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Abstract

In this paper we study a due date setting problem in a flowshop layout. The

problem consists of scheduling a set of jobs arriving to the system together with jobs

already present (denoted as old jobs), in order to set a common due date for the

new jobs. Since the old jobs have a common due date that must not be violated, our

problem is a rescheduling problem with the objective of minimising the makespan

of the new jobs (thus obtaining the tightest possible due date for the new jobs) and

a constraint since the maximum tardiness of the old jobs must be equal to zero.

This approach leads to an interesting scheduling problem in which two different

objectives are considered, each one for a subset of the jobs that must be scheduled.

To the best of our knowledge, this type of problems have been scarcely considered

in the literature, and only for very specific purposes. Since our problem is clearly

NP-hard, a new heuristic based on Variable Neighbourhood Search (VNS) has been

designed. The computational results show that our proposed heuristic outperforms

two existing heuristic methods for similar problems in the literature.
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1 Introduction

Manufacturing environments are complex and dynamic, implying to respond effectively to

satisfy customers orders, which means providing the customers with tight and reliable due

dates (Framinan, 2008). For this reason, the due date setting problem is an important

issue in the order capture activities together with order acceptance/rejection and order

scheduling (Framinan and Leisten, 2009).

This paper considers a dynamic scenario, where machines arranged in a flowshop are

busy by processing a previously scheduled set of jobs belonging to an already committed

order with a given common due date. The problem is to set a common due date for a new

incoming order (consisting of a new set of tasks or jobs) by adequately scheduling these new

jobs. Note that the overall goal of the company is to meet the proposed due dates, which

depend not only on the scheduling procedure followed, but also on the ‘reasonableness’

of the due dates (Ragatz and Mabert, 1984), defined by Vig and Dooley (1991) as a

measure of the due date performance reflected on the capability of the system to achieve

successfully an arbitrary set of due dates. There are two aspects of due date performance

Framinan (2009): delivery reliability which is the ability to consistently meet promised

due dates (Cheng and Jiang, 1998), given the critical importance of the fulfilment of the

promised due dates (Framinan, 2007); and delivery speed, which is the ability to deliver

orders to the customers with shortest lead times (Philipoom, 2000). In order to verify

both aspects, we minimise the maximal completion time or makespan of jobs of the new

order, guaranteeing the delivery speed, and imposing that the due date of the old jobs is

not violated, achieving delivery reliability. Two different scenarios can be considered:

• The jobs already in the system are regarded as ‘frozen’ (i.e., their schedule cannot

be modified). The resulting problem is then to schedule the new set of jobs in order

to obtain a tight due date (e.g., by minimising their makespan) taking into account

that the machines are not immediately available (see Perez-Gonzalez and Framinan,
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2009), or

• to allow modifying the schedule of the existing jobs in the system and to reschedule

them together with the new jobs in order to obtain a tight due date for the latter

set, as long as the due date already committed for the existing jobs is not violated.

In the latter case, the resulting problem can be considered a type of rescheduling

problem. Clearly, this option may potentially result in tighter due dates than the previous

ones, and implies a constrained problem since the common due date of the old jobs is

a deadline. The allowance of rescheduling committed orders is one of the mechanism

described by Framinan (2008) to provide both tight due dates and a detailed, reliable

production schedule for the shop floor, which are important aspects for the company as it

has been previously explained.

The rest of the paper is organised as follows: Section 2 describes the problem and

introduces the related literature and those problems identified in the literature as similar to

our problem. Section 3 shows the different solution procedures that can be applied to solve

the problem, including a new proposal based on VNS. These procedures are calibrated in

Section 4 and compared by carrying out the computational experience presented in Section

5. Finally, conclusions and future research lines are summarised in Section 6.

2 Problem statement and related problems

The problem considered is a due date setting problem in which the scheduler may update

the existing schedule upon the arrival of new jobs into the system. As denoted in the

related literature, jobs are categorised either as ‘old’ or ‘new’ jobs. The set of nO old jobs,

JO, belongs to a previously scheduled order. Therefore, they have a common due date d

which has already been set and it is considered to be a parameter in our problem. A set

of nN new jobs, JN , arrives to the system. Our objective is to set a common due date for

JN by scheduling all n jobs, J = JO
∪
JN with n = nO + nN .

In order to set a tight common due date for the new jobs, the objective considered

is to minimise the maximum completion time (makespan) for JN , denoted as CJN
max(S),
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with S a sequence composed by jobs belonging to J . Furthermore, the existing jobs have

a common due date d which cannot be violated. Therefore, a feasible sequence S is a

sequence in which the completion times of jobs in JO are less or equal than their common

due date d. This is equivalent to impose that the maximum tardiness of S for jobs in JO

is zero, i.e., T JO
max(S) = maxT JO

j (S) = 0 being T JO
j (S) = max{0, CJO

j (S)−d} the tardiness

of the job j ∈ JO, and CJO
j (S) the completion time of the job j ∈ JO in the last machine

regarding the sequence S. This is also equivalent to T JO(S) =
∑

j∈JO T JO
j (S) = 0, i.e., the

total tardiness of S for jobs in JO is zero.

