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Abstract

DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal
rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers
the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to
the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-
dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-
reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the
analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases
(SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate
to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during
BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences
dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template
switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus
participating in the destabilization of the genome by generating complex chromosomal rearrangements.
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Introduction

The maintenance of genome integrity is crucial to prevent cell

death in all organisms. Chromosomal rearrangements such as

reciprocal translocations, deletions, inversions and duplications

threaten genomic stability and must be avoided to prevent cancer

development and genomic disorders [1]. The occurrence of

unfaithful repair of DNA double-strand breaks (DSBs) is widely

admitted to be the main source of chromosomal rearrangements

[2–5]. Nonhomologous End Joining (NHEJ) and Homologous

recombination (HR) constitute the main pathways of DSB repair.

While NHEJ seal the broken DNA ends by simple religation, HR

uses sequence homology between the DSB ends and an intact

template for repair and is typically considered as error free.

Nevertheless, in a number of cases, such as when HR occurs

between non-allelic DNA sequences or DNA repeated sequences

or HR is used for the repair of DSB ends containing different

levels of similarity, irreversible genomic changes can take place.

Thus, when only one end of a DSB shares homology with other

sequences in the genome, repair by HR can occur through a

replication mechanism termed break-induced replication (BIR)

that often gives rise to non-reciprocal translocations (NRTs) [6–9].

BIR requires HR canonical factors such as Rad52 and Rad51 to

allow efficient strand invasion of the repair template and to form a

Displacement-loop (D-loop) that can be extended by DNA

synthesis from the invading 39 DSB end [10,11]. In the absence

of another DSB end to capture the newly synthesized strand or to

independently invade the homologous template, the strand

invasion intermediate is thought to be converted into a DNA

replication fork capable of replicating an entire chromosome arm

until encountering a telomere, a centromere, or a converging

replication fork [12–15]. A key factor in this process is Pol32, the

non-essential subunit of DNA polymerase d, which is dispensable

for normal replication but essential for BIR [13]. Another feature

of BIR is the unstable nature of its replication intermediates. It has

been shown that DSB repair by BIR can occur through several

rounds of strand invasion, synthesis, and dissociation from the

invaded template [16]. Within dispersed repeated sequences,

template switching during BIR can generate complex chromo-

somal rearrangements [16–21]. BIR reactions can also be aborted

to end in half-crossovers [22,23]. Half-crossovers cause NRTs,

leaving the template that has been used for repair broken. They

are similar to the NRTs observed in humans, which are involved

in the cascade of genomic instability characteristic of human

cancer cells [24].

Little is known about how BIR intermediates are processed to

allow the establishment of a replication fork after strand invasion,

and to cause template switching and half-crossovers. Eukaryotic
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cells have evolved a set of DNA structure-selective endonucleases

(SSEs) that possess different substrate specificity for various DNA

branched molecules during HR, such as D-loops, replication forks,

flaps and Holliday junctions (HJs). Conversion of a D-loop into a

replication fork during BIR may require the endonucleolytic

resolution of a single Holliday junction [16,25]. In budding yeast,

Mus81-Mms4 and Yen1 are the only nuclear enzymes capable of

cleaving intact HJs with high efficiency in vitro [26,27]. In vivo, their

functions seem to overlap during DSB repair [28–31]. Notably,

Mus81-Mms4 is required for recombination-mediated DNA

repair at replication forks [32–34] and has been shown to play a

role in BIR intermediate processing [23]. Additionally, the Slx1–

Slx4 nuclease complex may cleave perturbed replications forks

[35–37]. Loss of Slx1–Slx4, as loss of Mus81-Mms4, increases the

number of gross chromosomal rearrangements in yeast [38]. Slx4

also acts independently of the Slx1 catalytic subunit to interact

with several other factors. For instance, Slx4 binds to the 39 flap

endonuclease complex Rad1–Rad10 to facilitate the removal of

non-homologous tails during HR [39,40]. Rad1–Rad10 complex,

which functions in nucleotide excision repair (NER) as well as in

DSB repair, has also been involved in the formation of

translocations in yeast through a single-strand annealing (SSA)

mechanism [41,42]. Together, these SSEs form a complex

network to ensure genome stability but their specific roles and

their interactions at recombination structures remain unclear.

In this study, we used a new assay that generates chromosomal

rearrangements after DSB repair using dispersed repeated

sequences. Chromosomal rearrangements involved multiple

rounds of template switching and some events ended in half-

crossovers, generating NRTs. We investigated the role of SSEs in

the processing of BIR intermediates combining mutations of

Mus81, Rad1, Yen1, Slx1 and Slx4. Our results show that these

SSEs act at multiple steps during BIR. First, we uncovered that

Mus81 and Yen1 function to allow efficient BIR, thus causing

translocations. In the absence of Mus81, Yen1 and Slx4, we

observed that template switching during BIR decreased signifi-

cantly. Altogether, our results led to new insights into the BIR

mechanism and the functional role of SSEs in chromosomal

rearrangements.

Results

A new assay for DSB–induced chromosomal
rearrangements

We designed an experimental system using DNA repeated

sequences dispersed over two yeast chromosomes for the analysis

of chromosomal rearrangements induced by a single DSB. We

took advantage of the presence of the MAT, HMR and HML loci

on chromosome III, involved in mating-type switching. The MAT

locus is composed of five regions called W, X, Y, Z1 and Z2 [43].

MATa differs from MATa by the Ya and the Ya sequences,

respectively. MATa shares Ya with HMR and MATa shares Ya
with HML. Together, MAT, HMR and HML share two

homologous regions flanking the Y sequences, termed X and Z1

(see Figure 1A). All three loci contain a cleavage site for the HO

endonuclease at the junction between the Y and Z1 regions, but

only the MAT locus is susceptible to being cleaved upon HO

expression because of the active repression of HMR and HML loci

[44]. The strains used in this study harbor a MATa-inc mutation, a

G to A substitution at position Z1–2, which impedes HO cleavage

at MAT [45,46]. The HO endonuclease gene under control of the

GAL1 inducible promoter was integrated at the ADE3 locus and a

240-bp Ya-Z1 fragment containing a HO-cleavable site, along

with the URA3 marker, was inserted in the chromosome VII left

arm at the ADH4 locus (Figure 1A). Upon galactose addition to the

culture medium, HO would cleave this Ya-Z1 fragment asym-

metrically into a centromeric 198-bp fragment and a telomeric 42-

bp fragment (Figure 1A).

To assay DSB repair in this system, we plated cells on a

synthetic medium (SC) with either 2% glucose or 2% galactose to

assay survival after HO expression and successive breakage of

chromosome VII. The WT strain exhibited a survival frequency of

82% (Figure S1), demonstrating efficient DSB repair. We

restreaked survivor colonies from galactose-containing plates on

glucose medium to repress HO expression. Then, survivors were

concomitantly replica-plated on media lacking uracil and on

media containing 5-FOA, a drug that generates a toxic metabolite

in Ura+ cells, to distinguish between the colonies that maintained

or lost the URA3 marker of chromosome VII (Figure 1B). We

recollected Ura2 5-FOA-resistant (20%), Ura+ 5-FOA-sensitive

(12%), and Ura+ 5-FOA-resistant colonies (68%). The latter

contained both Ura+ and Ura2 cells and may result from

differential repair of two DSBs generated on sister chromatids

during the S or G2 phase of the cell cycle. To analyze mixed Ura+

5-FOA-resistant colonies, we first separated Ura+ cells from 5-

FOA-resistant cells by restreaking colonies on media lacking uracil

or containing 5-FOA. Further analyses of 5-FOA-resistant and

Ura+ cells were performed by pulse-field gel electrophoresis

(PFGE) to look for chromosomal translocations. Southern analysis

using a probe specific to chromosome VII, proximal to the DSB

site, and a probe specific to the region between HMR locus and

chromosome III telomere (7L probe and 3R1 probe, respectively,

Figure 1A) revealed the presence of non-reciprocal translocations

(NRTs) between chromosome VII and chromosome III in all 5-

FOA-resistant cells (Figure 1C, 1D, and Figure S2A, S2B). NRTs

were rarely observed in Ura+ cells (Figure S2B). Given a survival

rate of 82%, the frequency of translocants (frequency of 5-FOA-

resistant survivors among the whole population that did not

undergo DSB induction) was 44% in the WT strain. We mainly

observed two types of NRTs, which contained chromosome III

sequences starting from the MAT or HMR loci to the telomere

fused to chromosome VII at the break site (termed T7/3-MAT

and T7/3-HMR translocations for more clarity, Figure 1G).

