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Abstract 

The Granulocyte-colony stimulating factor is the most commonly used cytokine 

for the mobilization of hematopoietic progenitor cells from healthy donors for the 

allogeneic stem cell transplantation. Although the administration of this cytokine is 

considered safe, the knowledge about its long-term effects, especially in hematopoietic 

progenitor cells, is limited. With this background, the aim of our study was to analyze 

whether or not the Granulocyte-colony stimulating factor might induce changes on gene 

and miRNA expression profiles in hematopoietic progenitor cells from healthy donors, 

and to determine whether or not these changes persist at the long-term. For this purpose, 

we analyzed the whole genome expression profile and the expression of 384 miRNAs in 

CD34+ cells isolated from peripheral blood of 6 healthy donors, before the mobilization 

and at 5, 30 and 365 days post-mobilization with the Granulocyte-colony stimulating 

factor. Six miRNAs were differentially expressed at all time points analyzed after 

mobilization treatment as compared to samples obtained before exposure to the drug. In 

addition, 2424 genes were also differentially expressed for at least 1 year post-

mobilization. Of interest, 109 of these genes are targets of the differentially expressed 

miRNAs also identified in this study. These data strongly suggest that the Granulocyte-

colony stimulating factor modifies gene and miRNA expression profiles in 

hematopoietic progenitor cells from healthy donors. Remarkably, some changes are 

observed from early time-points and persist at least 1 year after exposure to the drug. 

This effect on hematopoietic progenitor cells has not been previously reported. 
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Introduction  

 The mobilization of hematopoietic progenitor cells (HPCs) from bone marrow to 

blood stream by growth factors for hematopoietic transplantation was introduced into 

the clinical practice in the decade of 80s.1-4 Granulocyte colony-stimulating factor (G-

CSF) is the most commonly used cytokine and it is administered worldwide to 

thousands of patients and healthy donors every year. Several studies, in which different 

molecular and clinical parameters were analyzed for 10 years after G-CSF 

administration, have been reported describing its safety profile among healthy donors. 

In this regard, no increase in the incidence of hematologic malignancies was detected as 

compared to the normal population.5,6 Furthermore, in comparison to bone marrow 

donation, the use of HPCs from peripheral blood is related to a better donor's quality of 

life early post-donation.7 At the molecular level, G-CSF induces the release of 

proteolytic enzymes by neutrophils to the extravascular compartment of the bone 

marrow. These enzymes degrade and inactivate the linkage proteins between HPCs and 

the bone marrow stroma releasing the HPCs into the peripheral blood. Among the 

receptors involved in the interaction between HPCs and stroma the most important is 

the axis SDF-1/CXCR4.8-13 In addition, it is known that G-CSF produces a decrease in 

the expression of stromal cell derived factor (SDF-1) in the marrow stroma.14 

Nevertheless, there is not much information about the effects of the G-CSF on the 

expression of other genes within HPCs. 

Several studies have described that miRNAs may also play an important role in 

the mobilization of the HPCs. Indeed, HPCs have different miRNA expression profiles 

depending on whether they are mobilized with G-CSF or Plerixafor.15,16 miRNAs are 

involved in different biological processes including development, differentiation, 
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proliferation and cell death.17 Accordingly, changes in the expression of miRNAs 

associated to the drug-induced mobilization of HPCs might lead to changes in gene 

expression. In this regard, it has been described that G-CSF induces changes on both, 

gene and miRNA expression profiles, in leukocytes for up to 9 months post-

mobilization.18-20 However, its effects at the long-term on HPCs, need to be analyzed.  

With this background, we hypothesized that the G-CSF could modify gene and 

miRNA expression profiling of HPCs resulting in changes that could affect their 

biological features. Therefore, the aim of this study was to analyze with high throughput 

techniques whether G-CSF induces changes on gene and miRNA expression profiles in 

HPCs from healthy donors, and to determine whether these changes in the expression 

signatures persist at the long-term or return to the original status.    
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Methods 

Samples 

CD34+ progenitor cells from peripheral blood (PB) of 6 healthy donors were 

collected before and at 5, 30 and 365 days after the mobilization with G-CSF 

(mobilization regimen: 10-15 µg/kg of G-CSF daily for 5 days). All donors were 

included in the transplant program of the Hematology Department of the University 

Hospital Virgen del Rocío (Seville, Spain). The local ethics committee of the same 

hospital provided institutional review board-approval for this study, and informed 

consent was obtained from all donors in accordance with the Declaration of Helsinki. 

 

Isolation of HPCs 

Mononuclear cells were collected from all samples by density gradient 

centrifugation with Ficoll-Paque solution (Amersham Biosciences, Uppsala). The 

CD34+ cells were isolated in an AutoMACS pro separator (Miltenyi Biotec, Bergisch 

Gladbach, Germany) by positive immunomagnetic selection using the CD34 MACS 

microbead Human Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and, after 

magnetic enrichment, CD34+ cells were sorted by flow cytometry. The purity of the 

isolated CD34+ cells was higher than 95% in all cases.  

