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ABSTRACT. \Ve apply the anharmonic oscillator symmetry model to the description of vibrational
excitations in V3h and Td molecules. A systematic procedure can be used lO establish the relation
between the algebraic and configuration space formulations, by means of which new interactions
are found in the algebraic model, leading to reHable spectroscopic predictions. \Ve illustrate the
method for the case of triatomic D3h molecules and the Td ne,-cluster.

RESUMEN. Utilizamos el modelo de simetría de osciladores anarmónicos para describir las excita-
ciones vibracionales en moléculas con simetría V3h y Td. Un procedimiento sistemático permite
establecer la reladón entre la formulación algebraica y la de! espado de configuración. Mediante
esta conexión se encuentran nuevas interacciones en el modelo algebraico que dan lugar a predic-
ciones espectroscópicas confiables. Ilustramos el método para el caso de moleculas triatómicas V3h
y para el cúmulo de berilio Be4 con simetría tctraédrica.

PACS: 33.20.Tp; 33.15.Mt; 03.65.Fd

The study of molecular vibrational spectra [1] requires theoretical models in order to ana-
Iyze and interpret the measurements [2]. These models range from simple parametrizations
of the energy levels, such as the Dunham expansion [21, to ab initio calculations, where
solutions of the Schriidinger equation in different approximations are sought [3-5). In gen-
eral, the latter involve the use of internal coordinates and the evaluation of force field
constants assodated to derivatives at the potential minima. While this method can be
reliably applied to small molecules [6]' it quickly becomes a formidable problem in the
case of larger Illolecules, due to the size of their configuration spaces. New calculational
tools to describe cOlllplex molecules are thus needed.
In 1981 an algebraic approach was proposed to describe the roto-vibrationaI structure of

diatomic molecules [7]' subsequently exten<!cd to linear tri- and fOllr-atomic molecules [81
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and eertain non-linear triatomie moleeules [9]. Although these were eneouraging results,
the model eould not be extended to polyatomie moleeules, due to the impossibility of
ineorporating the underlying diserete symmetries. This diffieulty eould be surmounted
by treating the vibrational degrees of freedom separately from the rotations. In 1984 Van
Roosmalen et al. proposed a U(2) ba.sed model to describe the stretehing vibrational modes
in ABA moleeules [10], later extended to describe the stretehing vibrations of polyatomie
moleeules sueh as oetahedral and benzene like moleeules [11]. Reeently the bending modes
have a!so been included in the framework, whieh was subsequently applied to describe
C2v-triatomie moleeules [12J and the lower excitations of tetrahedral moleeules [13], using
a seheme whieh combines Lie-algebraie and point group methods. In a different approach,
it has also been suggested to use a U(k + 1) model for the k = 3n - 3 rotational and
vibrational degrees of freedom of a n-atomie moleeule. This model has the advantage that
it ineorporates all rotations and vibrations and takes into aeeount the relevant point group
symmetry [14J, but for larger moleeules the number of possible interaetions and the size
of the Hami1tonian matrices inerease very rapidly, making it impraetieal to apply.

A1though the algebraie formulations have proved useful, several problems remained,
most important of whieh is the absenee of a clear eonneetion to traditional methods. On
the other hand, a related problem is the laek of a systematie proeedure to eonstruet all
physically meaningful interaetions in the algebraie spaee. In this paper we show that both
these issues can be resolved by means of a general model for the analysis of molecular vi-
brational speetra, the anharmonie oscillator symmetry model (AOSl\l). In this approaeh
it is possible to constrnet algebraie operators with well defined physieal meaning, in par-
ticular interaetions fundamental for the deseription of the degenerate modes present in
systems exhibiting high degree of symmetry. The proeedure to construet them takes full
advantage of the di serete symmetry of the moleeule and gives rise to all possible terms
in a systematie fashion. The harmonic limit of the model provides a clear-eut connection
between the algebraic scheme and the traditional analyses based on internal coordinates.

