
During the last two decades, quinolones have become an
increasingly important and expanding family of antibacterial
agents.  The appearance in the market of new quinolones with
greatly enhanced effectiveness has led to a wider spectrum of
applications and better bioavailabilities to combat infections
caused by microorganisms resistant to other bacteria.1

The quinolones levofloxacin, garenoxacin and grepafloxacin
(Fig. 1) have activity against both Gram(+) and Gram(–)
bacteria (aerobic and anaerobic) through inhibition of the
bacterial enzyme (DNA gyrase) that maintains the super-twisted
helical structure of DNA.2 These quinolones are administered
to patients with urinary, respiratory or cutaneous infections in
500, 600 and 400 mg day–1 doses, respectively.

Due to the overlap of their absorption and emission spectra
and matrix effects found when working with biological samples
(emission or absorption of the matrix components, attenuation
of analyte signals, etc.), the determination of a mixture of these
(or other) quinolones, by means of spectrophotometric or
spectrofluorometric methods, traditionally requires a prior
separation stage.  This step is usually performed by HPLC
techniques.3,4 Nevertheless, the application of diverse
multivariate techniques can avoid these difficulties without the
need of a previous separation stage.

Partial least squares (PLS) regression can be used to quantify
mixtures of pharmaceuticals and excipients using absorption or
fluorescence emission spectra when linear responses are
expected.  This technique has been applied to the
multicomponent quantification of diverse pharmaceutical
mixtures,5–7 including fluoroquinolones.8,9 Partial least squares
is a factor analysis that constructs a model to specify the linear
relationship between dependent variables or responses (Yi) and a
set of predictor variables (Xi).  For many data-analysis
problems, an estimation of linear relationships between
variables is adequate to describe the observed data or to make
reasonable predictions for new observations.

Some authors have studied the spectrophotometric resolution
of mixtures of pharmaceuticals by means of neural networks
(NN).10–12 NN are very sophisticated modelling techniques that
simulate a biological nervous system and perform discriminant
models and regression.  They are especially useful when other
statistical techniques are not able to predict complicated
phenomena.13,14 In order to carry out regression studies,
different types of NN, such as multilayer perceptron (MLP),
radial basis functions network (RBFN) and generalized
regression neural networks (GRNN) can be applied.

Multilayer perceptrons are feedforward multilayer networks
consisting in neurones arranged in layers (an input layer,
various hidden layers and an output layer), being the
connections (weights) unidirectional from input to output.

337ANALYTICAL SCIENCES   MARCH 2007, VOL. 23

2007 © The Japan Society for Analytical Chemistry

Fluorometric Determination of Mixtures of Quinolones by Means
of Partial Least Squares and Neural Networks

J. M. JURADO† and J. A. OCAÑA

Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, 
c/Profesor García González no. 1, E-41012 Seville, Spain

Multivariate calibration methods (partial least squares calibration, back propagation multilayer perceptrons networks,
radial basis functions and generalized regression neural networks) were applied to the simultaneous fluorometric
quantification of levofloxacin, garenoxacin and grepafloxacin, without previous separation steps.  A data matrix was
obtained by registering the emission spectra of mixtures of the three quinolones in urine (with concentrations ranging
over 0.00 – 0.40 μg mL–1 for each quinolone) with a 283 nm excitation at pH 4.0.  The generalized regression neural
network model proved to be the most adequate model for simultaneous quantification of the three quinolones in urine
samples.

(Received July 25, 2006; Accepted October 16, 2006; Published March 10, 2007)

† To whom correspondence should be addressed.
E-mail: jmjurado@us.es Fig. 1 Structures of levofloxacin, garenoxacin and grepafloxacin.



Since NN learn from the data set, it is necessary to divide the
cases in different subsets, a training set that allows learning the
relationships between inputs and outputs and a test set that
shows the NN prediction ability.  When the networks learn not
only the gross structure of a data set, but also the fine one, it
leads to bad performance of the constructed model.  In order to
avoid these overfitting problems, a third subset of cases,
verification set, may be included.  MLP-NN are usually trained
by back-propagation (BP), minimizing the prediction error
made by the network.13,15

Radial basis function networks are three-layered networks
containing input, hidden and output layers.  The input layer
serves to introduce the values of the input variables.  Each node
in the hidden layer represents a radial function that models a
Gaussian response surface characterized by a central point (μ),
which reflects a natural clustering of the data, and a deviation
(σ) or smoothing factor.  The hidden layer is connected to the
output layer and the response of each output node is a linear
function of its inputs.16 RBFN training is performed by setting
the two mentioned parameters: μ and σ.