Our work focuses on the flowshop, implying a natural ordering of the m machines in

the shop in such a way that the jobs go through the same machines in the same order. In

general, there are (n!)m schedules to be considered. However, there is a simplified version

of the problem applicable to many situations in which it is assumed that the processing

sequence of the jobs is the same for all machines (i.e., permutation flowshop) and hence

only n! schedules have to be considered.

Using the notation defined by Graham et al. (1979), our constrained rescheduling

problem, called CRP , can be denoted as Fm|prmu, dj = d|CJN
max/T

JO
max = 0, where Fm

indicates a flowshop withmmachines, prmu denotes the permutation case, dj = d specifies

the use of a common due date, and finally, CJN
max/T

JO
max = 0 is the constrained objective

function. It is easy to see that this problem is strongly NP-hard for more than two

machines, as if we assume that JO = ∅, then it may be reduced to the classical permutation

flowshop scheduling problem with makespan objective, denoted as CP , which is known to

be strongly NP-hard (Garey et al., 1976).

To the best of our knowledge, CRP has not been studied in the scheduling literature,

as we consider a different objective for each set of jobs. However, some related problems

can be identified. On one hand, CP is the first problem similar to CRP , since CP is a

special case of CRP if J = JN . In order to determine the difficulty degree of our problem

CRP , Perez-Gonzalez (2009) compares this problem with CP by analysing the structures

of solutions of both problems, solving exactly small instances, and concluding that CRP is

statistically more difficult than CP for realistic values of the common due date d (around

a 40% from the optimal makespan of the jobs belonging to JO), and for those cases where
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the size of both sets are similar or equal. Therefore, in order to obtain good solutions for

real sized instances, approximate procedures have to be considered.

On the other hand, in the rescheduling literature, some references consider similar

problems, most of them for a single machine. Unal et al. (1997) address the single machine

rescheduling problem with part-type dependent setup times, where new jobs are inserted

in the sequence of the old jobs without violating the due date of these old jobs. Hall and

Potts (2004) and Mocquillon et al. (2008) study a problem similar to the previous one,

but they measure the disruption of the schedule by means of a cost function. Yang (2007)

schedules both new and old jobs considering a disruption cost. Rangsaritratsamee et al.

(2004) reschedule the set of jobs available in a dynamic job shop at each rescheduling

point minimising their makespan. Since these approaches focus on maintaining stability

of the sequence of the old jobs, these problems are not very similar to CRP and the

corresponding solution methods cannot be adapted.

There are also similar approaches in the multi-criteria scheduling literature. In Minella

et al. (2008) this kind of problems are reviewed for the flowshop layout, including some

problems with due date related objectives, although they assume that the two objectives

apply both to all jobs in J . One of these problems is the permutation flowshop scheduling

problem with the objective of minimising the makespan subject to a given maximum

tardiness. This problem is denoted as Fm|prmu|ε(Cmax/Tmax) (following the notation of

T’kindt and Billaut, 2006), indicating that the objective is to minimise the makespan while

obtaining a maximum tardiness less or equal than a given value ε. For convenience, we

denote this constrained scheduling problem as CSP . CSP may be seen as a special case of

a more general problem denoted Fm|prmu|ε(Z/Tmax) in which Z = λCmax+(1−λ)Tmax,

λ ∈ [0, 1]. We denote this problem as Generalised CSP or GCSP , being CSP the case

when λ = 1. Differences among CRP , CP , CSP and GCSP , according to the set of jobs

involved in the problem, the due date, and the objectives considered are summarised in

Table 1.

Given the similarity of these problems, the methods applied to CP , GCSP or CSP

could be adapted to our problem CRP . We intend to provide a heuristic method to solve

the problem. In order to determine the efficiency of our proposal, we adapt the best
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Prob-

lem

Notation Set of jobs Due

dates

Objective

CRP Fm|prmu, dj =

d|CJN
max/T

JO
max = 0

J =

JO
∪
JN

Common CJN
max subject to T JO

max = 0

CP Fm|prmu|Cmax J No CJ
max

CSP Fm|prmu|ϵ(Cmax, Tmax) J Different CJ
max subject to T J

max ≤ ϵ

GCSP Fm|prmu|ϵ(Z, Tmax) J Different λCJ
max+(1−λ)T J

max sub-

ject to T J
max ≤ ϵ

Table 1: Differences between CRP , CP , CSP and GCSP .

solution procedure of each related problem in the following subsections.

2.1 Solution procedures for CP : Adaptation for CRP

A great number of exact and approximate methods have been applied to solve CP . Re-

garding approximate methods, a comparative evaluation of heuristics and metaheuristics

is presented by Ruiz and Maroto (2005), and a classification of the heuristics is carried

out by Framinan et al. (2004).

The Iterated Greedy (IG) algorithm proposed by Ruiz and Stützle (2007) has proved

to be among the most effective methods to solve CP . IG is a rather new heuristic method

which generates a sequence of solutions by iterating over greedy constructive heuristics

using two main phases: destruction and construction. IG is closely related to the Iterated

Local Search procedure presented by Lourenco et al. (2002), and it is easily tunable and

applicable to other problems because its simplicity.