Author Summary

Genome rearrangements consisting of non-reciprocal
translocations (NRTs) seem to play an important role in
carcinogenesis in humans. They are likely caused by
intracellular mechanisms that are normally committed to
repair breaks occurring in the DNA molecule. Failure of
faithful repair of DNA double-strand breaks (DSBs) often
leads to chromosomal rearrangements when repair occurs
within repeated genomic regions. The break-induced
replication (BIR) pathway of DSB repair is a major source
of complex chromosomal rearrangements, the latter
occurring when BIR involves template switching between
dispersed repeated sequences. Given the deleterious
consequences of such events for genomic stability, it is
of great significance to understand the molecular bases of
BIR. Here, we examined the role of different DNA nucleases
in chromosomal rearrangements and uncovered the
functional involvement of the structure-selective endonu-
cleases (SSEs) subunits Mus81, Yen1, and Slx4 at different
steps during BIR. Our work provides new clues to
understand the origin of NRTs and the role of SSEs in
their generation.

Nuclease Processing of BIR Intermediates
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Interestingly, some survivors lacked linear chromosome III at

its expected size in the PFGE analysis (Figure 1D, 1E). When we

used a probe specific to the region between MAT and HMR loci

(3R2 probe, Figure 1A), chromosome III was detected in the

well, consistent with a particular structure that did not allow it to

enter the gel (Figure 1E). One possibility was that chromosome

III became circular, as had been observed more than three

decades ago [47,48]. To test this, we digested chromosomal

DNA with AsiSI, which cuts chromosome III at a unique inner

location. Indeed, AsiSI digestion released chromosome III into

the gel (Figure 1E). Circular chromosomes III have been shown

to be the product of recombination between unrepressed HMR

and HML loci, which share extensive homology in the X and Z1

regions (Figure 1A) [47]. We observed that the size of the AsiSI

linearized chromosome was concordant with a chromosome III

that would have lost all subtelomeric sequences located beyond

the HM loci. To further demonstrate that circular chromosomes

III occurred by recombination between HMR and HML, we

assayed whether chromosome III circularization would be seen

in hmlD cells. We observed that, in the absence of HML locus, all

survivors contained a linear chromosome III at its expected size

(Figure 1F).

Chromosome III circularization pushed us to investigate the

occurrence of a DSB at HMR. HMR is naturally packed into

heterochromatin to repress its expression and also to impede

cleavage by HO [44]. We asked if HMR invasion would release its

repression and cause HO cleavage. We first assayed HMR

cleavage by Southern at several times after induction of

chromosome VII cleavage by HO and did not observe any cuts

in the WT (Figure S3C). We only detected HMR cleavage in a

hmlD matD strain, in which HMR cleavage represented about a

third of chromosome VII cleavage by HO (17% versus 46% after

3 h of induction; Figure S3B, S3C). Indeed HMR cleavage was

dependent on cleavage at chromosome VII since no cuts were

observed in the hmlD matD strain without HO cut site on

chromosome VII (Figure S3D). We concluded that the induction

of a single DSB by HO in chromosome VII permitted another less

efficient DSB in chromosome III at the HMR locus as a secondary

event. The efficiency of HMR cleavage is expected to be even less

than 17% in the WT strain since the MATa-inc locus is also

available as a template for strand invasion in this strain. HMR

cleavage likely induced chromosome III circularization, which we

observed in 50% of translocants in the WT strain. Apart from T7/

3-MAT, T7/3-HMR translocations and chromosome III circular-

ization, we also observed rare types of rearrangements of

chromosome VII and III whose nature has not been addressed

in this study.

Together, these results demonstrate that complex chromosomal

rearrangements are occurring at a high frequency in our

experimental system, allowing us to investigate the molecular

and genetic bases of these events.

DSB repair involves template switching between MATa-
inc, HMR, and HML

We performed kinetic experiments to follow the recombination

intermediates that gave rise to chromosomal rearrangements using

our system. First, a PCR-based assay was used to monitor new

DNA synthesis primed from the 39 end of the invading strand of

chromosome VII. Genomic DNA was extracted at different times

after HO induction and PCR was made with one primer specific

to chromosome VII (p7, Figure 2A), proximal to the DSB, and

primers specific to each potential template used for recombination,

MATa-inc and HMR (p3-M and p3-R, Figure 2A). In WT cells, 35

cycles of PCR amplification permitted to detect products that most

likely correspond to newly synthesized DNA fragments at both

MAT and HMR loci 1 h after DSB induction (Figure 2B). Using

more quantitative conditions, we detected the same products after

25 cycles of PCR amplification at 2 h of DSB induction (Figure

S4). The amount of products increased over time. We then

monitored the appearance of repair intermediates directly by

Southern analysis of genomic DNA digested by EcoRV, using a

probe specific to chromosome VII, proximal to the DSB site (7L

probe). We detected recombination intermediates between chro-

mosome VII and chromosome III at HMR (7/3-HMR, Figure 2C,

left), which most likely correspond to newly synthesized DNA

fragments 5 h after DSB induction. At MAT, we observed

recombination intermediates 24 h after DSB induction (7/3-

MAT, Figure 2C, left).

Southern analysis also detected an unexpected band that

corresponded in size to chromosome VII fused to chromosome

III sequences at the HML locus (7/3-HML, Figure 2C, left). We

confirmed this assumption by re-probing the Southern membrane

with a probe specific to HML (data not shown). The 7/3-HML

band most likely corresponds to newly synthesized DNA fragments

primed from chromosome VII DSB end at HML and appeared

concomitantly with 7/3-HMR intermediates 5 h after DSB

induction (Figure 2C). We monitored what was most likely new

DNA synthesis primed from the 39 DSB end of chromosome VII

invading HML by PCR. We detected intermediates 2 h after DSB

induction (p7/p3-L, Figure 2B, Figure S4). The DSB end of

chromosome VII assayed by PCR and Southern only shares

sequence homology with MATa-inc and HMR. Hence, the signals

detected at HML would be the consequence of a template

switching from MATa-inc or HMR to HML after duplication of the

Z1 region that is common to the three loci. In a similar way,

template switching could occur between MATa-inc and HMR. 7/

3-HMR and 7/3-HML intermediates detected by Southern

appeared about 3–4 h after detection of priming of the 39

invading DSB end by PCR (Figure 2B, 2C). This difference could

be due to the difference of sensitivity between the two techniques.