As a test for this approach we apply the AOSM to the Be4 cluster [15J and to three
D3h triatomic molecular systems, namely Hj, I3e3 and Naj [16]. Since small molecules
can in general be well described by means of ab initio calculations [17,18], we emphasize
the basic purpose of this work. \Ve have established an exact correspondence between
configuration space and algebraic interactions by stndying the harmonic limit of the U(2)
algebra. This general procedure not only allows to derive the interactions in the AOSM
from interactions in eonfiguration space, but can also be applied to cases for which no
configuration space interaetions are available. The 'D3h-triatomie moleeules constitnte the
simplest systems where degenerate modes appear and where the new interaetions in the
model become significant. In the case of I3e4, a direct comparison with ab initio ealculations
will be presented. The application of these techuiqnes to more complex systems, such as
the methane moleenles, is presently under investigation [19].

The model is based on the isomorphism of the U(2) Lie algebra and the one dimensional
Morse oscillator

f¡2d2 'h r

11 = --- + D(e-d - 2e-;1), (1)
2" dx2

whose eigenstates [ can be a.,"o<:iated with U(2) :> SO(2) states [20]. In order to see how
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this isomorphism comes about, consider the radial equation

I ( I d d a
2 2)- ---d r-d + 2" + r <,i>(r) = (N + I)<,i>(r),2 rr r r

(2)

which corresponds to a two-dimensional harmonic oscillator (in units where h = J1, = e = 1)
associated to a U(2) symmetry algebra [21]. By carrying out a change of variable

Eq. (2) transforms into

[ d2 (N+I)2 ] (a)2- d
p
2 + -2- (e-2p - 2e-P) <,i>(p) = - "2 <,i>(p), (3)

which can be identified with (1) after defining x = pd and multiplying by h2 /2J1,d2, provided
that

(4)

[=
h2 2

- 2J1,d2m , (5)

where we have defined m = a/2. In the framework of the U(2) algebra, the operator IV
corresponds to the total number of bosons and is fixed by the potential shape according
to (4), while m, the eigenvalue of the 50(2) generator i" takes the values m = :f:N /2,
:f:(N - 2)/2, .... The Morse spectrum is reproduced twice and consequently for these
applications the rn-values must be restricted to be positive. In terms of the U(2) algebra,
it is elear from (3-5) that the Morse Hamiltonian has the algebraic realization

(6)

In addition, the U(2) algebra ineludes the raising and lowering operators .i+, .i_, which
connect different energy stat.es in (3), while the angular momentum operator is given by
j2 = Ñ(Ñ + 2)/4, as can be readily shown.

The Morse Hamiltonian (6) can be rewritten in tlle more convenient fonn

(i)

wllere we have used the relation .i¡ = .i2 - (';+.L + ';_';+)/2 and add"d a constant
term AÑ2/4 in order to place the ground state at zero energy. The parameters N and A
appearing in (i) are related to the usual harmonic and anharmonic constants We and XeWe
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used in spectroscopy [7). To obtain this relation it is convenient to introduce the quantum
number

N
V=--ln2 ' (8)

which corresponds to the number of quanta in the oscillator [211. In terms of u, the
corresponding energy expression takes the form

( N2) AE' = -A m2 - 4 = -2(N + 1/2) + A(N + l)(u + 1/2) - A(u + 1/2)2,

from which we immediately obtain

We = A(N + 1),

XeWe = A.

(9)

(10)

Thus, in a diatomic molecule the parameters A and N can be determined by the spectrn-
scopic constants We and XeWe-

We now consider the U,(2) :J 5U,(2) :J 50,(2) algebra, which is generateo by the set
{G;} == {Ñ" j+,;, L", jo,;}, satisfying the commutation relations

[Ñi, j~,d = O, (11)

with J1 = :l:, O. As mentioned before, for the symmetric irreducible representation [N;, O]
of U;(2) one can show that the Casimir operator is given by [211 1;2 = Ñ,UV, + 2)/4, from
which follows the identification j, = N;j2. The 50,(2) label is denoted by m,.
In the algebraic approach eaeh relevant interatomic interaction is associated with a Ui(2)

algebra [11]. As a specific example, we eonsider the ne. cluster, whieh has a tetrahedral
shape. 1)3. molecules can be similarly treated. In the ne. case there are six Ui(2) algebras
involved (i = 1, ... ,6). The operators in the model are expressed in terms of the generators
of these algebras, and the symmetry requirements of the tetrahedral group Td can be
readily imposed [13,22]. The local operators {G;} aeting on bond i can be projected to
any of the fundamental irreps r = Al, E and F2. Using the j~" generators (11) we obtain
the T,¡ tensors