Lastly, generalized regression neural networks are a
generalization of probabilistic neural networks, but perform
regression rather than a classification task.  GRNN present a
four-layer architecture: input, output and 2 hidden layers.  The
first hidden layer (pattern layer) contains radial units copied
directly from the training data.  There is a node in the pattern
layer for each case of the training set.  Each neurone models a
Gaussian function centered at the training case, using kernel-
based approximation to form an estimate of the probability
density functions.  The second hidden layer (summation layer)
contains units that help to estimate the weighted average.17–20

The only control factor in GRNN is a smoothing factor (the
radial deviation of the Gaussian functions).  The appropriate
figure can be established experimentally as the number that
produces the lowest verification error.

The scope of this work is to study the efficiency of PLS, BP-
MLP, RBFN and GRNN to carry out multivariate calibrations
for quantifying mixtures of levofloxacin, garenoxacin and
grepafloxacin in urine without the need of a previous separation
step.  A comparison of these multivariate calibration models is
discussed.

Materials and Methods

Apparatus and software
Fluorescence spectra were registered on a Cary Eclipse

(Varian, Australia) luminescence spectrometer in a standard 10
mm pathlength quartz cell, thermostated at 25.0 ± 0.5˚C, with 5
nm bandwidths for emission and excitation monochromators.
The pH was measured on a Crison (Barcelona, Spain) micropH
2002 pH-meter.  Deionized water was obtained from a Milli-Q
system (Millipore, Bedford, MA).

Principal component analysis and partial least squares were
performed using the software package Statistica 6.0, and ANN
studies were carried out using Statistica Neural Network, both
purchased from Statsoft Inc. (Tulsa, USA).

Reagents and samples
Levofloxacin, garenoxacin and grepafloxacin were kindly

provided by Hoechst Marion Roussel (France), Bristol Myers
Squibb (USA) and GlaxoSmithKline (UK), respectively.
Standard solutions of each quinolone (100 μg ml–1) were
prepared.  These solutions, stored in the dark at 4˚C, were stable
for more than 1 month.  A 0.1 M sodium acetate–acetic acid (pH

4.0) buffer solution was daily prepared from analytical-quality
reagents.

Fluorescence emission spectra measurement
Urine samples were collected from 7 different healthy

volunteers.  Portions of 50 μl of urine were spiked with different
amounts of the 3 quionolones for concentrations over the range
0.0 – 200.0 μg mL–1.  After the addition of 5 mL of a 0.1 M
sodium acetate–acetic acid (pH 4.0) buffer solution, the samples
were diluted to obtain final concentrations in the range of 0.00 –
0.40 μg mL–1.  Urine blanks and solutions containing 0.4 μg
mL–1 of each quinolone were prepared as the lowest and highest
points of the set of samples, respectively.  Between these points,
mixtures of 1, 2 or 3 quinolones were prepared covering this
range of concentrations, while varying the urine used to prepare
the solutions and the proportion of each compound.  The
obtained solutions were thermostatted at 25 ± 0.1˚C and the
fluorescence emission spectra from 350 to 550 nm were
registered, using an excitation wavelength of 283 nm.  In this
way, 83 different spectra (including the corresponding 8 urine
blanks) were obtained.

Results and Discussions

Preliminary studies
Preliminary studies showed that levofloxacin, garenoxacin

and grepafloxacin exhibit native fluorescence in acid medium,
with maximum signals having excitation and emission
wavelengths of 292 and 502 nm for levofloxacin, 281 and 422
nm for garenoxacin and 277 and 449 nm for grepafloxacin,
respectively.  Thus, a 283 nm excitation wavelength was
selected for studying mixtures of these quinolones.

Figure 2 shows the emission spectra for each quinolone and
for their mixture under these conditions in water and urine.
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Fig. 2 Fluorescence emission spectra obtained for 0.175 μg mL–1

of (a) levofloxacin, (b) garenoxacin, (c) grepafloxacin, (d) a mixture
of the three quinolones in water and urine samples and (e) an urine
blank (λex = 283 nm, pH 4.0).



Compared with the spectra for aqueous samples, emission
increase can be observed in the 350 – 410 nm range.  Thus, this
emission can be assigned to the native fluorescence of urine
components, with maximum emission at about 390 nm.

