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MINIMAL LINEAR REPRESENTATIONS OF
THE LOW-DIMENSIONAL NILPOTENT

LIE ALGEBRAS

J. C. BENJUMEA, J. NÚÑEZ and A. F. TENORIO

Abstract

The main goal of this paper is to compute a minimal matrix representation for each non-isomorphic
nilpotent Lie algebra of dimension less than 6. Indeed, for each of these algebras, we search the
natural number n ∈ N \ {1} such that the linear algebra �n, formed by all the n × n complex
strictly upper-triangular matrices, contains a representation of this algebra. Besides, we show an
algorithmic procedure which computes such a minimal representation by using the Lie algebras
�n. In this way, a classification of such algebras according to the dimension of their minimal
matrix representations is obtained. In this way, we improve some results by Burde related to the
value of the minimal dimension of the matrix representations for nilpotent Lie algebras.

1. Introduction

Given a nilpotent Lie algebra, it is well-known that there exists n ∈ N \ {1}
such that this algebra is isomorphic to a subalgebra of the nilpotent Lie algebra
�n formed by n × n complex upper-triangular matrices with zeros in the main
diagonal (see [8, Theorem 3.6.6]). So, it is interesting to know what is the
minimal n ∈ N \ {1} such that a given nilpotent complex Lie algebra can be
contained as a subalgebra in �n but not in �n−1.

In this way, the main aim of this paper is not only to get a representation
of each low dimensional nilpotent Lie algebra by using Lie algebras �n, but
to compute a representation of these algebras being minimal in the following
sense: the given nilpotent Lie algebra is represented by a subalgebra of �n but
not by a subalgebra of �n−1.

At this respect, Burde [3] studied the minimal dimension μ(�) for the rep-
resentations of a given Lie algebra �, although he made it by considering any
faithful �-module and not only the Lie algebras �n. Consequently, μ(�) is less
than or equal to the dimension which we are trying to look for.

In other recent papers (for instance, Ghanam et al. [5]), matrix represent-
ations were computed for low dimensional nilpotent Lie algebras. However,
the representations given in such papers are not usually minimal; indeed, the
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minimality of such representations is not studied often. Moreover, although
minimal representations have been also previously studied in the literature,
we are constraining this study to representations by means of Lie algebras �n.
This approach could be a very natural and novel topic, which runs besides in
the opposite direction to the literature in this area.

Benjumea [1] already obtained implicitly representations of the filiform
Lie algebras (a subset of nilpotent Lie algebras) of dimension less than six,
although the minimality of these representations was not studied. Now, we
prove that these representations are minimal and, then, we compare our results
with Burde’s ones. Besides, the minimal dimension of the representations by
using Lie algebras �n is obtained for each nilpotent Lie algebras of dimension
less than six. Note that the bounds given by Burde [3] do not sometimes
supply sufficient information and then we need to prove directly the minimal
dimension of the representation.

Another question is to know what Lie algebras have an n-dimensional rep-
resentation. At present, it is unsolved, although Burde obtained some families
of Lie algebras satisfying such a property. In this paper we answer this question
for low-dimensional nilpotent Lie algebras.

2. Preliminaries

In this paper several different types of Lie algebras are dealt: nilpotent, filiform
and abelian. Their definitions and main properties can be checked in [6], [8],
for instance. We only recall here the following definition: The lower central
series (L.C.S.) of a given Lie algebra � is the sequence:

C 1(�) = �, C 2(�) = [�, �], C 3(�) = [C 2(�), �],

. . . , C k(�) = [C k−1(�), �], . . .

A type of nilpotent Lie algebras is constituted by the k-step nilpotent ones,
with k ∈ N. A nilpotent Lie algebra is said k-step when C k+1 ≡ {0}.

Proposition 2.1. Let � be a Lie algebra and let �′ be a Lie subalgebra of
�. Then, C k(�′) ⊆ C k(�), for all k ∈ N.

Throughout the paper, we use the following classification of nilpotent Lie
algebras of dimension less than 6, which is shown in [6], although the decom-
posable nilpotent Lie algebras were not included in it:
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Dim. Lie algebra Law of the algebra L.C.S.