Alternatively, this could reflect a transition between the elongation

of the 39 invading DSB end, a step that is common to GC and

BIR, and the establishment of an active replication fork required

Figure 1. Description of the assay used in this study. (A) Schematic representation of chromosomes VII (black) and III (blue) in the haploid
strain; X region (x, black box), Ya region (a, red box), Ya region (a, blue box) and Z1 region (z, green box) are indicated on chromosome III, as well as
the Ya-Z1 fragment on chromosome VII. See text for more details. (B) Determination of translocation events. Cells were plated on solid synthetic
medium containing galactose and survivor colonies were restreaked on rich YPAD medium containing glucose and subsequently replica-plated on
SC+5-FOA and SC-ura. (C) (D) Translocations between chromosomes VII and III were detected by PFGE followed by Southern analysis using the 7L and
the 3R1 probe (see panel A). Chromosomal DNA samples were extracted from previously selected Ura2 5-FOAr survivor colonies. (E) Detection of
circular chromosome III after PFGE and Southern analysis. Chromosomes III that were not hybridized with the 3R1 probe were detected in the gel
wells using 3R2 probe (see panel A). The DNA samples corresponding to circular chromosome III were digested with AsiSI to linearize chromosome III.
C, control strain without translocation. (F) PFGE followed by Southern analysis using the 3R2 probe of Ura2 5-FOAr survivors in hmlD strain. Black
arrows indicate the positions of the T7/3-MAT and the T7/3-HMR translocations and the circular and linear chromosomes III (Chr. III). PFGE, pulse-field
gel electrophoresis. 5-FOAr and 5-FOAs refers to colonies either resistant or sensitive to 5-FOA. (G) Schematic representation of the predominant
chromosomal rearrangements observed in this study.
doi:10.1371/journal.pgen.1002979.g001
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for BIR [11,14]. Using translocants containing T7/3-MAT and

T7/3-HMR translocations, we confirmed the size of the repair

intermediates detected by Southern (Figure 2C, right). We did not

recover any translocant containing translocations corresponding to

repair intermediates detected at HML.

Together, these data show that one unique feature of our

experimental system is that it allows the detection of events of

template switching between MATa-inc and HML and possibly

between MATa-inc and HMR during chromosomal rearrange-

ment. These events of template switching likely participated to give

rise to the formation of T7/3-MAT and T7/3-HMR translocations

and dicentric chromosomes resulting from BIR completed from

HML (Figure 2D). Because dicentric chromosomes are known to

be unstable [49], this may be why we could not detect such type of

chromosomal rearrangement. We noted that BIR initiation at

HMR by the broken chromosome VII would restore an HO

cleavable site that might not be properly silenced in the resulting

translocations. In the latter case, HO cleavage would destabilize

these translocations and their stabilization would require repair by

gene conversion (GC) using the non-cleavable sequences at

MATa-inc.

Mus81 and Yen1 promote chromosomal rearrangements
Observed chromosomal rearrangements likely occurred by BIR

through the invasion of the MATa-inc and HMR loci. Homology of

the centromeric 198-bp Ya-Z1 fragment present at one DSB end

would be used to invade MATa-inc or HMR loci at the Ya region

and to duplicate chromosome III sequences until reaching its right

telomere, generating T7/3-MAT and T7/3-HMR NRTs (type a,

Figure 3). Alternatively, since we observed the cleavage of

chromosome III as a consequence of HMR invasion, it is also

possible that T7/3-HMR translocations occurred by BIR followed

by single-strand annealing (SSA), co-segregating with an intact

chromosome III (type b, Figure 3). Finally, cleaved chromosome

III could circularize and co-segregate with the translocation (type

c, Figure 3).

To confirm genetically the involvement of BIR in the

generation of translocations using our experimental system, we

assayed mutants of Rad52, Rad51 and Pol32 as representative key

functions in BIR. Next, we asked whether DNA nucleases acting

on branched structures such as D-loops, replication forks or HJs

would have a role in the cascade of recombination events that led

to translocations. We chose to study the genetic role of Mus81,

Rad1, Yen1, Slx1 and Slx4 because of their known functions in

recombination processes [25]. Because none of the genes coding

for these SSEs are essential for viability, we assayed deletion

mutants and combined mutants between them to assay redun-

dancy of functions. Although Slx1 and Slx4 form a heterodimer

complex, such as Mus81-Mms4 and Rad1–Rad10, we decided to

study slx1D and slx4D mutations separately because Slx4 seems to

have additional roles in DSB repair apart from regulating the Slx1

nuclease activity [50,51]. We also included the DNA helicase Sgs1

because of its known role in HJ dissolution (Figure 4A).

For each mutant assayed, we recovered survivors after HO

endonuclease induction and selected colonies that contained

translocations between chromosome VII and chromosome III, as

described above (5-FOA-resistant colonies). We did not recover

any translocants in rad52D and rad51D mutants, in which strand

invasion fails to occur (Figure 4A). POL32 deletion reduced 4-fold

the frequency of translocations in comparison with the WT (x2,

p,0.01), arguing in favor of the involvement of the Pol32-

dependent BIR pathway in the generation of the translocations

analyzed in this study. We did not observe any increase of

translocations in sgs1D cells, even though SGS1 gene had been

identified as a suppressor of translocations involving template

switching events [19]. Among the nuclease single mutants, only

mus81D showed a slight but significant decrease in the frequency of

translocants (x2, p,0.01) when compared to the WT. In contrast,

we observed significant decreases in the frequency of translocants

between the WT, mus81D rad1D and mus81D rad1D slx1D mutants,

but these effects were found to be epistatic with mus81D (Figure 4A;

x2, p,0.01). On the contrary, we observed further significant

decreases (x2, p,0.01) in mus81D yen1D mutants, of about 3.5-fold

and 2.5-fold compared to the WT and mus81D, respectively

(Figure 4A). We conclude that Mus81 and Yen1 are both required

for translocations in our assay.

Since it existed the possibility that the translocations were also

produced by BIR/SSA, we assayed translocation formation in an

HMR-inc strain, in which HMR locus would not be susceptible to

HO cleavage and translocations would only be produced by BIR.

We observed that survival dropped from 82% in the original HMR

WT strain to 52% in the HMR-inc WT strain, although the

frequency of translocants remained around 40% (Figure 4B and

Figure S1). In the control HMR-inc background, POL32 deletion

reduced 18.5-fold the frequency of translocations in comparison

with the WT (Figure 4B; x2, p,0.01). This result demonstrates a

clear dependency of translocations on the Pol32-dependent BIR

pathway in this background. We observed a significant decrease of

3.4-fold in HMR-inc mus81D yen1D mutants compared to the

HMR-inc WT but no decrease in the HMR-inc mus81D and HMR-

inc yen1D single mutants (Figure 3B; x2, p,0.01). These results

indicate that Mus81 and Yen1 have overlapping functions in BIR.

To confirm this, we performed time-course experiments to

monitor the kinetics of appearance of BIR intermediates in these

mutants (Figure 4C). Kinetics of DSB formation in the mutants

was similar to the WT, allowing us to directly compare the

accumulation of BIR intermediates at each time point (Figure 4D).

In HMR-inc WT cells, 7/3-HMR and 7/3-HML intermediates

appeared 4 h and 5 h after DSB induction, respectively (Figure 4C,

4D). 7/3-MAT intermediates were detected 6 h after DSB

induction (Figure 4C, 4D), showing that their delayed appearance

in the original HMR WT strain was partly due to HMR cleavage.

Figure 2. Template switching occurs between MATa-inc, HMR, and HML loci. (A) Schematic representation of chromosomes VII and III
showing the positions of the PCR primers, EcoRV sites (EV) and the 7L probe used for the analysis. Distances between the primers and EcoRV sites and
the HO cut sites are indicated. (B) Appearance of BIR repair product, as monitored by PCR, in the WT strain. DNA samples used for PCR were extracted
at intervals after HO induction with galactose. PCR reactions were performed with the p7 primer and either the p3-M, p3-R or p3-L primer (see panel
A). A primer pair corresponding to ACT1 locus on chromosome VI was used to control the amount of genomic DNA used for PCR at each time point.
35 cycles of PCR amplifications were performed. (C) Appearance of BIR repair products, as monitored by Southern analysis with the 7L probe, in the
WT strain. DNA samples were extracted as for the PCR assay. Positions of the bands corresponding to 7/3-MAT, 7/3-HMR and 7/3-HML intermediates,
and to the uncut and cut chromosome VII (chr. VII) are indicated. Two genomic DNA samples coming from survivor colonies containing T7/3-MAT and
T7/3-HMR translocations were included in the experiment. GAL, galactose; h, hours. (D) Schematic representation of BIR events involving template
switching likely occurring in our assay. Black arrows indicate the first invasion events while red arrows indicate the secondary template switching
events. The different possible final outcomes are depicted. The red cross indicates the presence of inc non-cleavable sequences. M; MAT; R, HMR; L,
HML. See text for more details.
doi:10.1371/journal.pgen.1002979.g002

Nuclease Processing of BIR Intermediates

PLOS Genetics | www.plosgenetics.org 6 September 2012 | Volume 8 | Issue 9 | e1002979



No BIR intermediate could be detected in HMR-inc pol32D cells

(Figure 4C, 4D). In HMR-inc mus81D yen1D cells, a decrease of BIR

intermediates was reproducibly observed at all time points

(Figure 4C, 4D). We concluded that Mus81 and Yen1 are both

required for promoting efficient Pol32-dependent BIR.