Here we simple describe briefly the IG algorithm and for more details we refer to Ruiz

and Stützle (2007). The initial sequence is constructed by NEHT, the improved version

presented by Taillard (1990) of the NEH heuristic. NEH (Nawaz et al., 1983) is the best

constructive heuristic for CP (Turner and Booth, 1987). This well-known heuristic is based

on the idea that jobs with longest processing time on all machines should be scheduled

as earliest as possible, so an initial sequence is built considering this idea, and then a

schedule is constructed iteratively from the initial sequence. The original complexity of

the NEH is O(n3m), being reduced by Taillard (1990) to O(n2m) by means of calculating
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the makespan for all partial schedules for a given iteration in a single step. Once the initial

sequence is provided by the NEHT, the IG applies the destruction procedure removing δ

jobs chosen randomly without repetition, and the construction phase inserts them in the

same way that NEHT. Then, the local search procedure, called Iterative Improvement,

improves each solution generated in the construction phase. This procedure is based on

the insertion method, which is commonly regarded as a very good choice for CP (Taillard,

1990). The last step is to accept or not the new sequence as the incumbent solution for

the next iteration. Ruiz and Stützle (2007) consider a simple simulated annealing-like

acceptance criterion, similarly to the one presented by Osman and Potts (1989), with a

constant temperature which depends on a given parameter T .

The adaptation of this method to CRP implies minor modifications:

• Since the algorithm has been originally developed for an unconstrained problem, a

natural adaptation considers only feasible solutions by checking the feasibility of each

solution in the construction and local search procedures, thus rejecting unfeasible

solutions.

• As a consequence, the objective function to evaluate each solution S in our adapta-

tion is CJN
max(S), i.e., only the makespan of the new jobs is considered.

• For our problem, the initial solution has to be feasible and it is generated by the

so-called Initial Feasible Solution method. This procedure uses an adaptation of the

NEHT, called ANEHT, to the permutation flowshop problem with initial availability

constraint (Perez-Gonzalez and Framinan, 2009), which considers the machine avail-

ability instants (ai) to compute the makespan. The Initial Feasible Solution method

generates the machine availability instants ai for each machine i from 1 to m as the

completion time for each machine of the sequence SJO , given by the NEHT applied

to JO. Then, the method applies ANEHT to JN and constructs S = SJO
∪
SJN ,

guaranteeing that S is feasible, as the common due date of JO is obtained from the

makespan value given by SJO .
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2.2 Solution procedures for CSP/GCSP : Adaptation for CRP

Table 2 shows a summary of the reviewed references tackling both GCSP and CSP . This

table indicates each problem and the method proposed to solve it.

Authors Problem Resolution Method

Daniels and Chambers (1990) CSP Constructive heuristic (DC)

Chakravarthy and Rajendran (1999) GCSP Adaptation of DC (CR)

Allahverdi (2004) GCSP Heuristic APH

Framinan and Leisten (2006) CSP Heuristic FL

Ruiz and Allahverdi (2009) GCSP Heuristic SGAT

Table 2: Resolution methods for problems GCSP and CSP .

The best heuristic known to solve the general problem GCSP , and consequently CSP ,

is the one proposed by Ruiz and Allahverdi (2009), based on a Genetic Algorithm (GA).

This heuristic is called Steady State GA, SGAT.

Genetic Algorithms (GAs) have been frequently used in the scheduling research com-

munity since the mid 1990s with very good results. GAs mimic the natural selection and

evolution of species, abstracting a solution for a specific problem and encoding it into the

chromosome of an individual. In general, for applying GAs in scheduling, the individuals

are sequences, and a population is a set of sequences. The GA presented by Ruiz and

Allahverdi (2009) for the GCSP is based on a new type of steady state GAs, called SGAT

(Ruiz et al., 2006). In a steady state GA, there is only one population and new individu-

als do not replace their parents, but a new individual replaces the worst individual of the

population if this new one is unique and better than the worst one. Ruiz and Allahverdi

(2009) incorporate significant speed-ups in the local search and a novel three-phase fitness

evaluation, specially tailored for dealing with unfeasible solutions.

SGAT is fully detailed in Ruiz and Allahverdi (2009), so we only give an outline

here. This algorithm allows unfeasible solutions in the population by defining three states

for the population: one state where all solutions are feasible, another state where there

are feasible and unfeasible solutions, and another one with all solutions unfeasible. The

fitness value of each individual may be calculated depending on each state (see Ruiz
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and Allahverdi (2009) for details). The initial population is generated constructing two

super-individuals, one obtained by the EDD (Earliest Due Date) rule and the other by

the NEHT method, and the rest of the population is generated randomly. Once the

fitness is computed for all individuals of the population, the parent selection is carried

out by a fast and simple selection operator, the n-tournament selection procedure (Ruiz

and Allahverdi, 2007), which depends on a pressure parameter. Then, the two parents are

crossed by the two-point crossover procedure (TP) (see Michalewicz, 1994 for details), with

a probability pC . A mutation operator consisting of extracting one job from the individual

and re-inserting it in another random position is applied to the obtained individual with

probability pM . SGAT also incorporates a Light Local Search scheme which is applied to

the best solution in the initial population and also to each offspring generated after the

crossover and mutation. Only a fraction pLS of offsprings undergo local search. Finally,

each new individual is checked to guarantee its ‘uniqueness’ once the fitness has been

calculated in order to avoid clones in the population.