(12)

where JI = :l:, O and "1 denotes the component uf r. The explicit. expressions are given by

1 6 •
tAl '" J~,1 = .j6 L. ~,"

1=1

t;'1 = 2~ (j",l + j",2 - 2j,.,3 + .J",. - 2.J~,5+ .J",6) ,
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(13)

The Hamiltonian operator can be constructed by repeated couplings of these tensors to a
total symmetry Al, since it must commute with aH operations in T.t. This is accomplished
by means of the T.t-Clebsch-Gordan coefficients [13,22,231.
AH calculations are carried out in a symmetry-adapted basis, which is projected from

the local basis

U 1 (2) (9 ... (9 U6(2) ::> 501 (2) (9 ... (9 506(2) ::> 50(2)
! !! !!

IINd, ... , [N6]; VI, ... , V6; V)
(14)

in which each anharmonic osciHator is weH defined. I3y symmetry considerations, Ni = N
for the six oscillators, Vi = N;J2 - midenotes the phonon number in bond i and V = Li Vi
is the total number of phonons [13,21]. The one-phonon states V = 1 are denoted by I i)
with Vi = 1 and Vj¡ti = O. Using the same projection technique as for the generators (13),
we find the six fundamental modes

6

14>; = L ,';';1 i).
i=1

(15)

The expansion coefficients are the same as in (13). The higher phonon states v 4>; can also
be constructed using the Clebsch-Gordan coefficients of T.t [13,22]. 5ince aH operators are
expressed in terms of powers of the U,(2) generators, th,eir matrix elements can be easily
evaluated in closed formo The symmetry-adapted operators (13) and states (15) are the
building blocks of the model. l\'ole that for more complex molecules, the method aHows
the exact elimination of spurious states [1U].
\Ve now proceed to expicitly conslruct the I3e4 Hamiltonian. For interactions lhat are

at most quadratic in the generalors the procedure yields

(16)

with

( 17)
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Note that we have not included VAl in (16), since the combination

¿(itr+Vr) = NI ¿Ñ;(Ñi+2),
r 4 ;

(18)

is a constant 3(N + 2)/4. The five interaction terms in Eq. (16) correspond to linear
combinations of the ones obtained in lowest order in Refs. [11,131. However, it is necessary
to include interactions which are related to the vibrational angular momenta associated
with the degenerate modes E and F2• These kind of terms is absent in the former versions
of the model [11,131. We now proceed to show how they can be obtained in the AOSM. In
configuration space the vibrational angular momentum operator for the E mode is given
by [24]

iA, _ . (E a E a )
- -1 q¡ aqf - q2 aqf ' (19)

where qf and qf are the normal coordinates associated to the E mode. This relation can
be transformed to the algebraic space by means of the harmonic oscillator operators

to obtain

rt _ 1 (r a)
b~ - J2 q~ - aq~ '

r l(r a)
b~ = J2 q~+ aq~ ' (20)

(21 )

Here bf = L; uf,; bi, with a similar form for b~ t, while the uf; can be read from (13).
In order to find the algebraic expression for iA, we first introduce a scale transformation
in (11)

(22)

The relevant commutator can be expressed as

where

• Ñi •
Vi = 2 - Jo,¡o

(23)

(24)

The other two commutators in (11) are not lIlodified by (22). In the harlIlonic limit, which
is defined by Ni ~ 00, Eq. (23) reduces to the standard boson commutator [bi, bl) = 1.
This lilIlit corresponds to a contractioll of SU(2) to the Weyl algebra and can be used to
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obtain a geometric interpretation of AOSM operators in terms of those in configuration
space. In the opposite sense, Eq. (22) provides a procedure to construct the anharmonic
representation of harmonic operators through the correspondence b1 -. ti1 = j -,;/..,fliTi
and b. -. ti. = j+.;/..,fliTi. Applying this method to the vibrational angular momentum
(21) we find

(25)

For the vibrational angular momentum if' associated with the F2 mode we find a similar
expression. The AOSM form of the corresponding Hamiltonian interactions is

NI = 922 iA, iA, + 933 L if' if'.
1

(26)

\Vith this method we obtain an algebraic realization of arbitrary configuration space
interactions. As a simple example, a one-dimensional harmonic oscillator Hamiltonian
Ni = (b1b. + bib1)/2, transforms into