 

RNA extraction 

Total RNA was extracted by TRIsure (Bioline, Luckenwalde, Germany) in all 

samples. The quality and integrity of the RNA was verified by a Bioanalyzer 2100 

(Agilent Technologies, Santa Clara, CA).  
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miRNA and gene expression 

The expression profile of 384 miRNAs was analyzed in all samples using 

TaqMan Human MicroRNA v2.0 Arrays (Applied Biosystems, Foster City, CA) which 

were analyzed on a 7900 HT Fast Real Time PCR System (Applied Biosystems, Foster 

City, CA). The SDS 2.3 and RQ Manager 1.2 software (both Applied Biosystems, 

Foster City, CA) were used for the analysis. Data were normalized using the average of 

the endogenous small-nucleolar RNU48 and the non-coding small nuclear U6, both 

included in the array.  

The expression profile of 45000 genes was analyzed in the same samples using 

the Whole Human Genome Oligo microarray kit 4x44K (Agilent Technologies, Santa 

Clara, CA). The microarrays were scanned in a GenePix reader (Molecular Devices, 

Sunnyvale, CA). 

In both types of expression analysis, samples from non-mobilized CD34+ cells 

were used as reference group. 

The expression of significant genes was validated by quantitative real-time PCR 

using Quantitec Primer Assays and the Quantitec SYBR green Kit (both from Qiagen, 

Hilden, Germany) in a 7900 HT Fast Real Time PCR System (Applied Biosystems, 

Foster City, CA). Data were normalized to the housekeeping gene ACTB and the group 

of samples from non-mobilized CD34+ cells used was used as control. The relative 

gene expression levels were calculated by the 2-ΔΔCT method. 

 

Statistical analysis 

Unsupervised hierarchical clusters of gene and miRNA expression data were 

performed using the average linkage and the Euclidean distance. To identify the genes 

and miRNAs differentially expressed in CD34+ cells before and at the different time-
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points after the G-CSF administration we applied non-parametric Mann-Whitney test. 

To obtain positive and negative expression values data were transformed to logarithmic 

scale. All analyses were performed using the Multi-experiment Viewer 4.7.1 software. 

The function of the genes and miRNAs of interest was determined from different 

databases available online (miRbase, Gene Ontology, Ingenuity Pathways Analysis). 
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Results 

Effect of G-CSF on miRNA expression of HPCs  

miRNA expression profiles were determined in CD34+ cells from PB before 

and at different time-points after the mobilization with G-CSF. Seventy two out of 384 

miRNAs were undetectable across all samples and were excluded from further analyses. 

We performed unsupervised paired hierarchical clusters comparing the expression of the 

miRNAs from non-mobilized CD34+ cells versus those obtained at 5, 30 or 365 days 

after exposure to the drug. In all paired comparisons two groups were clearly 

differentiated. One of them included the non-mobilized samples and the other one 

contained those samples obtained at the different time-points post-mobilization, thus 

indicating that G-CSF causes changes on miRNA expression pattern until one year after 

mobilization. To identify those miRNAs differentially expressed between the different 

groups, a non-parametric Mann-Whitney test was applied. All miRNAs with a p value < 

0.05 were considered significant. Figure 1 shows paired hierarchical clusters including 

only differentially expressed miRNAs. 

At day 5 after treatment, we identified 15 differentially expressed miRNAs, 12 

of them being over-expressed and 3 under-expressed as compared to non-mobilized 

CD34+ cells (Figure 1A).  

At day 30, we found 179 differentially expressed miRNAs, 177 over-expressed 

and 2 under-expressed (Figure 1B). Out of these, 9 miRNAs were also over-expressed 

at day 5 post-mobilization, whereas 168 miRNAs appeared over-expressed for first time 

at day 30 of the mobilization. 

One year after G-CSF administration, we identified 155 differentially 

expressed miRNAs, 130 of them were over-expressed and 25 under-expressed as 
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compared to the control (Figure 1C). Among all of these miRNAs, 128 were also over-

expressed at day 30 and maintained their expression levels one year after G-CSF, while 

6 miRNAs (miR182, miR21, miR339-3p, miR483-5p, miR500 and miR576-3p) showed 

over-expression since the start of the treatment up to one year later as compared to the 

controls (Figure 2). These miRNAs are mainly involved in processes such as cell cycle, 

proliferation, angiogenesis and immune response (Table 1). Overall, we found that G-

CSF induce mostly over-expression of miRNAs in mobilized HPCs. The highest 

number of over-expressed miRNAs is observed on day 30 after G-CSF administration 

and the same trend remain at least for one year (Figure 1D). 

In addition, in order to check that the miRNA expression pattern of CD34+ 

cells from PB do not vary over time in normal conditions, we performed the same 

unsupervised hierarchical cluster comparing the miRNA expression profiles of CD34+ 

cells from PB of 6 control subjects, collected before and after 30 days of the 

administration of a vehicle (saline solution). As we expected there were not changes in 

the expression pattern of miRNAs of a subject over time (Supplementary Figure 1). 