1 �1
1 abelian (0)

2 �1
2 abelian (0)

3 �1
3 [e1, e3] = e2 (1,0)

�2
3 abelian (0)

4 �1
4 [e1, e4] = e3, [e1, e3] = e2 (2,1,0)

�2
4 abelian (0)

�3
4 = �1

3 ⊕ �1
1 [e1, e3] = e2 (1,0)

5 �1
5 [e1, e5] = e4, [e1, e4] = e3, [e1, e3] = e2 (3,2,1,0)

�2
5 [e1, e5] = e4, [e1, e4] = e3, [e1, e3] = [e4, e5] = e2 (3,2,1,0)

�3
5 [e1, e5] = e4, [e1, e4] = e3, [e4, e5] = e2 (3,2,0)

�4
5 [e1, e5] = e4, [e1, e3] = e2, [e2, e3] = e4 (2,1,0)

�5
5 [e1, e5] = e4, [e1, e3] = e2 (2,0)

�6
5 [e1, e5] = e4, [e2, e3] = e4 (1,0)

�7
5 abelian (0)

�8
5 = �1

4 ⊕ �1
1 [e1, e4] = e3, [e1, e3] = e2 (2,1,0)

�9
5 = �1

3 ⊕ �1
2 [e1, e3] = e2 (1,0)

A linear or matrix algebra is that whose vectors are matrices and the Lie bracket
is defined by the commutator [a, b] = a · b − b · a. So, they are subalgebras
of some general linear algebra ��(C, n), formed by n × n complex regular
matrices. When dealing with Lie algebras, linear algebras are used since they
are the simplest and that every Lie algebra is isomorphic to some linear algebra
according to Ado’s Theorem.

Given a Lie algebra �, a representation of � in Cn is a Lie algebra homo-
morphism φ : � → ��(Cn) = ��(C, n). The natural integer n is called the
dimension of this representation.

Representations can be also defined by using arbitrary n-dimensional vector
spaces V (see [4], [6]). In such a case, a representation would be a Lie alge-
bra homomorphism from � to the Lie algebra ��(V ) of endomorphisms of
the vector space V , which is called �-module. Obviously, there exists a unique
n ∈ N such that V is isomorphic to Cn and, hence, such that ��(V ) is isomorphic
to ��(C, n). So, it is sufficient to consider representations in Cn. Besides, we
only use faithful representations, due that they allow us to consider the studied
Lie algebra as a Lie subalgebra of ��(C, n). In this sense, every Lie algebra
can be represented in some Lie algebra ��(C, n).
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For nilpotent Lie algebras, their representations can be obtained by using the
Lie algebras �� (see [8]). For n ∈ N \ {1}, the Lie algebra �n is the subalgebra
of ��(C, n) formed by the following n × n upper-triangular matrices:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 x1,2 x1,3 · · · x1,n−1 x1,n

0 0 x2,3 · · · x2,n−1 x2,n

0 0 0 · · · x3,n−1 x3,n

...
...

...
. . .

...
...

0 0 0 · · · 0 xn−1,n

0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A basis {ei,j | 1 ≤ i ≤ n − 1 ∧ i + 1 ≤ j ≤ n} of �n can be computed in such
a way that its nonzero brackets are (see [7]):

[ei,h, eh,k] = ei,k, h = 1, . . . , k − 1; i = 1, . . . , h − 1,

and, hence, the lower central series of �n is:

(dim(�n−1), dim(�n−2), . . . , dim(�2), 0) .

Given a nilpotent Lie algebra �, we are interested in computing the minimal
value n (which will be denoted by μ̂(�)) such that �n contains �. It is easy to
prove that this value is an invariant of � whose expression is:

μ̂(�) = min{n ∈ N | ∃ subalgebra of �n isomorphic to �}.
Observe that this concept is related with another introduced by Burde [3]

for an arbitrary Lie algebra �, not necessarily nilpotent. We are referring to the
invariant μ(�), defined as:

μ(�) = min{dim(M) | M is a faithful �-module}.
This value is also equal to the minimal value n such that ��(Cn) contains a
subalgebra isomorphic to �.

Obviously, the inequality μ(�) ≤ μ̂(�) is satisfied. So, an upper bound for
μ̂(�) is also one for μ(�). Analogously, if a lower bound is got for μ(�), the
same value is a lower bound for μ̂(�).

There exist several well-known results about the invariant μ(�). Some of
them supply the exact value of μ(�) and, therefore, imply a lower bound for
μ̂(�). The exact value of μ(�) is already computed for abelian algebras and
filiform Lie algebras (under certain conditions). These computations of μ(�)

were obtained in [3] and we reproduce some of them:
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Proposition 2.2. Let � be a Lie algebra of dimension n.