Given the similarity of both problems, only minor modifications have to be imple-

mented to adapt SGAT to CRP :

• In the first step of the original SGAT, the EDD rule sorts the jobs in increasing

order of their due dates, but in our case we have a common due date for all jobs of

JO, therefore it is not possible to apply it. Instead we generate an initial solution

by applying the Initial Feasible Solution method previously described for IG. The

second super-individual is generated by NEHT applied to J = JO
∪

JN .

• The makespan of JN is used to evaluate the objective function in the first state of the

fitness function (all individuals of the population are feasible). For the second state

(mixture of unfeasible and feasible solutions in the population) we have used the same

method than Ruiz and Allahverdi (2009), adding the objective value of the worst

feasible solution to that of the unfeasible solutions, so the best unfeasible solution

has worse fitness than the worst feasible solution in the population. Finally, in the

third state (all individuals are unfeasible), the objective function is the tardiness of

JO.

9



• The original Light Local Search method extracts all jobs in a given solution at ran-

dom and without repetition, one by one, and re-inserts them in all feasible positions

of the sequence in order to select the best feasible one. The local search stops when

all jobs have been tried in all positions. We apply a modified version of Taillard’s

improvement to speed up the reinserting method for CRP . Our implementation

checks all positions of the sequence when the job to be inserted belongs to JN , as in

the original version (see Breit (2004)). However, it discards unfeasible positions if

the job involved in the insertion belongs to JO, i.e., it checks all positions until that

which provides the completion time greater or equal to the due date d.

3 Proposed metaheuristic: Refreshing VNS

In the previous section, we adapted the best existing methods from the literature for those

problems identified as similar to our problem. In this section we propose a new heuristic

for CRP based on the Variable Neighbourhood Search (VNS), named Refreshing VNS.

VNS is a metaheuristic based on changing the neighbourhood in a local search pro-

cedure. It was developed by Mladenovic and Hansen (1997), and, as opposed to other

heuristics based on local search methods, VNS does not follow a trajectory, but explores

increasingly distant neighbourhoods of the current solution, changing to a new one when

no further improvements are found (Hansen and Mladenovic, 2001). Some authors have

used this metaheuristic in flowshop scheduling problems, being all references very recent

(see e.g. Framinan and Leisten, 2007; Pan et al., 2008 and Blazewicz et al., 2008). In most

references, a hybrid version is developed in which VNS is combined with another heuristic

such as IG, SA or TS, among others.

In our case, we present a variant called Refreshing VNS, RVNS, with some novel

features. In principle, VNS only considers feasible solutions, but our approach is aimed

to problems in which there may be unfeasible solutions in the neighbourhoods. Most

procedures dealing with problems with unfeasible solutions introduce a penalisation in the

objective function. Therefore, the objective function must change depending on whether

the solution is feasible, or not. In some preliminary versions of the heuristic, we penalise
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the objective function in the case of unfeasible sequences by adding the maximum tardiness

of JO to the makespan value of JN . However, this approach did not provide good results,

so we decide to define two sets of sequences:

• Strict sequences. The feasibility of this kind of solution is guaranteed and can be a

solution for the constrained problem.

• Relaxed sequences, which can be either feasible or unfeasible. These sequences are

considered for the construction of neighbourhood structures. In general, they are not

solutions for the constrained problem. Only some relaxed sequences are selected in

the heuristic to check their feasibility. In this case, if a relaxed sequence is feasible,

it is considered as strict one.

By using this approach, we can use the same objective function both for strict and

relaxed sequences, i.e., the makespan of jobs belonging to JN , Cmax(JN), avoiding the

distortion of the objective function. This also allows finding good solutions on the neigh-

bourhoods of the relaxed sequences in a faster manner. Note that only strict sequences

can be final solutions of our problem, since only for this kind of sequences is guaranteed

the feasibility.

As we consider relaxed sequences, which can be either feasible or unfeasible, our vari-

ant of VNS tries to repair good unfeasible solutions (similarly to the idea proposed by

Allahverdi, 2004), i.e., those relaxed solutions with a good makespan value but proved as

unfeasible, in order to find feasible solutions in the neighbourhood of those good solutions.

Moreover, we include an escape method, so RVNS becomes a multi-start method (Lee,

1991), as it restarts the first step from a random solution when the algorithm is trapped

in a local minimum. Figure 1 shows the pseudo-code of the Refreshing VNS.