 

Effect of G-CSF on protein-encoding gene expression of HPCs 

We performed high-throughput gene expression analysis of the same samples by 

microarray technology. Once again, unsupervised hierarchical clustering comparing 

non-mobilized samples with each of those collected at the different time-points post-

mobilization clearly identified two clusters which included the samples obtained before 

and after exposure to G-CSF, respectively. Interestingly, most of the differences on 

treated samples remained after one year post-mobilization. In order to identify those 

genes differentially expressed in CD34+ cells before G-CSF and at the different time-
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points after mobilization, we applied a non-parametric Mann-Whitney test in all paired 

unsupervised analyses. The differences in expression with a p value < 0.05 were 

considered significant.  

We identified 4136 genes differentially expressed in non-mobilized CD34+ 

cells versus CD34+ cells obtained 5 days after exposure to G-CSF (Figure 3A). Out of 

these, 2113 genes were up-regulated and 2023 were down-regulated as compared to 

non-mobilized samples.  

Thirty days after G-CSF administration we found 4960 differentially expressed 

genes, 1848 were up-regulated and 3112 were down-regulated 30 days post-

mobilization as compared to un-treated samples (Figure 3B). Of all these genes, 1899 

appeared differentially expressed for first time at day 30 of the mobilization, 635 up-

regulated and 1264 down-regulated.  

Finally, upon comparing CD34+ cells before and after one year of 

mobilization, we found 4805 differentially expressed genes, out of them, 1969 were up-

regulated and 2836 down-regulated (Figure 3C). In this case 2381 genes appeared  

differentially expressed at first time one year after G-CSF treatment, 1075 were up-

regulated and 1306 down-regulated.  

Among all of the differentially expressed genes, 2424 maintained their 

expression levels from day 5 to one year after the treatment with G-CSF; 894 of these 

genes were up-regulated and 1530 down-regulated as compared to non-mobilized 

CD34+ cells. In order to analyze those genes whose expression levels remained altered 

at all time-points analyzed, we set a cut-off value of 1.5 above or below the expression 

of controls. Using this cut-off we identified 617 genes, out of which 232 were up-

regulated and 385 were down-regulated after mobilization, as compared to the control. 

The functional analysis of these genes by using Ingenuity Pathway Analysis software 
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(http://www.ingenuity.com) showed that these genes were involved in several biological 

processes such as cancer, gene expression, protein synthesis, cellular growth and 

proliferation, cell death and survival, cell cycle and hematopoiesis (Table 2). 

These results showed that the G-CSF alters the expression profiles of genes in 

mobilized HPCs. Similarly to miRNAs, the highest number of up- or down-regulated 

genes was observed after 30 days of treatment. Again, most of these changes persist at 

least one year after mobilization (Figure 3D).  

Furthermore, we compared the gene expression patterns of CD34+ cells from 

PB of 6 control subjects, collected before and after 30 days of the administration of a 

vehicle (saline solution). Similarly as observed in miRNAs there was not variability in 

the time of gene expression levels in individual normal subjects (Supplementary Figure 

2). 

At last, in order to validate the high-throughput screening, we confirmed the 

expression of 8 out of these 617 genes (CCL3L3, SCIMP, FGF3, MAP4K1, EEF1A2, 

IRF2BP2, BNIP3L and RPS27) by quantitative real-time PCR (Figure 4). These genes 

were selected because, apart from showing a strong regulation, each of them participates 

in a different biological process. CCL3L3 are related with cell proliferation and immune 

response. FGF3 participates in cell growth and proliferation. SCIMP is involved in the 

regulation of antigen presentation or cell activation. MAP4K1 plays an important role in 

hematopoiesis and hematological system development and function, and EEF1A2 is a 

translation elongation factor implicated in cell death and survival. Moreover, CCL3L3, 

SCIMP, FGF3, MAP4K1 and EEF1A2 showed up-regulation post-mobilization and, 

interestingly, they were even more over-expressed one year after mobilization. In 

addition, IRF2BP2, BNIP3L and RPS27 were also selected because, according to the 

different databases available in internet (http://www.targetscan.org and 
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http://www.mirbase.org), they are targets of the differentially expressed miRNAs 

identified in the current study. These 3 genes appeared down-regulated after the 

treatment as compared to the controls. IRF2BP2 is a growth factor and BNIP3L is a 

tumor suppressor that inhibits cell proliferation. Finally, RPS27 participates in the 

synthesis of proteins and its down-regulation is related with some hematological 

diseases. 
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Discussion  

The use of G-CSF is considered safe, according to several studies which have 

not found an increased risk of hematologic diseases among donors exposed to the drug; 

however, there are no studies analyzing its effects on gene and miRNA expression of 

mobilized HPCs at the long-term. It is already known that the mechanism of action of 

G-CSF is rather fast in terms of mobilization; in fact, the maximum release of HPCs to 

peripheral blood appears only five days after G-CSF administration.21 However, in our 

study, we observed that the G-CSF produces changes much later among HPCs and, 

remarkably, most of these changes persist for a long period of time. In this regard, we 

found that the G-CSF modifies the gene and miRNA expression patterns of HPCs even 

one year after its administration.  