(1) If � is abelian, then μ(�) = ⌈
2
√

n − 1
⌉

.

(2) If � is 2-step nilpotent with 1-dimensional center, then μ(�) = n+3
2 .

(3) If � is complex filiform such that n < 10, then μ(�) = n.

(4) If � = �k (Heisenberg algebra of dimension 2k+1), then μ(�) = k+2.

Trivially, the values of μ(�) given in Proposition 2.2 are lower bounds
for μ̂(�) in their respective cases. However, fixed an arbitrary nilpotent Lie
algebra �, upper bounds of μ(�) have been only obtained, although these are
not necessarily upper bounds of μ̂(�). Next, we indicate one of these bounds
(see [2]) corresponding to the nilpotent Lie algebras considered in this paper.

Proposition 2.3. Let � be a nilpotent Lie algebra of dimension n less
than 8. Then μ(�) ≤ n + 1.

3. Computing Minimal Matrix Representations of Nilpotent
Lie Algebras

In this section we show how to obtain minimal matrix representations of nil-
potent Lie algebras by using the Lie algebras �n. These representations will
be obtained for each nilpotent Lie algebra of dimension less than 6 in Cn. As
we have already mentioned, these representations are interesting because they
are minimal in the following sense: finding a matrix representation of a Lie
algebra � in �n means that it will not be possible to find another representation
of � in �n−1. So, we will say that n will be the minimal dimension for the
matrix representations of �.

Proposition 2.2 gives the exact value of the minimal dimension for rep-
resentations of some types of Lie algebras. However, such a minimal rep-
resentation does not have to be obtained by matrices in �n. In consequence,
Proposition 2.2 only gives a lower bound of the minimal dimension for repres-
entations of a nilpotent Lie algebra by using matrix algebras �n. In this way,
we have to determine if the lower bound given in such a proposition is reached
or if the minimal dimension is greater than the lower bound.

To do it, we are going to give a step by step explanation of the method used
to determine a minimal representation (by using matrix algebras �n) of a given
nilpotent Lie algebra � of dimension r:

(1) Firstly, we use the lower bound obtained starting from Proposition 2.2
and we rule out the Lie algebras �k such that k is less than such a lower bound.
Analogously, we also rule out those Lie algebras �k whose lower central series
is not compatible with the corresponding one of �, in virtue of Proposition 2.1.
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(2) Once we have ruled out the Lie algebras �n indicated in the previous
step, we compute the first Lie algebra �n containing a subalgebra isomorphic
to the nilpotent Lie algebra considered. So, let us suppose that the Lie algebras
�k , for k = 2, . . . , n, are not suitable to represent �. Then, we study if the Lie
algebra �n+1 is. To do it, we consider an arbitrary basis of a r-dimensional Lie
subalgebra in �n+1 and we impose the law of � in that subalgebra. By equalling
component by component in the obtained conditions, an equation system is
got. Every solution of this system can be interpreted as the coefficients of an
r-dimensional Lie subalgebra of �n+1 isomorphic to �.

If such a system is not compatible, we can assert that it is not possible to find
in �n+1 a Lie subalgebra isomorphic to �. Therefore, � cannot be represented
in �n+1 and we would repeat the described procedure with the Lie algebra
�n+2. When we obtain a compatible equation system, we obtain a minimal
representation of �.

The number of solutions in the system depends on the particular Lie al-
gebra studied in each case. This is because such solutions have to verify other
additional restrictions to the ones given by the system, namely, the vectors
obtained with the solution have to form a basis of the subalgebra. In any case,
the solutions of the system can be categorized into a finite number of cases
(each of them with a infinite number of solutions). Some of these cases do not
lead to a basis of a subalgebra in the studied Lie algebra.

In order to choose a particular solution of the previous system, we search
one whose number of unknowns equal to zero is the greatest. Besides, we also
try to give a representative of each maximal abelian subalgebra having the
minimal number of summand in the basic vectors. Such a representative is, in
our opinion, the natural choice to represent the abelian subalgebra.