Template switching is affected in structure-selective
endonuclease mutants

We confirmed by PFGE that all 5-FOA-resistant survivors

analyzed in mutant backgrounds contained chromosome translo-

cations between chromosome VII and chromosome III (Figure 5A

and Figures S5, S6). Notably, a very low amount of T7/3-MAT

translocations (8%) were recovered in WT cells (Figure 5B). In

pol32D cells, no T7/3-MAT translocation was recovered (n = 59,

x2, p,0.05), showing that this type of translocation has a complete

dependency on Pol32 (Figure 5A, 5B). Among the nuclease

mutants, rad1D showed a significant increase of T7/3-MAT

translocations, up to 20% of total translocations (2.5-fold, n = 59,

x2, p,0.01), which was not observed in double mutants with

mus81D and slx1D (Figure 5A, 5B). The concomitant absence of

Mus81, Slx4 and Yen1 engendered an even higher increase (3.1-

fold) of T7/3-MAT translocations that reached up to 25% of total

translocations (n = 58, x2, p,0.01) (Figure 5A, 5B). In kinetic

experiments, both 7/3-HMR and 7/3-HML intermediates accu-

mulated in the rad1D and mus81D slx4D yen1D mutants with

kinetics clearly delayed (2–3 h) respect to the WT, demonstrating a

defect of repair in these mutants (Figure 6A, 6B). At 24 h, signals

for 7/3-HMR, 7/3-HML and 7/3-MAT that likely correspond to

final repair products were detected in all strains. Notably, we

observed a clear increase in the 7/3-MAT/7/3-MAT ratio, up to

24% and 29% in rad1D and mus81D slx4D yen1D, respectively,

compared to the 15% seen in the WT (Figure 6C). This

Figure 3. Various pathways give rise to chromosomal rearrangements. Schematic representation of the different types of repair giving rise
to the chromosomal rearrangements scored in this study. Repair of DSBs in G2 can occur either by BIR, BIR/SSA following HMR cleavage with/without
circularization of chromosome III, gene conversion (GC) or erroneous NHEJ. The repair types of only one DSB are depicted for simplification. The other
DSBs are repaired via either one of the different types. VII, VII9 and III, III9 indicate chromosome VII and chromosome III sister-chromatids, respectively.
U, URA3; M; MAT; R, HMR; L, HML; M/R, MAT or HMR. See text for more details.
doi:10.1371/journal.pgen.1002979.g003
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Figure 4. Genetic analysis of BIR intermediates processing in SSE mutants. (A) (B) Frequency of translocants of the different strains tested.
See Material and Methods for details. ** and *, differences with the WT statistically significant (p,0.01 and p,0.05, respectively, x2 with Yates’
correction) u, statistically different from mus81D (p,0.01, x2 with Yates’ correction). Error bars represent standard deviations. (C) Appearance of BIR
products as monitored by Southern analysis in HMR-inc WT, HMR-inc pol32D and HMR-inc mus81D yen1D strains. Experiments were performed as
described in Figure 2C. A representative Southern analysis is shown for each genotype analyzed. Positions of the bands corresponding to 7/3-MAT,
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observation correlated with the increase of T7/3-MAT transloca-

tions previously observed in these mutants (Figure 5B).

The defects observed in rad1D and mus81D slx4D yen1D mutants

could be explained by the known functions of Rad1 and Slx4 in

SSA [50], which would be required for T7/3-HMR translocation

formation by BIR/SSA. Indeed, in the control HMR-inc WT

strain, the T7/3-MAT translocations represented about 55% of the

translocations observed in 5-FOA-resistant survivors (Figure S7B).

7/3-HMR and 7/3-HML intermediates, and to the uncut and cut chromosome VII (Chr. VII) are indicated. GAL, galactose; h, hours. (D) Quantification of
BIR product accumulation. Quantification results of chromosome VII cleavage (DSB), 7/3-HMR, 7/3-HML and 7/3-MAT BIR intermediates are shown as
percentage. Mean values and standard deviations for 2–3 independent experiments are shown.
doi:10.1371/journal.pgen.1002979.g004

Figure 5. PFGE analysis of T7/3 translocations in SSE mutants. (A) PFGE followed by Southern analysis using the 3R1 probe (See Figure 1G) of
Ura2 5-FOAr survivors in WT, pol32D, rad1D and mus81D slx4D yen1D strains. Black arrows indicate the positions of the T7/3-MAT and T7/3-HMR
translocations and of the linear chromosome III (Chr. III). PFGE, pulse-field gel electrophoresis. (B) Graphical plotting of percent of translocants
containing T7/3-MAT translocations of each strain tested. ** and *, differences with the WT statistically significant (p,0.01 and p,0.05, respectively,
x2 with Yates’ correction). See Table S1 for complete statistical analysis.
doi:10.1371/journal.pgen.1002979.g005
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These results confirmed that the cleavage of the HMR locus upon

its invasion in the HMR WT strain facilitated the formation of T7/

3-HMR translocations as opposed to T7/3-MAT translocations.

Additionally, possible cleavage of HMR upon the passage of the

BIR fork initiated at MATa-inc impaired the formation of T7/3-

MAT translocations. Nevertheless, slx4D single mutants did not

show any increase of T7/3-MAT translocations and mus81D slx4D
yen1D mutants showed a higher increase of T7/3-MAT translo-

cations than rad1D mutants (Figure 5B). We hypothesized that this

was due to a processing defect of BIR intermediates formed at

MATa-inc that impeded subsequent template switching to HMR

and HML. To explore this possibility, we analyzed the kinetics of

appearance of BIR intermediates in mus81D slx4D yen1D mutants,

as well as in the rad1D and slx4D single mutants, in the HMR-inc

background (Figure 6D, 6E). In HMR-inc strains, BIR/SSA does

not occur and the accumulation of 7/3-HML intermediates serves

as an indicator of the efficiency of template switching during BIR.

In contrast to the HMR-inc rad1D and HMR-inc slx4D mutants,

which did not show any significant difference compared to the

HMR-inc WT strain, 7/3-HML intermediates were reproducibly

not detected at all time points in HMR-inc mus81D slx4D yen1D
mutants. Accumulation of 7/3-HMR and 7/3-MAT intermediates

was also significantly lower in the latter strain, probably reflecting

the BIR defect previously observed in HMR-inc mus81D yen1D
cells.

Altogether, these data indicate that DSB repair was altered in

cells lacking Rad1, defective in BIR/SSA, and in cells lacking all

three SSE factors Mus81, Slx4 and Yen1 that show a defect of

template switching during BIR.

Chromosome III circularization and crossover activity
Among the chromosomal rearrangements generated in our

strains, circularization of chromosome III occurred at a high

frequency. No chromosome III circularization was observed in the

control HMR-inc WT strain (Figure S7B), demonstrating that

HMR cleavage induced this secondary recombination event (type

c, Figure 3). HMR cleavage and translocations via BIR/SSA

would leave chromosome III with a one-ended DSB. Thus,

circularization of chromosome III is thought to occur by a

recombination event that ended in a half-crossover, characterized

by a reciprocal exchange between HMR and HML that caused the

loss of the chromosome III left telomere and the formation of a

chromosome circle (Figure 7A). Circularization of chromosome III

is not mandatory for survival of BIR/SSA-mediated translocants

since the translocation can co-segregate with the uninvolved

chromatid of chromosome III (type b, Figure 3). Therefore, we

took advantage of chromosome III circularization events to

investigate the ability of SSE mutant cells to produce half-

crossovers.