G-CSF induced the over-expression of most miRNAs at all the different time-

points analyzed. Moreover, six of these miRNAs (miR182, miR21, miR339-3p, 

miR483-5p, miR500 and miR576-3p) maintained their expression levels above their 

respective controls at least one year after exposure to the G-CSF. Among all of them, 

miR21, miR182 and miR339-3p, may be the most relevant since they play a role as 

onco-miRNA. Thus, each of these miRNAs regulates the expression of hundreds of 

genes and also target several tumor suppressor genes, inhibiting their expression.22-25 

miR21 is involved in the control of angiogenesis, apoptosis, cell cycle, proliferation, 

stemness and immune response26,27 and is frequently over-expressed in human cancers 

such as breast cancer, glioma, colorectal cancer, and hepatocellular carcinoma as well as  

in hematological malignancies.28 miR182 and miR339-3p regulate cell growth, 

proliferation and cell cycle29-31 and their over-expression has also been described in 

several hematological diseases.32 miR483-5p, miR500 and miR576-3p are involved in 
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the processes of angiogenesis, cell cycle and immune response.33 Our data raise the 

question of whether the sustained over-expression of these miRNAs induced by G-CSF 

could lead to modifications in any of these biological processes and whether or not this 

might have any clinical implication. 

On the other hand, G-CSF produced changes on protein-encoding gene 

expression levels at all time-points analyzed during the follow up. In our study we 

identified 617 genes with a higher modification in their expression levels after 

treatment. These genes are involved in several biological processes such as cancer, gene 

expression, protein synthesis, nucleic acid metabolism, cellular growth and 

proliferation, cell death and survival, hematopoiesis and hematological system 

development and function. Of note, among all of them we found some interesting genes 

related to hematological diseases; 11 of these genes were down-regulated post G-CSF 

mobilization (BCR, CASP3, CXCL2, EGR1, FOS, HIF1A, HOXA9, NFKBIA, NPM1, 

NUP98 and TXNIP) and 3 up-regulated (AXL, EIF2AK2 and MAP4K1). BCR inhibits 

the Bcr-Abl oncogenic effects in chronic myeloid leukemia,34 and it also participates in 

the regulation of cell cycle and gene expression. CASP3 plays an important role in 

apoptosis and it is used as prognostic marker for hematological diseases such as chronic 

myeloid leukemia or B-cell lymphoma.35 CXCL2 encodes for a chemokine involved in 

neutrophil proliferation and migration during an immune response.36 EGR1 is a cancer 

suppressor gene that participates in cell differentation and mitogenesis.37 FOS encodes 

for a regulator of cell proliferation, differentiation, and transformation. In some cases, 

expression of the FOS gene has also been associated with apoptotic cell death.38 The 

HIF1A encoded protein functions as regulator of cellular and systemic homeostatic 

response to hypoxia by activating transcription of many genes, including those involved 

in energy metabolism, angiogenesis, apoptosis, and other genes whose protein products 
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increase oxygen delivery or facilitate metabolic adaptation to hypoxia.39 HOXA9 is a 

homeobox gene encoding for a DNA-binding transcription factor which may regulate 

gene expression, differentiation, leukemogenesis and hematopoiesis.40 NFKBIA encodes 

for a member of the NF-kappa-B inhibitor family and it is involved in inflammatory 

responses and tumor growth upon down-regulation.41 NPM1 is involved in several 

processes including regulation of the ARF/p53 pathway and tumor progression.42 

NUP98 is a potential tumor suppressor gene found rearranged with many other genes in 

human hematologic malignancies.43 TXNIP is also a tumor suppressor gene and it plays 

a pivotal role in the maintenance of the hematopoietic cells.44 AXL encodes for a 

tyrosine kinase receptor involved in several cellular functions including growth, 

migration, aggregation and anti-inflammation in multiple cell types.45 The activated 

form of the EIF2AK2 encoded protein can inhibit protein synthesis giving rise to 

various diseases46 and MAP4K1 is principally expressed in hematopoietic cells and is 

known to regulate stress responses, apoptosis and cell proliferation in cancer cells.47 

Interestingly, among the 617 genes identified in our study, 109 of them were 

targets of the 6 miRNAs over-expressed from day 5 to one year post-mobilization. To 

note, all these 109 genes were found to be down-regulated in our analysis (Table 3). 

Based on the information contained in the aforementioned databases, it is conceivable 

that the down-regulation of these 109 genes could be related to the over-expression of 

their corresponding regulatory miRNAs.  

Finally, when we validated some of the significant genes by quantitative real-

time PCR, we could confirm that the G-CSF produced changes on the gene expression 

of HPCs and, interestingly, some of these changes were even higher after one year of 

the mobilization. Moreover, 3 of these validated genes were down-regulated after 

treatment and were targets of the differentially over-expressed miRNAs.  
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With the information currently available in the literature,5,6 we can assume the 

safety of the administration of growth factors in healthy donors; nevertheless, the 

potential effect at the long term of these novel findings will require longer follow up of 

larger series of donors.  