In this way, we will be able to find minimal representations of all the nil-
potent Lie algebras of a fixed dimension provided a classification of these
algebras is available, although such classifications are not known in the case
of dimensions greater than seven. So, this method can be reasonably applied to
get results for any higher dimensional nilpotent Lie algebra because new com-
putational problems would not appear, except those related to the increasing
of the number of unknowns and equations. In fact, let us note that the degree
of polynomials involved is the same for all cases.

Next, as an example, we apply the method to a particular nilpotent Lie
algebra, namely, the Lie algebra �4

5 and, in the following two subsections,
we show the results obtained by the application of this method to nilpotent
Lie algebras of dimension less than 5 and equal to 5, respectively, whose
classifications are indeed known.
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Example 3.1. In this example, we compute the minimal representation of
the Lie algebra �4

5 by applying the method explained before. We have chosen
this algebra because the representation of it given in [5] was not minimal.
Indeed, the dimension of its matrix representation is reduced one unit, since
our representation has dimension 4 and the given in [5] has dimension 5.

(1) Inclusions in lower central series according to Proposition 2.1:

〈e2, e4〉 = C 2(�4
5) ⊆ C 2(�4) = 〈e1,3, e1,4, e2,4〉;

〈e4〉 = C 3(�4
5) ⊆ C 3(�4) = 〈e1,4〉.

(2) We consider an arbitrary basis {ei}5
i=1 of a 5-dimensional Lie subalgebra

of �4. The expression of these basis vectors is:

ei = λi
1,2e1,2+λi

1,3e1,3+λi
1,4e1,4+λi

2,3e2,3+λi
2,4e2,4+λi

3,4e3,4, ∀i = 1, . . . , 5.

According to the lower central series of �4
5, we can simplify the expressions

of e2 and e4:

e2 = λ2
1,3e1,3 + λ2

1,4e1,4 + λ2
2,4e2,4; e4 = λ4

1,4e1,4.

(3) Now, all the brackets [ei, ej ] are computed:

[e1, e2] = (λ1
1,2λ

2
2,4 − λ1

3,4λ
2
1,3)e1,4;

[e1, e3] = (λ1
1,2λ

3
2,3 − λ1

2,3λ
3
1,2)e1,3 + (λ1

2,3λ
3
3,4 − λ1

3,4λ
3
2,3)e2,4

+ (λ1
1,2λ

3
2,4 + λ1

1,3λ
3
3,4 − λ1

2,4λ
3
1,2 − λ1

3,4λ
3
1,3)e1,4;

[e1, e4] = 0;
[e1, e5] = (λ1

1,2λ
5
2,3 − λ1

2,3λ
5
1,2)e1,3 + (λ1

2,3λ
5
3,4 − λ1

3,4λ
5
2,3)e2,4

+ (λ1
1,2λ

5
2,4 + λ1

1,3λ
5
3,4 − λ1

2,4λ
5
1,2 − λ1

3,4λ
5
1,3)e1,4;

[e2, e3] = (λ2
1,3λ

3
3,4 − λ2

2,4λ
3
1,2)e1,4;

[e2, e4] = 0;
[e2, e5] = (λ2

1,3λ
5
3,4 − λ2

2,4λ
5
1,2)e1,4;

[e3, e4] = 0;
[e3, e5] = (λ3

1,2λ
5
2,3 − λ3

2,3λ
5
1,2)e1,3 + (λ3

2,3λ
5
3,4 − λ3

3,4λ
5
2,3)e2,4

+ (λ3
1,2λ

5
2,4 + λ3

1,3λ
5
3,4 − λ3

2,4λ
5
1,2 − λ3

3,4λ
5
1,3)e1,4;

[e4, e5] = 0.
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(4) By imposing the law of �4
5 to these brackets, the following equation

system is got:

0 = λ1
1,2λ

2
2,4 − λ1

3,4λ
2
1,3;

λ2
1,4 = λ1

1,2λ
3
2,4 + λ1

1,3λ
3
3,4 − λ1

2,4λ
3
1,2 − λ1

3,4λ
3
1,3;

λ4
1,4 = λ1

1,2λ
5
2,4 + λ1

1,3λ
5
3,4 − λ1

2,4λ
5
1,2 − λ1

3,4λ
5
1,3;

0 = λ1
2,3λ

5
3,4 − λ1

3,4λ
5
2,3;

0 = λ2
1,3λ

5
3,4 − λ2

2,4λ
5
1,2;

0 = λ3
1,2λ

5
2,4 + λ3

1,3λ
5
3,4 − λ3

2,4λ
5
1,2 − λ3

3,4λ
5
1,3;

λ2
1,3 = λ1

1,2λ
3
2,3 − λ1

2,3λ
3
1,2;

λ2
2,4 = λ1

2,3λ
3
3,4 − λ1

3,4λ
3
2,3;

0 = λ1
1,2λ

5
2,3 − λ1

2,3λ
5
1,2;

λ4
1,4 = λ2

1,3λ
3
3,4 − λ2

2,4λ
3
1,2;

0 = λ3
1,2λ

5
2,3 − λ3

2,3λ
5
1,2;

0 = λ3
2,3λ

5
3,4 − λ3

3,4λ
5
2,3.