Figure 3 shows the influence of the pH in the emission
intensity for the three quinolones using a 283 nm excitation
wavelength.  The three quinolones showed a constant emission
in similar pH ranges (3.0 – 5.0 for levofloxacin, 2.5 – 4.5 for
garenoxacin and 3.2 – 5.0 for grepafloxacin), corresponding to
the maximum emission for levofloxacin and grepafloxacin.
Garenoxacin showed its maximum emission over a pH range of
1.3 – 2.1, but the emission of levofloxacin and grepafloxacin at
these pH values showed a notable decrease with respect to their
maximum values.  Taking into account these results, pH 4.0 was
selected as a compromise value to study mixtures of these
quinolones.

The linear fluorescence–concentration range was checked for
each analyte.  Linear calibration curves for aqueous solutions
could be established in the range 0.015 – 1.125, 0.06 – 0.60 and
0.01 – 0.50 μg mL–1 for levofloxacin, garenoxacin and
grepafloxacin, respectively.

Chemometric studies
The efficiency of the regression for 4 different statistical

techniques, such as partial least squares, radial basis function
networks, generalized regression neural networks and back
propagation multilayer perceptrons neural networks, have been
studied.  A data matrix containing 83 different mixtures of
quinolones in urine (including 8 urine blanks) as cases and 200
variables, corresponding to their fluorescence emission
intensities at each emission wavelength, were constructed in
order to perform PLS studies.  The data set was divided in 3
subsets: a training set (50% of the cases) to construct the PLS
model, a verification set (25%) to cross-validate this model and
a test set (25%) to study its performance efficiency.  A
preliminary principal component analysis (PCA) was performed
in order to reduce the number of variables to use NN analysis.21

The Kaiser criterion was used to determine the number of
components to be retained.  Taking into account that the data
are autoscaled, each observed variable contributes one unit of
variance to the total variance in the data set.  The Kaiser
criterion retains components with eigenvalues greater than 1,
because these components account for a greater amount of
variance than one observed variable.22 In this case, the first four

principal components (PC) were extracted.  The percentage of
variance explained by these PC was 99.97%.  Then, to carry out
NN studies, the data matrix was constructed using different
mixtures of quinolones as cases and the factor scores obtained
as variables.  Like in PLS studies, the data set was divided in
three subsets: a training set (50% of the cases) that allows
learning the relationships between inputs and outputs and
construct the prediction model, a verification set (25%) and a
test set (25%).  The performance efficiency of the constructed
models was evaluated by looking at the mean error (the mean of
the differences between the target and predicted outputs), the
error standard deviation (SD) and the standard Pearson
correlation coefficient (r) between the original and predicted
outputs.

PLS models were constructed by extracting the appropriate
number of factors that minimize the sums of squares of the
prediction residuals obtained for the observations included in
the verification set.  The number of components extracted was 6.

After a number of NN structures were tested, NN models
leading to the minimum verification mean-square error were
trained and used for performing the calibration of the three
mentioned quinolones.  In this way, a BP-MLP model
consisting in a 4:8:3 architecture, i.e. 4 neurones in the input
layer connected to 8 hidden neurones and three output nodes
that predict levofloxacin, garenoxacin and grepafloxacin
concentrations was constructed.  The learning rate and
momentum were set at 0.15 and 0.52, respectively, and the
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Tr, Training set; V, verification set; T, test set; SD, standard deviation; r, coefficient of correlation.

Table 1 Mean error, error standard deviation and coefficient of correlation obtained for levofloxacin, garenoxacin and grepafloxacin 
when applying the different calibration models to mixtures of this quinolones

PLS Mean error  1.1 × 10–4 –6.6 × 10–4 –1.1 × 10–3 –5.9 × 10–3  –1.3 × 10–2   2.0 × 10–3 –5.1 × 10–3  –6.2 × 10–3 4.8 × 10–3

 Error SD  8.2 × 10–3   2.4 × 10–2   2.5 × 10–2  3.5 × 10–2   5.7 × 10–2   5.4 × 10–2  3.2 × 10–2   3.4 × 10–2 1.6 × 10–2

 r 0.998 0.982 0.981 0.966 0.908 0.939 0.968 0.964 0.994
4:41:4:3 GRNN Mean error –9.3 × 10–7  –2.4 × 10–6 –1.5 × 10–6  1.9 × 10–5 –2.2 × 10–5 –1.7 × 10–6  1.8 × 10–5 –1.9 × 10–5 1.3 × 10–7