In our method, three major steps are identified: i.e.: Initialisation, Shaking and Change

or not, and Local Search/Escape. This is the general structure of a Basic VNS (see e.g.,

Hansen and Mladenovic (2001)), but we add the Escape method. These are discussed in

detail in the next subsections:
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procedure Refreshing VNS

% STEP 1: Initial Solution

Sbest := Initial Feasible Solution;

S := NEHT(J);

if S is feasible & C
JN
max(S) < C

JN
max(S

best) then

Sbest := S;

end if

while (stop criterion is not verified) do

% STEP 2: Shaking and Change or not

for k = 1 to kmax do

Shaking(k, S, Sbest, change)

if change = true then

break;

end if

end for

% STEP 3: Local Search / Escape

if change = true then

General LS(S, Sbest);

if S is feasible then

Intensify(S, Sbest);

else

Repair(S, Sbest);

end if

else

if S is feasible then

Escape(S, feasible, Sbest);

else

Escape(S, unfeasible, Sbest);

end if

end if

end while

return Sbest;

end

Figure 1: Pseudo-code of Refreshing VNS.

12



3.1 Initialisation

Our method starts with two sequences. The first is the best sequence, denoted as Sbest.

This sequence must be strict, so it is generated by the Initial Feasible Solution procedure

explained previously, guaranteeing its feasibility. In order to diversify the search method,

we generate a relaxed solution S, obtained by the NEHT applied to all jobs in J . If S is

feasible and better than Sbest, then Sbest := S.

3.2 Shaking and Change or not

A Shaking method generates a random solution of the k−th neighbourhood of the current

solution. Unlike the exploration of the neighbourhood, which finds the best solution of

the k − th neighbourhood, implemented in preliminary versions of the heuristic, Shaking

provides better and faster results. Our Shaking method is applied for each neighbourhood

structure with size k, with 1 ≤ k ≤ kmax ≤ n, being n the jobs in the system. Shaking

considers k neighbours of S, and for each k, k jobs are selected at random, removed and

inserted on a new random position of S one by one. For each neighbour S ′, if it is feasible

and better than Sbest, then the latter is updated.

Change or not allows to apply or not a local search in the case that an improvement

is achieved. This method sets the boolean flag change as true when S ′ is better than S.

In this case the Local Search is applied. Otherwise, an Escape procedure is carried out.

Both Local Search and Escape procedures are detailed in the next subsection.

3.3 Local Search/Escape

Several local search procedures may be applied to the relaxed sequence after the Shaking

in the case that change equals true. We have applied more than one type of local search

because of the nature of the solutions. As we work with relaxed sequences, the idea is

to search exhaustively in their neighbourhoods regardless their feasibility, in order to find

better relaxed solutions. This local search is named General Local Search. Once it is

applied, we check the feasibility of the current solution. If it is feasible, then the Intensify

method is applied, trying to find better feasible sequences in the neighbourhood of the
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current solution. Else, the Repair method tries to modify the current unfeasible solution

in order to make it feasible. These methods are detailed below:

• The General Local Search is an iterative improvement method, where each job of the

given sequence S is selected at random and inserted by using Taillard’s improvement

method in all possible positions of S if it belongs to JN , or in all feasible positions of

S if it belongs to JO. S
best is updated if the sequence obtained is feasible and better.

This procedure is repeated until no further improvement is found.

• If the relaxed solution obtained by the General Local Search is feasible, then the

Intensify method tries to improve it. First, when the makespan of the jobs in JN

for the given sequence S is lower than the common due date of JO, i.e., all jobs are

sequenced before the due date, the Special Case method is applied. This method

is another iterative improvement method similar to the General Local Search. In

this case, if the job randomly selected from S belongs to JN , then it is reinserted in

the position before the last job belonging to JN which provides the best sequence

S ′. If the job randomly selected from S belongs to JO, then it is reinserted in the

position after the last job belonging to JN which provides the best sequence S ′. If

the makespan of the jobs in JN is lower than d for the new sequence S ′, the method

updates Sbest if S ′ is feasible and better than Sbest. Moreover, if the makespan of the

jobs in JN for S ′ is lower than the makespan of the jobs in JN for the given sequence

S, then S := S ′ and another iteration is done. Regardless the Special Case is applied

or not, the Intensify method selects randomly each job from the given sequence S

belonging to JN and reinserts it in the position before the last job belonging to JN

which provides the best permutation S ′. If the makespan of the jobs in JN for S ′ is

lower than the makespan of the jobs in JN for the given sequence S, then S = S ′,

and Sbest is updated if S is feasible and better.

• If the solution obtained by the General Local Search is unfeasible, then the objective

is to repair it. This is done by removing the tardy jobs and inserting them in new

positions chosen at random. If the new sequence is feasible and better than Sbest,

then it is adopted as the best solution.
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If there is no improvement after Shaking, the local search methods cannot be applied

because the heuristic is trapped a local minimum. Instead, an Escape procedure allows

escaping from this local optima.

Depending on the feasibility of the current solution, a high number of jobs belonging

to the corresponding sets JO or JN are removed and inserted in new positions. The

percentage of jobs to be removed, q, is randomly generated in a given interval of nO or

nN , depending on the feasibility of the sequence. If it is feasible, then ⌈q·nN⌉ jobs in JN

are removed and inserted according to the following rule: the first job selected at random

is scheduled in the first position, the second in the second position, and so on. If the

sequence is unfeasible, then ⌈q·nO⌉ jobs of JO are removed and inserted by using the same

procedure. For both cases, if the sequence S obtained is feasible and better than Sbest,

then Sbest is updated with S.