(27)

where in the !ast step we used relation (24). The spectrum of (27) has an anharmonic
correction, analogous to the quadratic term in the Morse potential spectrum. \Ve are thus
substituting harmonic oscillators by Morse oscillators in the AOSM.
A more interesting application is to use our model to fit the spectroscopic data of

several polyatomic molecules. In the case of I3e4 the energy spectrum was analyzed by ab
initio methods in [171, where force-field constants corresponding to an expansion of the
potential up to fourth order in the normal coordinates and momenta were evaluated. We
have generated the ab initio spectrum up to three phonons using the analysis in [24). For
the algebraic Hamiltonian we take [15]

N = Wl HA, + W2 HE + W3 HF, + X33 (HF,) 2 + X12 (HA, HE) + XI3 (HA, HF,)
+ 933 L if' if' + t33 033 + t13 013. (28)

1

The terms 033 and 023 represent the algebraic form of the corresponding interactions
in [24) which are responsible for the splitting of the vibrational levels in the (VI, v2' v!) =
(0,0°,22) and the (0,11,11) overtones [15).

In Table I we show the fit to Be4 using the Hamiltonian (28). The fit includes all
levels up to V = 4 phonon sta tes and gives a r.m.s. deviation of 2.6 cm-1, which can
be considered of spectroscopic quality. In Table 1 we only show the results for V :5 3
levels. We point out that in [17,241 several higher order interactions are present which we
have neglected. Since our mode! can be put into a one to one correspondence with the
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TABLE I. Vibrational excitations of Be, using the algebraic Hamiltonian with parameters given
in the texto The ab initio (N - 00) spectrum is generated with the parameters from [17J. The
energies are given in cm-l.

V (VI, v2", v!) r Ab initio Present V (Vh v;', v~) r Ab initio Present
N-oo N =44 N-oo N =44

1 (1,0°,0°) A, 638.6 637.0 3 (1,0°,2°) A, 2106.8 2105.6
(0,1',0°) E 453.6 455.0 (1,0°,2') E 2000.1 1999.8
(0,0°,1') F, 681.9 678.2 F, 2056.8 2052.8

2 (2,0°,0°) A, 1271.0 1269.2 (0,3',0°) E 1341.3 1343.7

(1,1',0°) E 1087.1 1087.0 (0,33,0°) A, 1355.5 1352.5

(1,0°,1') F, 1312.6 1308.3 A, 1355.5 1354.4

(0,2°,0°) Al 898.3 901.4 (0,2°.',11 ) F, 1565.5 1565.7

(0,2',0°) E 905.4 906.1 F, 1584.4 1583.1

(0,1',1') F, 1126.7 1125.1 (0,2',1') F, 1578.5 1578.0

F, 1135.5 1134.1 (O, 1',2°.') E 1821.4 1821.6

(0,0°,2°) A, 1484.0 1483.0 E 1929.5 1929.0

(0,0°,2') E 1377.3 1373.9 (O, 1',2') A, 1813.3 1813.1

F, 1434.1 1429.6 A, 1830.8 1831.7

3 (3,0°,0°) A, 1897.0 1896.7 F, 1874.4 1873.2

(2,1',0°) E 1714.3 1714.3 F, 1883.2 1883.0

(2,0°,1') F, 1937.0 1933.7 (0,0°,3,,3) F, 2136.5 2134.2

(1,2°,0°) A, 1526.6 1529.2 F, 2327.3 2326.9

(1,2',0°) E 1533.7 1532.8 (0,0° ,3') F, 2199.8 2197.1

(1,1',1') F, 1752.2 1749.7 A, 2256.5 2254.4

F, 1761.0 1759.8

configuration space calclllations, it is in fact possible to improve the accllracy of the fit
considerably, but we have used a simpler Hamiltonian than the one of [17,24]. \Vhen no ab
initio ca1clllations are available (or feasible) the AOS~I approach can be used empirically,
achieving increasingly good fits by the inclusion of higher order interactions [191.
The Be, Hamiltonian (28) preserws the total phonon-number V. This is a good ap-