 Error SD  1.4 × 10–5   1.7 × 10–5   1.8 × 10–5  2.7 × 10–4   9.6 × 10–5   8.2 × 10–6  2.6 × 10–4   9.0 × 10–5 5.1 × 10–7

 r 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4:38:3 RBFN Mean error –1.0 × 10–14 –9.7 × 10–4   7.7 × 10–4 –2.0 × 10–14   1.3 × 10–3   2.5 × 10–3 –3.5 × 10–14   6.7 × 10–4 6.9 × 10–4

 Error SD  2.1 × 10–4   4.1 × 10–3   5.5 × 10–3  1.7 × 10–4   8.9 × 10–3   2.8 × 10–2  2.1 × 10–4   6.3 × 10–3 1.5 × 10–2

 r 1.000 1.000 0.999 1.000 0.998 0.981 1.000 0.999 0.995
4:8:3 BP-MLP Mean error –8.6 × 10–3  –5.9 × 10–3 –9.2 × 10–3  1.3 × 10–2   5.7 × 10–4   9.8 × 10–3  4.5 × 10–3 –3.0 × 10–4 5.9 × 10–3

 Error SD  1.6 × 10–2   2.2 × 10–2   2.3 × 10–2  3.4 × 10–2   3.2 × 10–2   3.4 × 10–2  2.5 × 10–2   1.6 × 10–2 1.4 × 10–2

 r 0.991 0.984 0.984 0.965 0.969 0.963 0.981 0.992 0.996

Calibration model
Levofloxacin Garenoxacin Grepafloxacin

TrTrTr VVV TTT

Fig. 3 Influence of the pH in the fluorescence emission of (a)
levofloxacin, (b) garenoxacin and (c) grepafloxacin.



training was performed during 1000 epochs.  Secondly, a 4:38:3
RBFN model was constructed.  The central point and deviation
of the Gaussian functions were set using the K-means and K-
nearest neighbors algorithms, respectively.19 Finally, a 4:41:4:3
GRNN for carrying out the calibration in urine, being the
smoothing factor 0.0202.  In all cases, the input units
correspond to the factor scores calculated in PCA and the
outputs to the analyte concentrations.

The mean error and error standard deviation obtained when
applying the different calibration models to the cases belonging
to the different sets, as well as the coefficient of the correlation
obtained when comparing the original concentrations with the
predicted ones are given in Table 1.  In addition, plots of the
predicted concentrations versus the real ones are depicted in
Fig. 4.  When performing the calibration of the 3 quinolones in
urine, GRNN and RBFN models presented similar efficiency in
the prediction of levofloxacin in the training, verification and
test sets.  These techniques showed mean errors close to zero
and lowest error SD compared to PLS and MLP.  Both
generalized regression and radial basis function models lead to a
high correlation between the predicted and the actual
levofloxacin concentrations.  As can be observed in Fig. 4, PLS

presented the worst result for verification and test sets.  In the
case of garenoxacin, the GRNN model presented the best results
in the training, verification and test sets, with the mean error
being close to zero, the lowest error SD and coefficients of
correlation of 1.  The worst results were obtained with the PLS
and MLP models.  RBFN showed good results at the different
garenoxacin concentration levels, but the model was not able to
estimate the urine blanks, as can be seen in Fig. 4.  The same
can be observed in the case of grepafloxacin, but the global
results of RBF, MLP and PLS were better than that obtained for
garenoxacin.  The GRNN model fitted well the training and
verification data sets, and presented good prediction ability,
with γ-values close to 1 and the lowest error SD.

The highest error SD, and consequently the lowest γ-values,
were obtained for garenoxacin quantification.  This fact can be
explained because garenoxacin presents the weakest native
fluorescence and a high spectral overlap with grepafloxacin.
The reason can also be the matrix effect due to the fluorescence
emission of urine, taking into account (Fig. 2) that garenoxacin
maximum emission wavelength (422 nm) is the nearest to the
urine fluorescence emission range (350 – 410 nm).  In addition,
at the same concentration of the three quinolones, garenoxacin
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Fig. 4 Plots of predicted concentration obtained with different constructed calibration models versus
real concentrations of levofloxacin (L), garenoxacin (G) and grepafloxacin (Gr) in urine samples.



presents the lowest fluorescence intensity.
Looking at these results, ANN models performed better than

PLS.  This fact can be explained because ANN can be used for
linear and nonlinear systems, though PLS is especially
recommended for linear ones.