(5) We obtain the following subalgebra of �4 isomorphic to �4
5:

e1 = e3,4, e2 = e2,4, e3 = −(e2,3 + e1,2), e4 = e1,4, e5 = −e1,3.

Let us note that this representative of the abelian subalgebra has been chosen
in a natural way, because it has only one basic vector with more than one
summand.

3.1. Nilpotent Lie Algebras of Dimensions less than 5

By applying the method previously explained, the minimal dimension μ̂ is
obtained for each nilpotent Lie algebras of dimension less than 5. Besides, a
representation with this dimension is given for each of these algebras in the
following table which also shows the dimension μ (or an upper bound of it)
given by Burde [3]:

Nilpotent Dimension Dimension Minimal
Lie algebra μ μ̂ representation

�1
1 0 2 〈e1,2〉

�1
2 2 3 〈e1,2, e1,3〉

�1
3 3 3 〈e1,2, e1,3, e2,3〉

�2
3 3 4 〈e1,2, e1,3, e1,4〉

�1
4 4 4 〈e1,2, e1,3, e1,4, e2,3 + e3,4〉

�2
4 4 4 〈e1,3, e1,4, e2,3, e2,4〉

�3
4 ≤ 5 4 〈e1,2, e1,3, e1,4, e2,3〉

The representations given in [5] for the algebras of dimension 2 and 3 belong
to the type of those which we are studying. Besides, the dimension of these
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representations is equal to the minimal value obtained in this paper; however,
in the same paper, the minimality of the representations was not studied in
any sense. For dimension 4, except for the filiform Lie algebra �1

4, the repres-
entations given do not use the Lie algebras �n considered here. Besides, the
minimality of such representations are not studied again.

3.2. Nilpotent Lie Algebras of Dimension 5

We conclude this paper by summing up the results obtained by applying the
method previously explained to the 5-dimensional nilpotent Lie algebras. In
the following table, we show both values μ and μ̂ for all these Lie algebras.
Note that the upper bounds of μ given by Burde [3] have been improved for
most of these algebras:

Nilpotent Dim. Dim. Minimal
Lie algebra μ μ̂ representation

�1
5 5 5 〈e1,2, e1,3, e1,4, e1,5, e2,3 + e3,4 + e4,5〉

�2
5 5 5 〈e1,2 + e2,4 + e3,5, e1,3, e1,4, e1,5, e2,3 + e3,4 + e4,5〉

�3
5 ≤ 6 5 〈e1,2 − e3,5, e1,3 + e2,5, e1,4, e1,5, e2,3 + e3,4〉

�7
5 4 5 〈e1,3, e1,4, e1,5, e2,4, e2,5〉

�9
5 ≤ 6 5 〈e1,2, e1,3, e1,4, e1,5, e2,3〉

�4
5 ≤ 6 4 〈e1,2 + e2,3, e1,3, e1,4, e2,4, e3,4〉

�5
5 ≤ 6 4 〈e1,2, e1,3, e1,4, e2,3, e2,4〉

�6
5 4 4 〈e1,2, e1,3, e1,4, e2,4, e3,4〉

�8
5 ≤ 6 4 〈e1,2 + e3,4, e1,3, e1,4, e2,3, e2,4〉

With respect to the representations given in [5] for the 5-dimensional nilpotent
Lie algebras, we can affirm that the minimality of these representations was
not studied either, although most of these algebras are represented by the type
of matrices considered in this paper. Moreover, some of these representations
are not minimal. For example, a 5-dimensional representation is given for the
nilpotent Lie algebras �4

5 and �5
5 by considering a Lie subalgebra of �5 for each

algebra. However, the minimal dimension to represent these two algebras is 4
by using two Lie algebras of �4.
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