PFGE analyses allowed us to detect circular chromosome III in

all strains as signals appearing in the wells (Figure 7B and Figures

S8, S9). In addition to the well signal, we also detected in some

strains a faint signal for the truncated linear chromosome III. This

faint signal corresponds in size to the circular chromosome III

cleaved by AsiSI (Figure 1E). Since we did not find any linkage

between the presence of this signal and a particular genetic

background, we conclude that this is likely due to breakage

occurring during DNA extraction or PFGE. To get further insight

into the mechanism that gave rise to circular chromosomes, we

have evaluated the percent of translocants that contained circular

versus linear chromosomes III for each genotype (Figure 7C).

Whereas about 50% of WT translocants contained a circular

chromosome III, this percent increased significantly to 88%

(n = 59, x2, p,0.01) in pol32D mutants (Figure 7B, 7C). This result

is concordant with previous observations showing that pol32D
defects led to D-loop processing during BIR that generated half-

crossovers [22,23]. Among the SSE mutants tested, the proportion

of translocants containing circular chromosomes III decreased

significantly to 33% and 30% in mus81D and slx1D mutants,

respectively (x2, p,0.05) (Figure 7B, 7C). In contrast to this

observation, the percentage of translocants containing circular

chromosomes III increased significantly up to 72% in mus81D
slx4D double mutants (x2, p,0.01) (Figure 7B, 7C). These results

suggest that Mus81 and Slx4 have different roles regarding

crossover formation. Additionally, we observed that yen1D
mutation suppressed the increase detected in mus81 slx4D mutants,

suggesting that Yen1 action may be possible only in the absence of

Slx4. We conclude that Slx4, which has been described as acting

as a platform with different nuclease complexes [52], might

regulate Mus81 and Yen1 accessibility to recombination interme-

diates or their nuclease activity to generate crossovers.

We also analyzed chromosome III circularization in Ura+

survivors, which did not contain translocations and likely

performed DSB repair by GC or NHEJ (Figure S10). Analogously

to what we observed in the Ura2 translocants, 36% of WT Ura+

survivors contained a circular chromosome III and this percentage

increased significantly to 90% in pol32D mutants (Figure S10E).

This suggests that chromosome III circularization does not depend

on the translocation event and happens similarly in all survivors

whether Ura+ or Ura2. Finally, we calculated the efficiency of

chromosome III circularization for each genotype (Figure 7D).

Pol32 appears to be required for efficient chromosome III

circularization since the calculated efficiency went down signifi-

cantly from 22% in WT to 10% in pol32D translocants (x2,

p,0.05) (Figure 7D). This probably explains the low survival of

pol32D mutants to the DSB induction (Figure S1). Similarly, we

observed a significant decrease in the efficiency of chromosome III

circularization in mus81D yen1D mutants (Figure 7D). This is

consistent with the conclusion that Mus81 and Yen1 play an

important role in the formation of the majority of circular

chromosomes III.

Discussion

We developed an assay to study the molecular mechanisms that

lead to complex chromosomal rearrangements upon induction of a

Figure 6. Template switching is affected in mus81D slx4D yen1D but not in rad1D mutants. (A) Appearance of BIR repair products, as
monitored by Southern analysis, in WT, rad1D and mus81D slx4D yen1D strains. Experiments were performed as described in Figure 2C. (B)
Quantification of BIR product accumulation. Quantification results for chromosome VII cleavage (DSB), 7/3-HMR and 7/3-HML BIR intermediate
accumulation are shown in percent. (C) Quantification of 7/3-MAT/7/3-HMR BIR intermediate ratios 24 h after HO induction. Mean values and
standard deviations for 2–3 independent experiments are shown. (D) Appearance of BIR repair products, as monitored by Southern analysis, in HMR-
inc rad1D, HMR-inc mus81D slx4D yen1D and HMR-inc slx4D strains. (E) Quantification of BIR product accumulation. Quantification results for
chromosome VII cleavage (DSB), 7/3-HMR, 7/3-HML and 7/3-MAT BIR intermediate accumulation are shown in percent. Mean values and standard
deviations for 2–3 independent experiments are shown. A representative Southern analysis is shown for each genotype analyzed. Positions of the
bands corresponding to 7/3-MAT, 7/3-HMR and 7/3-HML intermediates, and to the uncut and cut chromosome VII (Chr. VII) are indicated. Bands
marked with a red asterisk likely result from partial digestion. GAL, galactose; h, hours.
doi:10.1371/journal.pgen.1002979.g006
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DSB. DSB repair occurred by recombination between repeated

DNA sequences dispersed over two different chromosomes and

generated translocations and circularization of chromosomes at a

high frequency. Our data indicate that chromosomal rearrange-

ments occurred primarily by BIR, a HR sub-pathway that involves

the invasion of an intact homologous DNA duplex by only one end

of the DSB and subsequent replication primed from the invading

strand. We have shown with this assay that the structure-selective

endonuclease (SSE) factors Mus81, Yen1, and Slx4 may process

recombination intermediates at different steps during BIR and

cause template switching and half-crossovers.

In our assay, induction of the HO endonuclease produced a

DSB on chromosome VII. Translocants can only be detected if both

chromatids were broken in G2 phase (Figure 3), otherwise the DSB

would be preferentially repaired by sister-chromatid recombination

[53,54], restoring the HO cut site. DSB ends on chromosome VII

display homology to MAT and HMR loci that is mainly restricted to

one end (198-bp out of 240-bp). As previously described, this feature

favors DSB repair by BIR against a conventional gene conversion

mechanism [11]. The centromeric 198-bp DSB end would invade

MAT or HMR at the Ya region and prime BIR synthesis to produce

the observed translocations, which contained chromosome III

sequences from MAT or HMR to the telomere fused to chromosome

VII at the break site, termed T7/3-MAT and T7/3-HMR

translocations. Consequently, the loss of the chromosome VII arm,

distal to the DSB and containing the URA3 marker and non-essential

genes, would lead to the 5-FOA-resistant (Ura2) phenotype of the

translocants (type a, Figure 3). Eventually, the URA3 marker could be

used to convert the endogenous ura3-1 allele on chromosome V and

lead to the rarely observed Ura+ cells containing translocations

(Figure S2B). Alternatively, secondary cleavage of HMR upon its

invasion would promote repair by BIR/SSA and the production of

the same types of translocations (type b, Figure 3). HMR cleavage

would stimulate the circularization of chromosome III, which could

co-segregate with the translocation (type c, Figure 3). Repair by BIR/

SSA and chromosome III circularization do not happen in the HMR-

inc background. The latter observation discards the possibility that the

T7/3 translocations were the products of half-crossovers, with the

translocation co-segregating with the uninvolved chromatid of

chromosome III (analogous to type b, Figure 3), since breakage of

chromosome III would stimulate its circularization. Lastly, DSB

repair by GC with inc non-cleavable sequences or by erroneous

NHEJ could seal the break leading to a mutated and non-cleavable

form of HO site without chromosomal rearrangement and would

maintain the URA3 marker on chromosome VII. This would lead to

the formation of Ura+ survivors. (type d, Figure 3). Altogether, the

differential repair of both DSBs on chromosome VII chromatids gave

rise to the observed Ura+/Ura2 phenotypes of survivor colonies.

Absence of Pol32 impedes template switching and forces
crossover formation

An important aspect that remains unclear is the apparent

instability of the BIR fork, which may be cleaved during its

advance, promoting template switching or producing half-cross-

overs. All essential DNA replication factors except those for pre-

replication complex assembly are required for BIR [14], playing in

favor of fork stability. However, the DNA damage checkpoint is

activated during BIR and dNTP levels are elevated to facilitate

repair, which is thought to happen in the G2 phase of the cell cycle

[11,13,55]. Consequently, DNA synthesis during BIR has been

found to be highly inaccurate [56] and replication fork progression

may be perturbed by the absence of S phase-specific factors.