4 Experimental calibration of the algorithms

Since some of the algorithms to be tested for our problem are adaptations of existing

algorithms for similar problems, it may be that a different combination of the parameters

provides better results for CRP than the original values given by the authors for the

similar problems (CP and GCSP ). For this reason, in this section we study the behavior

of the different parameters of the proposed heuristics, in order to select the best option

for our problem.

4.1 Design of experiments

In order to calibrate the algorithms, we apply a design of experiments (Montgomery, 2005).

We have chosen a full factorial design in which all possible combinations of the following

factors are tested for each method:

• IG has two parameters: δ and T . We test the same range of values as in Ruiz and

Stützle (2007), i.e.:

– T ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
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– δ ∈ {2, 3, 4, 5, 6, 7, 8}

Both δ and T were already calibrated by Ruiz and Stützle (2007) for CP obtaining

the best results for δ = 4 and T = 0.4. Nevertheless, their design of experiments

show that both parameters are very robust, that means, that in the statistical anal-

ysis developed by the authors, the different levels of both parameters do not yield

significative differences, suggesting that the heuristic is rather robust with respect

to them.

• SGAT has five parameters: sizepopulation, pressure, pC , pM and pLS. We test the

same range of values as in Ruiz and Allahverdi (2009), i.e.:

– sizepopulation ∈ {30, 50, 70}

– pressure ∈ {10, 30, 50}

– pC ∈ {0.3, 0.5, 0.7}

– pM ∈ {0.01, 0.02, 0.03}

– pLS ∈ {0.1, 0.15, 0.2}

In Ruiz and Allahverdi (2009) the best values for the GCSP were found by setting

the population size to 50 individuals, the pressure parameter to 30%, pC = 0.3,

pM = 0.02, and pLS = 0.15.

• Finally, RVNS has two parameters: kmax and q. q is randomly generated in a given

interval of nO or nN , so the levels for this parameter are intervals. We test the

following values:

– kmax ∈ {10, 20, 30, 40, 50, 60}

– q ∈ {[25, 50], [50, 75], [75, 95]}

All the cited factors result in a total of 6 × 8 = 48 different combinations and conse-

quently 48 different IG algorithms, 35 = 243 SGATs and 6× 3 = 18 RVNSs. We refer to

each of these algorithms as versions.
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4.2 Test-bed design

Each version identified in the previous subsection is tested using the test-bed by Taillard

(1993). This test-bed is well-known for serving as benchmark for scheduling problems,

and consists of 120 instances of various sizes n × m, with 10 instances for each size and

n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}.

For our problem, we need two set of jobs, JO and JN . For this reason we use the

processing times available for each instance as the processing times for both sets, being

nO = n/2 and nN = n/2. We have selected the same size for both sets based on a prelim-

inary study carried out to analyse the structure of optimal solutions for small instances,

which is not presented in this work due to space limitations. For further details, we refer

to the reader to Perez-Gonzalez (2009). So the data nO, nN (since n = nO + nN), m and

the processing times are provided by the test-bed.

In addition, a common due date for jobs in JO must be generated for each instance.

Although there are several methods to generate common due dates in the literature, we

need a suitable method for which rescheduling makes sense. On one hand, a tight common

due date with respect to the makespan of JO will not allow rescheduling them together

with JN , since changing the schedule of jobs in JO would most likely lead to unfeasible

schedules. Instead the schedule of jobs in JO will remain fixed, and the problem will turn

into a machine availability problem. On the other hand, a loose common due date for

JO would not be realistic, and the due date will be verified for any schedule regarding

the sequence of jobs in JO, so the problem will turn into a classical permutation flowshop

problem. In Perez-Gonzalez (2009), existing methods in the literature for generating

due dates, including the ones by Sarper (1995); Sakuraba et al. (2009); Armentano and

Ronconi (1999); Gelders and Sambandam (1978); Hasija and Rajendran (2004), and a

method adapted from Unal et al. (1997) for a rescheduling problem are analysed. From

this analysis, it turns out that the latter method serves to provide the most realistic due

dates as compared to the other methods. This method consists of generating d according

to the distribution d ∼ U [CJO
max, C

JO
max(1 + R)] with R a slack factor greater than zero,

similar to the idea suggested by Unal et al. (1997). More specifically, the best results are

obtained for R = 0.4 and CJO
max as the makespan provided by the NEHT applied to JO.
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Therefore, these values are employed in the subsequent computational experience.

4.3 Results

In order to allow for a fair comparison, all heuristics have the computation time as stop-

ping criterion. The maximum CPU time allowed is given by the expression n· (m/2)· t

milliseconds, which is used by Ruiz and Stützle (2007) and Ruiz and Allahverdi (2009) for

IG and SGAT, respectively. Ruiz and Allahverdi (2009) test some values of t for SGAT,

obtaining the best results for t = 60. This is also the value used by Ruiz and Stützle (2007)

for the IG. Therefore, we will compare IG and SGAT in their best scenario regarding the

CPU times.