The best performance efficiency was achieved using the
GRNN model, with a correlation coefficient of 1, mean errors
close to zero and the lowest error SD for the 3 studied
quinolones.  This can be explained because the inputs for NN
were PC scores (combination of the original variables) which,
according to the central limit theorem, can be assumed to be
nearly normally distributed.  Because RBFN and GRNN present
hidden layers that contain radial units modelling a Gaussian
response surface, they fit better to the data than MLP.  In
addition, the BP algorithm requires an optimal number of
epochs to minimize the prediction error, but sometimes the
training process sticks at a local minimum, leading to results
with low accuracy.  Finally, as mentioned in the introduction,
each node in the hidden layer of RBFN represents a radial
function centered in a natural clustering of data, while GRNN
does it in each training case.  Thus, if the training set is
optimally selected, the GRNN can fit better to new cases
because similar objects are already included in the model.

Conclusions

The application of multivariate calibration models, such as
partial least squares, back propagation multilayer perceptrons,
radial basis functions networks and generalized regression
neural networks, allows the simultaneous quantification of
levofloxacin, garenoxacin and grepafloxacin, without previous
separation steps.  From comparisons of these multivariate
calibration models, the best performance efficiency was
achieved using the GRNN.  GRNN is a suitable regression
model for carrying out the simultaneous quantification of
levofloxacin, garenoxacin and grepafloxacin mixtures in urine
samples.

Acknowledgements

The authors express their gratitude to Hoechst Marion Roussel,
Bristol Myers Squibb and GlaxoSmithKline for supplying
levofloxacin, garenoxacin and grepafloxacin, respectively.

References

1. L. L Shen, W. E. Kohlbrenner, I. D. Weig, and J.
Baranowski, J. Biol. Chem., 1989, 264, 2973.

2. R. Wise, Clin. Drug. Invest., 1999, 17, 365.
3. V. F. Samanidou, C. E. Demetriou, and I. N. Papadoyannis,

Anal. Bioanal. Chem., 2003, 375, 623.
4. J. A. Ocaña, M. Callejón, and F. J. Barragán, Microchim.

Acta, 2005, 151, 39.
5. E. Dinc and O. Ustundag, Il Farmaco, 2003, 58, 1151.
6. P. C. Dimiani, A. C. Moschetti, A. J. Rovetto, F. Benavente,

and A. C. Olivieri, Anal. Chim. Acta, 2005, 543, 192.
7. J. A. Arincibia, A. C. Olivieri, and G. M. Escandar, Anal.

Bioanal. Chem., 2002, 374, 451.
8. A. Espinosa-Mansilla, A. Muñoz de la Peña, F. Salinas, and

D. G. Gómez, Talanta, 2004, 62, 853.
9. A. Espinosa-Mansilla, A. Muñoz de la Peña, D. G. Gómez,

and F. Salinas, Anal. Chim. Acta, 2005, 531, 257.
10. P. C. Damiani, G. M. Escandar, A. C. Olivieri, and H. C.

Goicoechea, Curr. Pharm. Anal., 2005, 1, 145.
11. M. S. Camara, F. M. Ferroni, M. de Zan, and H. C.

Goicoechea, Anal. Bioanal. Chem., 2003, 376, 838.
12. H. C. Goicoechea, M. S. Collado, M. L. Satuf, and A. C.

Olivieri, Anal. Bioanal. Chem., 2002, 374, 460.
13. I. V. Tetko, D. J. Livingstone, and A. I. Luik, J. Chem. Inf.

Comput. Sci., 1995, 35, 826.
14. W. S. Sarle, in Proceedings of the Nineteenth SAS Users

Group International Conference, 1994, SAS Institute, Cary,
NC, USA, 1538.

15. D. González-Arjona, G. López-Pérez, and A. G. Gonzalez,
Talanta, 2002, 56, 79.

16. B. Walczak and D. L. Massart, Anal. Chim. Acta, 1996,
331, 177.

17. D. F. Speckt, IEEE Trans. Neural Networks, 1991, 2, 568.
18. C. Bishop, “Neural Networks for Pattern Recognition”,

1995, University Press, Oxford.
19. D. Patterson, “Artificial Neural Networks”, 1996, Prentice

Hall, Singapore.
20. P. D. Mosier and P. C. Jurs, J. Chem. Inf. Comput. Sci.,

2002, 42, 1460.
21. E. R. Malinowski, “Factor Analysis in Chemistry”, 2002,

Wiley, New York.
22. H. F. Kaiser, Educ. Psych. Meas., 1966, 20, 141.

341ANALYTICAL SCIENCES   MARCH 2007, VOL. 23