In summary, we conclude that the G-CSF modifies gene expression profiles and 

miRNAs of HPCs from healthy donors. These changes were observed from early time-

points and most of them persisted at least one year after exposure to the drug.  
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Tables 

Table 1. Differentially expressed miRNAs after G-CSF mobilization 

miRNAs 

Relative expression (log ratio) 

 Untreated     5 days      30 days     365 days 

Biological process 

hsa-miR-182 -0.92 1.44 3.62 4.07 Cell growth, proliferation and 

cell cycle 
hsa-miR-21 -3.84 0.74 1.68 1.62 

hsa-miR-339-3p -2.21 1.94 3.05 3.39 Angiogenesis, apoptosis, cell 

cycle,  proliferation, stemness 

and immune response 

hsa-miR-483-5p -0.92 4.50 5.42 4.75 Angiogenesis, proliferation 

and cell cycle 

hsa-miR-500 -0.87 1.50 3.78 4.07 Immune response and 

inflammation 

hsa-miR-576-3p -0.92 2.67 4.55 4.07 Translation process 

Expression levels of the differentially expressed miRNAs at all time-points analyzed 

after G-CSF mobilization relative to non-treated samples, and biological processes in 

which they are implicated. Statistical significance: p < 0.05 
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Top function Focus 

Molecules 

Expression Levels 

                            Down-regulated                                                   Up-regulated 

DISEASES AND 

DISORDERS 

 Cancer  21 AKIRIN2, ATF3, CASP3, CAST, CSNK1E, CXCL2, EGR1, 

FOS, GNAS, HIF1A, KLF6, NFKBIA, NPM1, PRNP, 

RRM1, TXNIP 

CACYBP, CD82, DUSP2, EIF2AK2, FGF3 

 

 

 

MOLECULAR AND 

CELLULAR 

FUNCTIONS 

 

 

 

RNA post-

transcriptional 

modification 

31 AKAP17A, C1QBP, EXOSC7, FBL, HNRNPK, HNRNPM, 

INTS10, MBNL1, NPM1, PNN, RBM39, RBMS1, RPL14, 

RPL26, RPL7, RPS15, RPS27, RPS28, RPS6, RPS7, SNRPC, 

SNRPD1, SRSF2, SSB, SYNCRIP, TRA2B, WDR55, 

YTHDC1 

APLP1, POLR2A, RNGTT, SNRNP70 

Protein 

synthesis 

41 BCR, CASP3, EEF1B2, EIF1, EIF3D, EIF3K, EIF3L, EIF4B, 

EIF4H, FOS, GSK3A, HNRNPK, KLF2, NACA, NPM1, 

PPP1R2, PRNP, RPL13A, RPL17, RPL24, RPL30, RPL37, 

RPL39, RPS15A, RPS27, RPS29, RPS6, RPS7, SERINC1, 

SOD1, SSB, SYNCRIP, TNIP1, TNRC6B 

APLP1, EEF1A2, EIF2AK2, IGFBP3, LIF, 

PASK, SNRNP70,WIBG 

Table 2. Differentially expressed genes after G-CSF mobilization 
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MOLECULAR AND 

CELLULAR 

FUNCTIONS 

 

 

 

 

 

Gene expression 

 

 

 

 

 

 

109 AES, AKIRIN2, ATF3, BAG1, BCLAF1, BCR, BPTF, 

BTG3, C14orf166, C1QBP, CBX5, CCNH, CITED2, 

CSNK1E, DCP1A, DNAJB6, DUSP1, E2F3, EAPP, EGR1, 

EIF1, EIF3D, EIF3K, EIF3L, EIF4B, EIF4H, FOS, HIF1A, 

HINT1, HIPK1, HMGN1, HMGN2, HOPX, ID1ID2, IGBP1, 

IKZF2, ILF2, INPP5D, KLF2, KLF6, KLF9, KPNA2, 

MATR3, MED26, NACA, NAE1, NDNL2, NFKBIA, NPM1, 

POLA1, PSIP1, PTGES3, PURB, RBBP6, RBM39, RCOR1, 

RPL13A, RPL17, RPL24, RPL30, RPL37, RPL39, RPL6, 

RPS27, RPS29, S1PR1, SAP18, SATB1, SSB, STRAP, 

SUB1, SUPT4H1, SYNCRIP, TAF6, TCEB1, TDG, TNIP1, 

TRAF6, TXNIP, UBE2I, VAPA, WRN, YWHAQ, ZMIZ1 

APLP1, BHLHE23, CCL3L1, CD3EAP, 

CD82, CHRM1, EIF2AK2, GPR183, 

HOXB4, HOXB7, IGFBP3, LIF, MYBL2, 

NFE2L1, NFIA, PHOX2A, POU3F4, PRKG1, 

SIK1, SP100, TEAD3, TNFRSF1A, ZNF467, 

ZNF496 

Nucleic acid 

metabolism 

19 ATP2A2, ATP5E, ATP5F1, ATP5O, ATP6V0C, CYCS, 

HIF1A, IMPDH1, MAP1LC3B, MSH6, NT5C2, SLC25A5, 

SOD1, TXNIP, WRN 

ACTC1, AK4, ASK, PPP2R4 
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MOLECULAR AND 