Each problem instance in the Taillard’s testbed has been solved by the adaptation of

SGAT and IG, and by RVNS. To compare them, the corresponding Relative Percentage

Deviation (RPD) is computed as follows:

RPD =
CJN

max(HEUR)− CJN
max(BEST )

CJN
max(BEST )

· 100

where CJN
max(HEUR) is the makespan obtained by heuristicHEUR and the best known

makespan for each instance is CJN
max(BEST ). Since there is no benchmark for our instances,

this CJN
max(BEST ) value is the best among all heuristics tested.

A full factorial experiment is carried out for each heuristic, in total three experiments,

with the response variable the RPD, and the parameters of each heuristic as factors, by

means of a multi-factor Analysis of Variance (ANOVA) (Montgomery, 2005). Due to space

limitations, we do not detail the statistical analysis process and we only summarise the

results. The detailed analysis is available from the authors upon request.

From the analysis of our adaptation of the algorithm IG, we conclude that both factors,

T and δ have influence on the response variable. For T , there are not statistical differences

among the all levels, except T = 0.0 which provides the worst value of the average relative

percentage deviation (Average RPD, ARPD). For this reason, we select T = 0.4, the

same value that in Ruiz and Stützle (2007) in their original paper. For δ, there are not

differences among δ = 2, 3, 4 and 5, being this set different from δ = 6, 7 and 8. The best
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values for ARPD are provided by the levels of the first set (2, 3, 4 and 5). Accordingly,

we select δ = 4, the same value that in Ruiz and Stützle (2007) in the original paper.

Results for SGAT reveal that our adaptation of the heuristic is robust for sizepopulation,

pC y pLS. There are not statistically significative differences among the levels of these

parameters, so we select for our adaptation the same values that in Ruiz and Allahverdi

(2009) in their original paper. The pressure factor has influence on the RPD, providing

the best value for pressure = 30. In the case of pM there are not statistically significative

differences between pM = 0.03 and 0.02, selecting the same value that Ruiz and Allahverdi

(2009), i.e. pM = 0.02.

Finally, the analysis shows that RVNS is robust for both parameters, kmax and q,

providing the best results for kmax = 40 and q randomly generated between 75% and 95%

of nO or nN .

As a summary, the levels for each factor are shown in Table 3, where the bold fig-

ures indicate those finally selected. Once the three algorithms have been calibrated, the

comparison among them is described in the next section.

Heuristic Factors Levels

IG T 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

δ 2, 3, 4, 5, 6, 7, 8

SGAT sizepopulation 30, 50, 70

pressure 10, 20, 30

pC 0.3, 0.5, 0.7

pM 0.01, 0.02, 0.03

pLS 0.1, 0.15, 0.2

RVNS kmax 10, 20, 30, 40, 50, 60

q [25,50], [50,75], [75,95]

Table 3: Parameter values used for calibration of the heuristics (selected values are in bold).

5 Computational experience

In order to evaluate the effectiveness of the RVNS and the two heuristics adapted from

the literature, we carry out an extensive computational analysis. We employ the test-bed
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by Taillard (1993). Note that the aim of the calibration was not to check the efficiency

of IG and SGAT for all instances, but to compare them to RVNS in the most favourable

conditions. Therefore, both calibration and the experimental test-bed are the same. The

parameters used for the three algorithms are those selected in the previous section. The

computation time is also employed as stopping criterion, and the corresponding relative

percentage deviation (RPD) is computed.

30 independent trials have been run for each instance, and for each algorithm, we tried

to perform an analysis of variance to validate the statistical significance of the observed

differences in the quality of the solutions. The type of heuristic is considered as factor with

three levels (SGAT, IG and RVNS). The dependent variable is the RPD obtained for each

instance. Thus, we have 30 · 120 observations for each heuristic, 10,800 observations in

total. The convention in most research is to use a significance level of 0.05, so we employ it

for all statistical tests developed. The Levene test is applied to check the homocedasticity

condition. The p-values obtained for all statistics of central tendency are lower than

0.05, so we reject the null hypotheses about homogeneity of variance. Therefore, applying

analysis of variance is not suitable in this case, so we apply non-parametric tests. The

p-values obtained by the non-parametric tests (Kruskal-Wallis and Mann-Whitney) are

lower than 0.05 indicating that all the pairwise differences are statistically different in

mean. Therefore, we can state that the three heuristics are different regarding the RPD.

The Average of RPD (ARPD) over all trials for a problem size is computed. The results

for the three heuristics are given in Table 4, and show that IG provides the highest values

of ARPD for all instance sizes. This bad result can be explained because IG spends a long

time in checking the feasibility of all solutions involved in the process. SGAT and RVNS

provide better results, being RVNS the best for all 120 instances. The most remarkable

differences are obtained for the smallest problems, i.e. nO ×nN = 10× 10 with an average

of 2.1873 for SGAT and 0.6845 for RVNS.