Interestingly, the nonessential DNA polymerase d subunit Pol32

seems to represent a key factor for BIR completion but performs a

function that is still unknown. In our assay, we observed that pol32D
mutants had a clear defect in producing translocations, but not as

strong as the one observed in rad52D and rad51D mutants (Figure 4A),

confirming that some translocations were produced via BIR/SSA, in

which extensive DNA synthesis would not be required. However,

Pol32 became essential for translocations in the absence of HMR

cleavage in the control HMR-inc strains (Figure 4B). In these strains,

we could not detect any BIR intermediate (Figure 4C), meaning that

Pol32 is required for DNA synthesis of few kilobases and that the

latter was necessary for template switching. Surprisingly, we

observed in pol32D survivors an extremely high level of chromosome

III circularization, even in Ura+ survivors that likely repaired the

DSB on chromosome VII by GC or NHEJ (Figure 7 and Figure

S10). This would mean that DSBs induced at HMR could not be

repaired by HR with MATa-inc sequences in pol32D cells. Indeed,

preferential formation of crossovers between MAT and HMR would

lead to the extrusion of genes essential for viability, whereas

crossovers between HMR and HML would lead to the formation of

stable circular chromosomes. Preferential processing of recombina-

tion intermediates into crossovers in pol32D mutants have been

reported in other studies, in which BIR events were aborted and

resulted in half-crossovers [22,23].

Mus81 and Yen1 redundantly promote BIR
We determined the role of SSEs in the generation of

chromosomal rearrangements using our assay as the goal to

identify the nucleases that are required during BIR. Overall, we

observed a significant decrease of chromosomal rearrangements in

mus81D single mutants that was aggravated in mus81D yen1D
mutants (Figure 4A). We have confirmed that the frequency of

translocants only decreased in the mus81D yen1D mutants in the

HMR-inc background (Figure 4B), in which BIR, and not BIR/

SSA, is expected to occur. This indicates that Mus81 may play a

role in BIR/SSA and that Mus81 functions can be fully taken over

by other proteins during BIR. However, our data show that both

Mus81 and Yen1 carry out redundant or equivalent activities,

which are needed for BIR completion. Mus81 and Yen1 have

already been implicated in DSB repair by recombination but not

directly in BIR. Mus81 has been shown to act at replication forks.

It has been proposed that Mus81 could cleave stalled forks but also

to participate in recombination-mediated repair of cleaved or

collapsed forks to allow their restart in yeast and humans [32–

34,57]. Mus81 is also required in humans for telomere recombi-

nation to allow proliferation of telomerase-negative cancer cells

[58]. Formally, both mechanisms of replication fork restart and

telomere recombination are equivalent to BIR. Yen1 roles in

Figure 7. PFGE analysis of chromosome III circularization in SSE mutants. (A) Schematic representation of circularization of chromosome III
by BIR plus half-crossover. Arrows indicate different ways of intermediate cleavage. (B) PFGE followed by Southern analysis using the 3R2 probe (See
Figure 1G) of Ura2 5-FOAr survivors in WT, pol32D, mus81D, slx4D, mus81D slx4D and mus81D slx4D yen1D strains. Black arrows indicate the positions
of T7/3-MAT translocations, and the circular and linear chromosomes III (Chr. III). PFGE, pulse-field gel electrophoresis. (C) Graphical plotting of
percent of translocants containing circular chromosome III for each strain tested. (D) Frequency of chromosome III circularization among translocants.
** and *, differences with the WT statistically significant (p,0.01 and p,0.05, respectively, x2 with Yates’ correction) 6, differences with mus81D slx4D
statistically significant (p,0.01, x2 with Yates’ correction). Error bars represent standard deviations. See Table S1 for complete statistical analysis.
doi:10.1371/journal.pgen.1002979.g007

Nuclease Processing of BIR Intermediates

PLOS Genetics | www.plosgenetics.org 13 September 2012 | Volume 8 | Issue 9 | e1002979



recombination have been revealed in the absence of Mus81. While

yen1D mutants are repair proficient, mus81D yen1D double mutants

exhibit a higher sensitivity to DNA-damaging agents that disturb

replication fork progression than mus81D mutants [28,30,31].

Together, these data point out that Mus81 and Yen1 may promote

a replication fork restart mechanism. In vitro, Yen1 is a specialized

Holliday junction resolvase [26] whereas the Mus81-Mms4

complex prefers branched DNA substrates that contain a discon-

tinuity or a nick adjacent to the branch point, but also cleaves

normal HJs [27,59–61]. Here, we have demonstrated genetically

that both Mus81 and Yen1 were required for efficient BIR.

According to previously published data, we propose that Mus81 and

Yen1 would act to establish the replication fork required for BIR by

processing recombination intermediates such as D-loops or HJs.

Nevertheless, BIR still occurred at a low frequency in mus81D yen1D
mutants, suggesting that other factors could promote this critical

step of BIR in the absence of Mus81 and Yen1.

Interplay between Slx4, Mus81, and Yen1 causes
template switching and half-crossovers

Our results are consistent with additional roles of Mus81 and

Yen1 in later steps of BIR. We have demonstrated that Mus81,

Slx4 and Yen1 were required together for efficient template

switching during BIR. The mus81D slx4D yen1D mutants showed

an increased occurrence of T7/3-MAT translocations (Figure 5B),

which we infer as being partly due to a defect in template

switching from MAT to the HM loci (Figure 6). However, we did

not observe any increase of T7/3-MAT in mus81D slx1D yen1D
mutants, even though Slx1 is the catalytic subunit of Slx1-Slx4

nuclease heterodimer. On the contrary, we observed a WT or

decreased level of T7/3-MAT translocations in all slx1D mutants.

We concluded that Slx4 and Slx1 act independently in BIR,

presumably because of Slx4 additional functions apart from Slx1

at the replication fork [51,62,63]. Regarding the involvement of

SSEs in half-crossover production, the absence of Mus81 or Slx1

significantly decreased the amount of circular chromosomes III

among translocants (Figure 7C). Notably, no further decrease was

observed when removing Mus81, Slx1/Slx4 or Yen1, all of which

have been involved in crossover formation during meiosis in yeast

[64,65]. This could be due to the involvement of other nucleases

such as Mlh3 and Exo1, as recently reported during the revision of

this manuscript [65].

Our assay does not permit a direct analysis of the role of SSEs in

half-crossover since the formation of circular chromosomes III is

limited by the frequencies of translocations, template switching

and HMR cleavage. In principle, HML could also be cleaved upon

invasion so that an HMR/HML double cleavage could lead to a

circular chromosome III by an SSA-like mechanism. However,

this hypothesis is not supported by our results as we observed a

similar frequency of circular chromosomes III in rad1D mutants

and WT. Instead, circularization of chromosome III via SSA

would generate a heterologous single-stranded DNA overhang

that would require Rad1 for its removal [66] and, indeed, we have

observed a requirement of Rad1 in the formation of T7/3-HMR

translocations via BIR/SSA in our assay (Figure 5 and Figure 6).

Despite the limitations of our assay, our genetic data suggest an

interesting interaction between Mus81, Yen1 and Slx4 SSEs.