CELLULAR 

FUNCTIONS 

 

 

 

 

 

 

 

Cellular growth 

and proliferation 

 

 

 

 

 

 

179 ACTB, ADAR, AES, AHNAK, AKIRIN2, AMBRA1, 

ANXA2, ARF1, ARL2BP, ATF3, ATP2A2, ATP5F1, BAG1, 

BBC3, BCLAF1, BCR, BNIP3L, BRK1, BTG3, C1QBP, 

CALCOCO2, CASP3, CAST, CCNH, CCT2, CD69, CDK6, 

CHKA, CITED2, CNP, CSNK1E, CXCL2, DNAJB6, 

DUSP1, E2F3, EAPP, EEF1B2, EGR1, EIF1, EIF4B, FBRS, 

FOS, GNAS, GNE, GNL3, H2AFY, HIF1A, HINT1, HIPK1, 

HK2, HLA-DPB1, HLA-DQB1, HNRNPK, HNRNPM, 

HOPX, HOXA9, HPGDS, ID1, ID2, IGBP1, IGF1R, IKZF2, 

ILF2, ILKAP, IMPDH1, INPP5D, IRF2PB2, KDM6A, KLF2, 

KLF6, KLF9, KPNA2, LTB, MCFD2, MLLT3, MSH6, 

NAA30, NACA, NAE1, NAP1L1, NDE1, NDNL2, NFKBIA, 

NPM1, NUP98, PNN, POLA1, PRKCSH, PRNP, PSMF1, 

PTGES3, PTP4A2, RANBP9, RBBP6, RGCC, RHEB, 

RPL26, RPS15A, RPS6, RRM1, S100A13, S1PR1, SATB1, 

SKP1, SLC25A5, SLC9A3R1, SMYD3, SOD1, SRSF2, 

STRAP, SUGT1, TAF6, TCP1, TOP1MT, TRAF6, TSPAN3, 

TXNDC5, TXNIP, UBC, UBE2E3, UBE2I, WRN, WTAP, 

AK4, ANGPTL6, AVPR1B, AXL, 

CACNA1A, CACYBP, CCL3L3, CD248, 

CD82, CHRM1, CKLF, CLDN15, CRHR1, 

CX3CL1, DBF4B, DPT, DUSP2, EIF2AK2, 

FGF3, GAPT, GAS2L1, GNG4, GPR183, 

HOXB4, HOXB7, IGFBP3, IL10RA, 

LAMA1, LIF, LILRB4, MADD, MAP4K1, 

MLL3, MMP19, MYBL2, NDRG4, NOP2, 

PIK3C3, PPP2R1B, PRKG1, PSAP, RERG, 

SCARB1, SH3BP2, SIK1, SLPI, STAMBP, 

TAGLN2, TMEFF2, TNFRSF1A, 

TNFRSF21, TP53I11 
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MOLECULAR AND 

CELLULAR 

FUNCTIONS 

YME1L1, YWHAQ, ZMIZ1, ZSCAN18 

Cell death and 

survival 

21 BAG1, BNIP3L, CASP3, CYCS, E2F3, GNAS 

GSK3A, HIF1A, HK2, ID1, ID2, IGF1R, NFKBIA, TXNIP, 

WTAP 

ACTC1, EEF1A2, HLA-B, HOXB4, LIF, 

TNFRSF1A 

Cell cycle 

 

 

41 ANXA2, ATF3, BCR, BRCC3, CDK6, CHKA, DUSP1, 

E2F3, EGR1, FOS, GNL3, GORASP2, HMGN1, ID1, ID2, 

IGF1R, ILKAP, KLF6, KPNA2, NAE1, NFKBIA, NPM1, 

POLA1, PRNP, PTGES3, RGCC, RPL7A, RPS6, 

SRSF2,TCP1, TXNIP, YWHAQ 

BRSK2, EIF2AK2, IGFBP3, LIF, MYBL2, 

POLR2A, PSAP 

PHYSIOLOGICAL 

SYSTEM 

DEVELOPMENT 

AND FUNCTION 

Hematological 

system 

development 

and Function 

42 AES, AHNAK, BCLAF1, BCR, C1QBP, CASP3, CD69, 

CDK6, CXCL2, DUSP1, EGR1, FOS, HIF1A, HLA-DQB1, 

HOXA9, HPGDS, ID2, IKZF2, IMPDH1, INPP5D, KLF2, 

KLF9, MLLT3, NFKBIA, NPM1, NUP98, S1PR1, SATB1, 

TRAF6, TXNIP 

AXL, EIF2AK2, GAPT, GPR183, HOXB7, 

IL10RA, LILRB4, MAP4K1, SH3BP2, SLPI, 

TNFRSF1A, TNFRSF21 
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Differentially expressed genes at all time-points analyzed after G-CSF mobilization relative to non-treated samples, and biological processes in 

which they are implicated. Statistical significance: p < 0.05 

 

 

