering the 
dimension of vectorial representation managed. 
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