Whereas mus81D translocants showed a decrease in the frequency

of circular chromosomes III, mus81D slx4D translocants showed a

significant increase, which was suppressed in the additional

absence of Yen1 (Figure 7C). These results suggest that Slx4

may have a specific role in regulating the ability of Mus81 and

Yen1 to catalyze half-crossovers. It has been previously shown that

Mus81 is involved in half-crossovers following BIR [23] and that

Mus81 and Yen1 independently promote crossovers during gene

conversion, Yen1 serving as a backup function in mus81D cells

[30]. However, here we uncover two parallel pathways, one using

Mus81 and Slx4 and the other Yen1. This is in agreement with a

similar involvement recently described for these nucleases in two

pathways of crossover formation during sister-chromatid recom-

bination [67]. It remains unclear how Slx4 may regulate Mus81

and Yen1. A recent cell-cycle analysis of Mus81-Mms4 and Yen1

revealed that their catalytic activities are regulated by phosphor-

ylation events. In mitotic cells, Mus81-Mms4 is hyperactivated by

Cdc5-mediated phosphorylation at G2/M while Yen1 is activated

later by dephosphorylation in M phase [27]. Nevertheless, it

remains unknown if Yen1 can be activated earlier in the absence

of Mus81 or upon DSB induction. Mec1/Tel1 kinases phosphor-

ylate Slx4 in response to DNA damage [50,51] and may

participate in modulating context-specific protein interactions

between Slx4, Mus81 and Yen1 and allow substrate accessibility to

activated Mus81 and Yen1. Altogether, our results suggest that

Slx4 plays a central role during BIR. Slx4 may regulate Mus81

and Yen1, whose cleavage activities are required for replication

fork establishment and could either cause template switching or

half-crossovers.

In the case of one-ended DSBs, it has been proposed that

dynamic displacement of the invading strand out of the D-loop

would contribute to template switching [16]. This implies that the

invading strand would be displaced early during BIR, after a short

tract of DNA synthesis. Nevertheless, events of template switching

have been observed in later steps of BIR, as far as 10-kb

downstream of the site of invasion [16,23]. Such a synthesis would

expose long tracts of single-stranded DNA if it were the result of

the sole extension of the invading strand. Despite the fact that such

long single-stranded DNA tails have been involved in gene

conversion events monitored in mitotic gap repair assays, we

propose that, at some point, priming of lagging strand synthesis

would ensure a better protection of the recombination interme-

diates, safeguarding genome stability. Thus, we propose that

template switching events would happen after the establishment of

the BIR fork and priming of lagging strand synthesis. In vitro data

showed that canonical replication forks are among the preferred

substrates of Mus81-Mms4 and Yen1 [25,68], therefore we

propose that Mus81, Slx4 and Yen1 would act on the replication

fork during BIR to cause template switching and half-crossovers.

An integrated model to explain BIR–mediated
chromosomal rearrangements and the role of structure-
selective endonucleases

Our results together with previous data permit us to propose a

new model for BIR and the role of the different SSEs used in this

study (Figure 8). During HR, priming of synthesis from the 39

invading end extends the initial D-loop and failure to capture the

other DSB end would promote BIR. We propose that Mus81 would

cleave the extended D-loop structure to allow the establishment of a

replication fork. In the absence of Mus81, branch migration of the

D-loop would create an intact Holliday junction, which could be

processed by Yen1 with the same outcome. Pol32 would promote

extensive DNA synthesis and complete replication would generate a

non-reciprocal translocation (NRT). We propose that the BIR fork

could stall and be processed by Mus81-Slx4-Yen1 to cause template

switching ([a], Figure 8). Differential cleavage of the BIR fork by

Mus81-Slx4-Yen1 would terminate BIR at the expense of a half-

crossover ([b], Figure 8).

Altogether, this work brings a clearer view about the

involvement of SSEs in the BIR mechanism of DSB repair.

Importantly, we show that SSEs are involved in replication
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template switching and half-crossovers, which generate complex

chromosomal rearrangements and prolonged cycles of genomic

instability. Such events are thought to be at the origin of various

genomic disorders and cancer development [24,69].

Materials and Methods

Yeast strains and plasmids
All Saccharomyces cerevisiae yeast strains used in this study are in

W303-1a background (his3-11, 15 leu2-3, 112, trp1-1 ura3-1 ade2-1

can1-100 rad5-535) [70] and harbor MATa-inc, ade3D::gal-HO and

leu2D::SFA1 alleles [53]. The MATa-inc HMR-inc strain was

obtained by mating-type switching inducing HO expression in a

MATa HMR-inc strain. Independent survivors to HO expression

were selected and the MAT and HMR loci were sequenced to

verify the MATa-inc HMR-inc genotype. Deletion mutants were

either obtained by the PCR-based gene replacement method

(verified by PCR and Southern) or by genetic crosses (verified by

tetrad analysis). Deletion of MAT is only partial (matDYZ) because

of the presence of other genes overlapping with MAT. Only the Y

and Z sequences, containing the HO cut site, have been removed.

Insertion of a HO-cleavable 240-bp HMR fragment at the ADH4

locus has been conducted as follows. Two 59 and 39ADH4

fragments were amplified by PCR with the following primer pairs

Figure 8. BIR model showing SSEs involvement in template switching and half-crossovers. After invasion of the homologous template by
one end of the DSB, a D-loop is formed and extended by the priming of DNA synthesis from the invading strand 39 end. The D-loop can be
specifically cleaved by Mus81 or branch migrated to create a HJ cleavable by Yen1, to establish a replication fork. Extensive replication, which requires
Pol32, would complete BIR and generate a non-reciprocal translocation (NRT). Alternatively, [a] cleavage of the replication fork by Mus81-Slx4-Yen1
would allow re-invasion of the same template or template switching. [b] cleavage of the replication fork by Mus81-Slx4-Yen1 would terminate the BIR
event, causing a half-crossover (NRT). RF, replication fork, HJ, Holliday junction.
doi:10.1371/journal.pgen.1002979.g008
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ADH4-59#1 GCGCGCGGTACCGAATTCAAACCGCTGAT-

TACATCAAA and ADH4-59#2 GCGCGCAGATCTATC-

GATCTCGAGTCTAGACTAGACCAGTAGCAGCAGTC, and

ADH4-39#1 GCGCGCAGATCTGCTAGCACTAGTGGATC-

CCTTAGTCGCTGCATACAAAG and ADH4-39#2 GCGCG-

CGAGCTCGAATTCGCACACGCATAATTGACGTT. These

two fragments were cloned by the gap repair method in pBluescript

II(SK+) previously digested by KpnI and SacI to create pBP99

plasmid. A BglII-BamHI URA3 containing fragment from sp392

plasmid [71] was then cloned in pBP99 digested with BglII to create

pBP102. Finally, the HMR fragment was amplified from genomic

DNA with the primer pair HO-HMR-Hind3 GCGCGCAAGCTT-

CAACCACTCTACAAAACCAAAACCA and HO-HMR-Nhe1

GCGCGCGCTAGCAGAAGAAGTTGCAAAGAAATGTGGC

and cloned into pBP102 after digestion with HindIII and NheI, to

create pBP102-HO. pBP102-HO was linearized with PvuII and

transformed into yeast. Integration was selected by uracile prototro-

phy and verified by PCR and Southern analysis.

Determination of survival and translocation frequencies
Yeast cells were grown in yeast extract-peptone-adenine-

dextrose (YPAD) until reaching the exponential phase of growth,

appropriately diluted with H2O and plated on synthetic complete

(SC) medium containing either 2% glucose or 2% galactose as a

carbon source. Survivor colonies on galactose-containing plates

were then restreaked on YPAD plates and replica-plated on SC

plates containing 5-FOA (USBiological), a drug that generates a

toxic metabolite in Ura+ cells, or on SC plates lacking uracil.

Frequencies were calculated as follows: survival frequency = cfu

galactose/cfu glucose; translocants frequency = (cfu galactose

Ura25-FOAr+(cfu galactose Ura+5-FOAr)/2)/cfu glucose. 96 to

288 survivor colonies, recovered from 2 to 3 independent

induction experiments, were analyzed for each strain tested.

Statistical analysis was performed using the x2 test with Yates’

correction.

Kinetic analysis of BIR intermediates by PCR and
Southern analysis

Yeast cells were grown at 30uC in liquid YPAD until reaching

the exponential phase of growth, washed twice with synthetic

complete medium SGL (3% glycerol, 2% lactate) and cultured

overnight in SGL until reaching an OD600 nm<0.5 when galactose

was added at a final concentration of 2%. Cells were taken at

different times after galactose induction and genomic DNA was

extracted in agarose plugs according to standard procedures.