proximation for this case accOlding to the analysis of 117,24], but it is known that Fermi
resonances can occur for certain molecu!es when the fundamental mode frequencies are
such that (V, V') states with V i V' are close in energy. These interactions can be intro-
duced in the lIamiltonian but the size of the energy matrices grows very rapidly, so the
best way to deal with this problem is through perturbation theOlY.
For D3h molecules we follow an analogous proced ure, nillnely, we construct the D3h

symmetry-adapted operators and states cOlresponding to (13) and (15) and carry out the
building-up procedure to construct the Hamiltonian amI higher phonon states [16]. Here
we omit the details fOl lack ofspace and only present the fit to the energy spectrum [16,25].
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TABLE11. Least-square energy lit for the vibrational excitations of Hj, Be3 and Naj. The energy
differences I:::t..E = Eth - Eexp are given in cm-l.

H+ Be3 Naj3
V (v"v~) r tJ.E tJ.E tJ.E
1 (O, 1') E -1.55 0.51 0.93

(1,0°) A, 0.42 0.02 1.95

2 (0,2°) A, 7.48 -0.74 0.37
(0,22) E -5.69 0.17 0.84
(U') E -0.61 0.82 1.68
(2,0°) A, -0.11 -0.04 1.26

3 (0,3' ) E -4.46 -2.05 -1.19
(0,33) A, 3.18 -1.23 -0.34
(0,33) A2 2.44 0.61 -0.33
(1,2°) Al 0.66 1.90 -0.01
(1,22 ) E -5.00 -1.36 0.34
(2, 1') E 4.07 0.79 -0.19
(3,0°) A, -1.23 -1.66 -2.06

r.m.s. 5.84 1.35 1.33
Parameters 8 4 4

In Table II we present AOSM lits to the speetra of 13e3,Nat and Ht up to three phonons.
While remarkably aeeurate deseriptions of the first two moleeules can be aehieved using
a four-parameter Hamiltonian, we had to inelude four additional higher order terms in
the Ht Hamiltonian in order to properly describe this moleeule. This is in aeeordanee
with the work of Carter and Meyer [18], who were foreed to inelude twiee as many terms
in the potential energy surfa'Ce for Ht than for the Nat moleeule. The Ht ion is a very
"soft" moleeule whieh, due to the light mass of its atomie eonstituents earries out large
amplitude oseillations from its equilibrium positions [18].
In another test of the model we studied the vibrational energies of two ozone isotopes,

1603 and 1803 [26]. A least-square fit to all published experimental levels (up to ten
quanta) yields a r.m.S. deviation of 2.5 and 1.0 em-', respeetively.
A still finer test for the model is to use the wave funetions to evaluate infrared and

Raman transitions. The algebraie realization of the transition operators can be obtained
from their expression in eonliguration spaee using the large N eonneetion, or purely al-
gebraieally by their tensorial properties under the relevant point group [19]. \Ve remark
that the rnadel can also be extended to include tite rotational degrees of freerIom, by cou-
pling the vibrational wave funetions to rotational states properly symmetrized to carry
the point group representations [24].
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The AOSM is based on symmetry methods which systematically incorporate group
theoretical techniques, providing a clear methodological procedure that can be applied
to more complex molecules. We define symmetry adapted operators that have a specific
action over the function space. This is a general procedure which gives rise to a clear
physical interpretation of the interactions and has the additional advantage of eonsiderably
improving the convergence during the least square energy fits. Based on the harmonie
limit of the SU(2) algebra we have found a systematic approach to derive an algebraic
realization of interactions given in configuration space. The model surmounts one of the
main objections raised against the use of algebraic models, where it was not possible to
obtain a direct eorrespondence with the configuration-space approaches. For the general
case when there is no information about the form of these interactions in configuration
space, we have devised an algebraic procedure to derive them using their tensorial structure
under the point group. The combination of the different methodologies leads to the AOSM,
which can be applied in the same fashion to more eomplex molecules.

We believe that the AOSM represents a systematic, simple but accurate alternative
to the traditional methods, particularly for polyatomie molecules, where the integro-
differential approaches are too complex to be applied or require very large numerical
calculations. Since the model provides manageable wave functions, it is possible to evalu-
ate the matrix elements of arbitrary physieal operators, whieh have a simple representation
in the algebraic space. The study of electromagnetic intensities, as well as the application
of the model to more eomplex molecules is currently under investigation [19].