Hematopoiesis 14 ADAR, BCR, EGR1, HOXA9, ID1, NFKBIA, NUP98, 

RCOR1 

AXL, EIF2AK2, HOXB4, LFNG, MAP4K1, 

SLC37A4 
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Table 3. Target genes 

miRNAs Target Genes 

 hsa-miR-182 ADSS, AHNAK, C20orf24, C6orf106, CBX5, CD69, CDK6, CDV3, 

CEP135,  CITED2, CSNK1E, CYCS, DAZAP2, DNAJB6, DNAJB9, 

EEF1B2, FBXO33, GMFB, GNE, GNL3, GSK3A, HK2, HOXA9, 

IGF1R, INTS10, IRF2BP2, KDELR1, KDM6A, MAP1LC3B, MCFD2, 

MPP1, MY09A, NAA30, NAP1L1, NPM1, NUP43, PMPCB, PPP1R2, 

PSMD3, PSMF1, RAB34, RAD23B, RANBP2, RGPD8, SH3BGRL, 

SYNCRIP, TAPT1, TKT, TMEM230, WHSC1L1, WIPI2, ZNF706 

 hsa-miR-21 AMBRA1, ARMCX1, ARMCX5, ATP2A2, ATXN10, BDH2, BRCC3, 

CD69, CDK6, DNAJB9, E2F3, FAM156A/FAM156B, GNL3, 

IRF2BP2, KLF6, LARP1B, LTV1, MATR3, MBNL1, PURB, RAB21, 

RBMS1, REPS1, RNF103, RPS15, RSRC2, SATB1, SCRN1, STK40, 

TNRC6B, TSPAN3,    UQCRB, WHSC1L1, YOD1, YPEL5 

 hsa-miR-339-3p BDH2, CLASRP, DNAJB6, ID1, IGF1R, POLR3F 

 hsa-miR483-5p AIPNL, BNIP3L,CDKN2, CXXC5,GNE, HYPK, IDS, IER2, KLF9,  

RAD23B, REPS1, RPL31, STK40 

 hsa-miR-500 ATP5F1 

hsa-miR-576-3p ARL2BP, ATP2A2, ATP6V0A1, BCLAF1, BNIP3L, BRCC3, BZW1, 

CBX5, CDV3, HS1BP3, KDM6A, KLF9, LAPTMYA, MED26, 

MMGT1, MPP1, MRPL43, PCNP, PGAM1, RCOR1, RPL37, RPS27, 

SRSF2, YWHAQ 

Differentially expressed genes after G-CSF treatment regulated by the differentially 

expressed miRNAs. All these genes are down-regulated in our analysis. 
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Figure Legends 

Figure 1. Unsupervised hierarchical cluster analysis of miRNA. The analysis was 

performed with the miRNAs differentially expressed between CD34+ cells from non-

treated samples and at 5 days (A), 30 days (B), and one year (C) after G-CSF 

administration respectively. Each numbered column represents an individual sample 

and each row represents a single miRNA. Panel A contains all the miRNAs included in 

the analysis. Panels B and C contain representative portion of the respective sets of 

miRNAs.  Red and green color code indicates miRNA expression levels in logarithmic 

scale. Statistical analysis was performed using non parametric Mann-Whitney test. (D) 

Number of over- and under-expressed miRNAs at the different time-points after G-CSF 

administration relative to non-treated samples. 

 

Figure 2. Expression levels of differentially expressed miRNAs at all the three time-

points analyzed after G-CSF administration. Differences in miRNA expression at 5, 

30, and 365 days (d) relative to non-treated (n.t.) samples. Statistical significance: *; p < 

0.05. 

 

Figure 3. Unsupervised hierarchical cluster analysis of genes. The analysis was 

performed with the genes differentially expressed between CD34+ cells from non-

treated samples and at 5 days (A), 30 days (B), and one year (C) after G-CSF 

administration respectively. Each numbered column represents an individual sample 

and each row represents a single gene. Panels contain representative portion of the 

respective sets of genes. Red and green color code indicates gene expression levels in 

logarithmic scale. Statistical analysis was performed using non parametric Mann-
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Whitney test. (D) Number of up- and down-regulated genes at the different times after 

G-CSF administration relative to non-treated samples. 

 

Figure 4. Validation of gene expression. Expression levels of genes either up- or 

down-regulated at 5, 30, and 365 days (d) relative to non-treated (n.t.) samples as 

determined by quantitative real-time PCR. Statistical significance: *; p < 0.05. 

 

 

 











Supplementary Figure 1. Unsupervised hierarchical cluster analysis performed with the
miRNAs from CD34+ cells from peripheral blood before (PB) and at 30 days (PB30) after a
vehicle (saline solution) administration. Each numbered column represents an individual sample
and each row represents a single miRNA. Panel contains a representative portion of the respective
sets of miRNAs. Red and green color code indicates miRNA expression levels in logarithmic
scale.