Figure 2 shows the means and confidence intervals (at 95% confidence) for the RPD

of the three heuristics. As it can be seen, the differences between SGAT and RVNS are

statistically significant.

Moreover, in order to test the robustness of RVNS for different CPU times, the be-
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nO nN M IG SGAT RVNS

10 10 5 3.0412 0.2445 0.1632

10 8.6571 2.9801 1.7056

20 12.0777 3.3373 0.1845

Subtotal 7.9253 2.1873 0.6845

25 25 5 2.6794 0.1137 0.0643

10 7.8231 0.9070 0.6162

20 9.5048 1.2102 0.8183

Subtotal 6.6691 0.7436 0.4996

50 50 5 2.0026 0.0707 0.0600

10 6.9777 0.4231 0.3817

20 9.3208 0.9473 0.3740

Subtotal 6.1004 0.4804 0.2719

100 100 10 4.8322 0.1415 0.1932

20 7.9620 0.8429 0.4104

Subtotal 6.3971 0.4922 0.3018

250 250 20 4.9103 0.3900 0.2796

Average 6.6491 0.9674 0.4376

Table 4: ARPD for IG, SGAT and RVNS.

haviour of the heuristics is checked for t = 30 and t = 120. Table 5 shows the ARPD

values obtained for all heuristics for each case. As it can be seen, RVNS is the best for all

tested CPU times, maintaining similar differences with SGAT for all cases.
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Figure 2: Means and 95% LSD intervals for IG, SGAT and RVNS.

t IG SGAT RVNS

30 7.2952 1.0603 0.6943

60 6.6249 0.9448 0.4986

120 6.3124 0.7218 0.4351

Table 5: ARPD for different values of t.
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6 Conclusions

This paper aims at a special case of a rescheduling problem, which is motivated by the

need of setting a common due date for a set of jobs while there is another set of jobs in

the system that have been previously scheduled. The problem is denoted as CRP , and it

is NP-hard in the strong sense for more than two machines.

To solve it, we have developed a new heuristic for the problem based on VNS, called

Refreshing Variable Neighbourhood Search (RVNS). This heuristic is capable to handle

both feasible and unfeasible solutions. We avoid penalising the objective function by

introducing the concept of strict and relaxed solutions, simplifying the original objective

function to CJN
max which makes easier to compare the solutions, and to check the feasibility

only for those sequences identified as good ones by the heuristic.

To the best of our knowledge, CRP is a new problem and it is not possible to compare

the RVNS proposed with existing algorithms. To show the efficiency of our proposal we

are constrained to searching for similar problems, analysing the best existing heuristics for

these problems, adapting them to our problem (and at the same time maintaining most of

the original nature of these heuristics). Then, two heuristics have been adapted: the IG

algorithm by Ruiz and Stützle (2007) to solve the classical permutation flowshop problem

(CP ), and the SGAT by Ruiz and Allahverdi (2009) for the general constrained schedul-

ing problem (GCSP ), and consequently for the constrained scheduling problem (CSP ).

Trying to conduct the fairest possible computational experience, we have carried out a

calibration of the parameters of SGAT and IG in order to be sure that these algorithms

are tested under their most favourable conditions. After this calibration, we determine

the best combination of parameters for the three algorithms, which for IG and SGAT are

the same as in the original problems.

The computational experience carried out shows that RVNS is statistically different and

better than SGAT, and that the IG algorithm, which is very efficient for the unconstrained

problem, exhibits a poor performance for our problem. The effectiveness of RVNS is also

tested for different CPU times. As the differences between SGAT and our proposal are

not that pronounced as with IG, and since CSP can be seen as a sort of generalisation of
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our problem, we can conclude that both problems are similar not only from a theoretical

point of view, but also from a practical viewpoint.

To the best of our knowledge, this is the first time that VNS is applied to constrained

flowshop problems. Since the heuristic makes use of specific knowledge about constrained

problems, it is possible to extend it to other problems of this nature, considering the wide

literature about constrained problems in scheduling, for example in permutation flowshop

problems (see e.g., Minella et al., 2008).

As a future research line, several related rescheduling problems can be identified: for

example, allowing the completion of the jobs in JO in an interval ϵ, i.e., considering the

objective CJN
max/T

JO
max ≤ ϵ; or penalising the tardiness by a linear function of CJN

max and

T JO
max. Moreover, the case with different due dates for the jobs in JO and JN implies dif-

ferent constraints and objectives. Tight due dates for jobs in JN would be guaranteed by

the minimisation of the flowtime, and the fulfilment for the due dates of JO by the con-

straint on the total tardiness. These problems may be compared to the problems studied

here, applying the heuristics presented in this paper to solve them, or even developing

more sophisticated methods based on these heuristics. Finally, the addressed scheduling

problem may be applied to other scheduling environments such as single or parallel ma-

chine environments, e.g., Damodaran et al. (2009), Chen et al. (2009). Also, in order to

minimize the total cost of inventory (e.g., see Singh and Chand, 2009, Warburton, 2009,

Sharma, 2009) other objective functions that take into account factors to minimize the

cost of inventory may be investigated.
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