Agarose plugs were incubated twice in 200 ml 16 b-Agarase I

reaction buffer for 30 min, melted at 65uC for 10 min, equilibrated

at 42uC for 15 min and treated with b-Agarase I (New England

BioLabs) at 42uC for 1 h before PCR amplification. These were

performed with 250 ng of genomic DNA (estimated with Nano-

Drop, Thermo Scientific) in a total volume of 30 ml in the following

conditions: 16 Phusion HF buffer, 200 mM each dNTP, 0.6 U

Phusion DNA polymerase (Finnzymes), 0.5 mM each primer.

Samples were denatured for 45 s at 98uC, then cycled 25–35 times

with 20 s denaturation (98uC), 30 s annealing (57uC) and 45 s

extension (72uC) followed by a final extension step of 5 min at 72uC.

PCR was performed with primer p7 GCACACGCATAATT-

GACGTT and primers p3-M GAAGACTTGTGGCGAAGA, p3-

R CCAACATTTAGGAAAAAACG or p3-L CGGATGGCA-

CAAGGAACACGCATTT. Control PCR was performed with

primers corresponding to ACT1 locus, ACT1up TTCACGCT-

TACTGCTTTTTTC and ACT1low CAAGGCGACGTAACA-

TAGTTT. PCR products were subjected to gel electrophoresis in

0.8% agarose and stained with ethidium bromide. Instead of b-

Agarase I treatment, plugs were digested with 30 U of EcoRV

restriction enzyme for 5 h at 37uC and loaded in a 1% agarose gel

for Southern analysis. Electrophoresis was run at 80 V for 16 h30

and DNA was transferred into Hybond-XL membranes (GE

Healthcare) in alkaline conditions. Membranes were probed with

dCT32P-labelled PCR fragments obtained with ADH4-39#1 and

ADH4-39#1 primers (7L probe). Quantification of DNA signals

was made relative to the total DNA of each lane and was performed

using ImageGauge 4.2 (Fujifilm) program.

Pulsed-field gel electrophoresis (PFGE) analysis
For each strain, 28 to 84 independent Ura- 5-FOAr survivor

colonies were grown in 2,5 ml of YPAD medium overnight at

30uC. Agarose plugs containing chromosomal DNA were made

according to the manufacturer’s instructions (Bio-Rad). AsiSI

digestion was performed incubating agarose plugs twice in 1 ml

16NEBuffer 4 for 30 min and digested in 200 ml 16NEBuffer 4

with 30 U of AsiSI restriction enzyme for 5 h (New England Biolabs).

Agarose gels (0.9%) were run in a Bio-Rad CHEF MapperXA

apparatus for 16 h at 6 V/cm with a switch time of 70 s and for an

additional 12 h at 6 V/cm with a switch time of 120 s. Then, gels

were stained with ethidium bromide and DNA was transferred into

Hybond-XL membranes (GE Healthcare) in alkaline conditions.

Membranes were probed with dCT32P-labelled PCR fragments

obtained with primers ADH7#1 TGTTGGCTAAAGCTATGG

and ADH7#2 TTCTTCGCTGATCGG (3R1 probe), ARS315#1

AAACCAGTCTTTAACCGCCATAATG and ARS315#2 CA-

GAGCCCAAGAGATAGCCGAACTT (3R2 probe), and with

primers HML+HMR-F CAAACATCTTAGTAGTGTCTGAG-

GA and HML+HMR-R CTGTAATTTACCTAAGTTACCA-

GAG (X probe). Chromosomal rearrangements different from

T7/3-MAT or T7/3-HMR translocations or circular chromosomes

III and revealed by the PFGE analysis were not included in the

statistical analyses.

Supporting Information

Figure S1 Survival frequency to DSB induction in the WT and

SSE mutants. Graphical plotting of survival frequency of each

strain tested. See Material and Methods for more details.

{, frequency,1024. Error bars represent standard deviations.

(TIF)

Figure S2 PFGE analysis of translocations in mixed Ura+ 5-

FOA-resistant colonies. Translocations between chromosomes VII

and III were detected by PFGE followed by Southern analysis

using the 7L (A) and the 3R1 (B) probe. Chromosomal DNA

samples were extracted from previously separated Ura+ and 5-

FOA-resistant cells. Black arrows indicate the positions of the T7/

3-HMR translocations and of the linear chromosome III (Chr. III).

(TIF)

Figure S3 DNA invasion at HMR causes its cleavage. (A)

Schematic representation of chromosomes VII and III in our

assay. Localization of the 7L and X probes is indicated. (B)

Detection of HO cleavage on chromosome VII, as monitored by

Southern analysis using the 7L probe in the WT and hmlD matDYZ

strains. DNA samples were extracted at different intervals after

HO induction with galactose. Positions of the bands corresponding

to the uncut and cut chromosome VII (chr. VII) are indicated. (C)

(D) Detection of HMR cleavage product, as monitored by

Southern analysis using the X probe in the WT and hmlD matDYZ

strains and the hmlD matDYZ strain without HO cut site in

chromosome VII. DNA samples were extracted at different

intervals after HO induction with galactose. Quantification of
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cleavage at each time point is indicated at the bottom. Positions of

the bands corresponding to MAT, HMR, HML, cut MAT, cut

HMR, cut HML and matDYZ are indicated. GAL, galactose; h,

hours.

(TIF)

Figure S4 Analysis of repair synthesis products in WT cells, as

monitored by PCR. Experiments were performed as in Figure 2B

except that in this case only 25 cycles of PCR amplifications were

done.

(TIF)

Figure S5 Genetic analysis of T7/3 translocations in SSE

mutants. PFGE followed by Southern analysis using the 3R1

probe of Ura2 5-FOAr survivors in the WT and different mutants

combination strains. Black arrows indicate the positions of the T7/

3-MAT and T7/3-HMR translocations and of the linear

chromosome III (Chr. III).

(TIF)

Figure S6 Genetic analysis of T7/3 translocations in SSE

mutants. Details as in Figure S5.

(TIF)

Figure S7 PFGE analysis of translocations in the HMR-inc WT

strain. (A) Schematic representation of chromosomes III. Local-

ization of the 3L and 3R1 probes is indicated. PFGE followed by

Southern analysis using the 3R1 (B) or 3L probes (C) of Ura2 5-

FOAr survivors in the control HMR-inc WT strain. Black arrows

indicate the positions of the T7/3-MAT and T7/3-HMR

translocations and the circular and linear chromosomes III (Chr.

III).

(TIF)

Figure S8 Genetic analysis of chromosome III circularization in

SSE mutants. PFGE followed by Southern analysis using the 3R2

probe of Ura2 5-FOAr survivors in the WT and different mutants

combination strains. Black arrows indicate the positions of T7/3-

MAT translocations, and the circular and linear chromosomes III

(Chr. III). A red asterisk (*) indicates residual labeling of the 3R1

probe.

(TIF)

Figure S9 Genetic analysis of chromosome III circularization in

SSE mutants. Details as in Figure S8.

(TIF)

Figure S10 Analysis of chromosome III circularization in Ura+

survivors. (A), (B) Southerns from Figure 1D and Figure S2 were

re-hybridized with the 3R2 probe to show the presence of circular

chromosomes III in the wells. (C), (D) PFGE followed by Southern

analysis using the 3R1 and 3R2 probes of pol32D Ura+ 5-FOAs

survivors. (E) Frequency of Ura+ survivors carrying a circular

chromosome III in WT and pol32D strains. **, differences with the

WT statistically significant (p,0.01, x2 with Yates’ correction).

(TIF)

Table S1 Statistical analysis of PFGE data. The number of

translocants analyzed by PFGE and those that contained a T7/3-

MAT translocation or a circular chromosome III are indicated for

each genotype. Numbers in parentheses correspond to the

percentage of the total. The differences between the WT were

analyzed using a x2 test with Yates’ correction. *, statistically

significant P values are 0.05 for x2.3.84 and 0.01 for x2.6.63.

n.d., not determined.

(DOC)
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