Supplementary Figure 2. Unsupervised hierarchical cluster analysis performed with the genes
from CD34+ cells from peripheral blood before (PB) and at 30 days (PB30) after a vehicle
(saline solution) administration. Each numbered column represents an individual sample and
each row represents a single gene. Panel contains a representative portion of the respective sets
of genes. Red and green color code indicates gene expression levels in logarithmic scale.
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 Supplemental Methods 

Samples 

CD34+ progenitor cells from peripheral blood (PB) of 6 healthy donors were collected 

before and at 5, 30 and 365 days after the mobilization with G-CSF. The mobilization 

regimen was based on the administration of 10-15 µg/kg of G-CSF daily for 5 days. All 

donors were included in the transplant program of the Hematology Department of the 

University Hospital Virgen del Rocío (Seville, Spain). The local ethics committee of the same 

hospital provided institutional review board-approval for this study, and informed consent 

was obtained from all donors in accordance with the Declaration of Helsinki. 

 

Isolation of HPCs 

Mononuclear cells were collected from all samples by density gradient centrifugation 

with Ficoll-Paque solution (Amersham Biosciences, Uppsala). The CD34+ cells were isolated 

in an AutoMACS pro separator (Miltenyi Biotec, Bergisch Gladbach, Germany) by positive 

immunomagnetic selection using the CD34 MACS microbead Human Kit (Miltenyi Biotec, 

Bergisch Gladbach, Germany). Further, for a higher purity of isolation, CD34+ cells were 

sorted by flow cytometry (MoFlo, Beckman Coulter). For this purpose, cells were incubated 

with the monoclonal antibodies CD34-PE and CD45-FITC (Becton Dickinson, San Jose, CA) 

for 20 minutes in darkness and at room temperature. Populations were selected based on the 

intensity of antibodies as well as forward and side scattered components (FSC and SSC). 

Dead cells were discarded before separation. The purity of the isolated CD34+ cells was 

higher than 95% in all cases.  

 

 

 



RNA extraction 

Total RNA was extracted by TRIsure (Bioline, Luckenwalde, Germany) in all 

samples. The quality and integrity of the RNA was verified by a Bioanalyzer 2100 (Agilent 

Technologies, Santa Clara, CA); only the samples with RNA integrity number (RIN) higher 

than 7.5 were used for further analyses of miRNA and gene expression profiling. 

 

miRNA expression 

The expression profile of 384 miRNAs was analyzed in all samples. Total RNA (150 

ng) was reverse-transcribed using the miRNA TaqMan reverse transcription kit (Applied 

Biosystems, Foster City, CA). cDNA was loaded on to the TaqMan Human MicroRNA v2.0 

Arrays (Applied Biosystems, Foster City, CA) which were subsequently analyzed on a 7900 

HT Fast Real Time PCR System (Applied Biosystems, Foster City, CA).  The SDS 2.3 and 

RQ Manager 1.2 software (both Applied Biosystems, Foster City, CA) were used for the 

arrays analysis. Undetectable miRNAs were excluded for further analyses. Data were 

normalized using the average of the endogenous small-nucleolar RNU48 and the non-coding 

small nuclear U6, both included in the array, and a group of samples of CD34+ cells from PB 

was used as control group. The expression levels of miRNAs were obtained by the 2-∆∆CT 

method. 

 

Gene expression 

We analyzed the gene expression profiling of 45000 genes in the same samples using 

the Whole Human Genome Oligo microarray kit 4x44K (Agilent Technologies, Santa Clara, 

CA). Total RNA (200 ng) was reverse-transcribed to cRNA and labeled with the two Color 

Low Input Quick Amp Labeling Kit (Agilent Technologies, Santa Clara, CA). The quality 

and integrity of the cRNA was verified by a Bioanalyzer 2100 (Agilent Technologies, Santa 



Clara, CA). Every analyzed sample was Cyanine3-labelled and hybridized against a pool of 

Cyanine5-labelled RNA of CD34+ cells from PB as reference group. The microarrays were 

scanned in a GenePix reader (Molecular Devices, Sunnyvale, CA). 

 

Validation of significant genes  

The expression of significant genes was validated by quantitative real-time PCR using 

Quantitec Primer Assays and the Quantitec SYBR green Kit (both from Qiagen, Hilden, 

Germany) in a 7900 HT Fast Real Time PCR System (Applied Biosystems, Foster City, CA). 

Data were normalized to the housekeeping gene ACTB and the same group of samples of 

CD34+ cells from PB used for the hybridization experiments was used as control. The relative 

gene expression levels were calculated by the 2-∆∆CT method. 

 

Statistical analysis 

Unsupervised hierarchical clusters of gene and miRNA expression data were 

performed using the average linkage and the Euclidean distance. To identify the genes and 

miRNAs differentially expressed in CD34+ cells before and at the different time-points after 

the G-CSF administration we applied non-parametric Mann-Whitney test. To obtain positive 

and negative expression values data were transformed to logarithmic scale. All analyses were 

performed using the Multi-experiment Viewer 4.7.1 software. The function of the genes and 

miRNAs of interest was determined from different databases available online (miRbase, Gene 

Ontology, TargetScan Human 6.2, Ingenuity Pathways Analysis). 

 

 

 

 