ACKNOWLEDGMENTS

This work was supported in part by the European Community under contraet nr. CH"-
CT94-0072, DGAPA-UNAM under project INI05194, CONACyT-México under project
400340-5-3401E and Spanish DGCYT under project PB92-0663.

REFERENCES

1. J. Miehael Hollas, Moden¡ Speetroscopy, John Wiley (1992); K. i\akamoto, Infrared and Raman
5pectra of Inorganie and Coordination Compounds. Wiley-Interseience publieation (1978).

2. G. Herzberg, Inlmred and Raman Speetm 01 Polyatomje Moleeules, van Nostrand, New York
(1950).

3. E.B. Wilson, Jr., J.C. Decius and P. Cross, Molecular Vibrations, Dover, New York (1980).
4. W.T. Raynes, P. Lazzeretti, R. Zanesi, A.J. 5adly and P.W. Fowler, Mol. Phys. 60 (1987) 509;

G.D. Carney and R.N. Por ter, J. Chem. Phys. 65 (1976) 3547.
5. D.L. Gray and A.G. Robiette, Mol. Phys. 37 (1979) 1901.
6. J.F. Ogilvie, J. Mol. Speet. 69 (1978) 169; W. Meyer and P. Botschwina, J. Chem. Phys. 84

(1986) 801.
7. F. ¡achello, Chem. Phys. Letl. 78 (1081) 581; F. Iachello and R.D. Levine, J. Chem. Phys. 77

(1982) 3046.
8. F. ¡aehello, 5. Oss and R. Lemus, J. Mol. Speet. 146 (1991) 56; Ibidem. 149 (1991) 132.
9. F. ¡aehello and 5. Oss, J. Mol. Speet. 142 (1000) 85.
la. 0.5. van Roosmalen, I. Benjamin and R.D. Leviue, J. Chem. Phys. 81 (1984) 5986.



A SYMMETRY ADAPTED APPROACH TO MOLECULAR... 83

11. F. 1aehello and S. Oss, Phys. Rev. Lett. 66 (1991) 2976; Chem. Phys. Lett. 187 (1991) 500; F.
1aehello and S. Oss. Chem. Phys. Lett. 205 (1993) 285; J. Chem. Phys. 99 (1993) 7337.

12. J.M. Arias, A. Frank, R. Lemus and F. Pérez.Bernal, Rev. Mez. Fís. 41 (1995) 703.
13. R. Lemus and A. Frank, J. Chem. Phys. 101 (1994) 8321; A. Frank and R. Lemus, Phys. Rev.

Lett. 68 (1992) 413.
14. R. Bijker, A.E.L. Dieperink and A. Levialan, Phys. Rev. A52 (1995) 2786.
15. F. Pérez.Bernal, R. Bijker, A. Frank, R. Lemus and J.M. Arias, Chem. Phys. Lett. 258 (1996)

301.
16. A. Frank, R. Lemus, R. Bijker, F. Pérez.Bernal and J.M. Arias, Annals o/ Physics (N.Y.), in

press.
17. A.P. Rendell, T.J. Lee and P.R. Taylor, J. Chem. Phys. 92 (1990) 7050.
18. S. Carler and W. Meyer, J. Chem. Phys. 93 (1990) 8902.
19. A. Frank, F. Pérez.Bernal, R. Bijker, J.M. Arias and R. Lemus (10 be published).
20. Y. Alhassid, F. Giirsey and F. Iachello, Ann. o/ Phys. 148 (1983) 346.
21. A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics,

Wiley, New York (1994).
22. S.L. Allmann and P. Herzig, Point Group Theory Tables, Clarendon Press, OxCord (1994).
23. M. Hamermesh, Group Theory and its Applications to Physical Problems, Addison. Wesley

(1962).
24. K.T. Hechl, J. Mol. Spect. 5 (1960) 355.
25. J.K.G. Walson, J. Mol. Spect. 103 (1984) 350; [bid., Can. J. Phys. 72 (1994) 238; J. Tennyson

and J.R. Henderson, J. Chem. Phys. 91 (1989) 3815.
26. F. Pérez.ilernal, J.M. Arias, A. Frank, R. Lemus and R. Bijker, preprinl chem.ph/960500I,

submilled lo Journal oC Molecular Spectroscopy,


