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In this contribution we prcsent the formalism of a reccntly proposed procedurc of continuum discrctiz.alion for the description of the scattering
of weakly bound nuclei. Convergencc chccks are presented for sorne relevant sum rules, using as a representative example the deuteron.
Finally, we apply the method to the case of deuteron elastic scaltcring and brcakup, comparing the results with those of the standardmelhod
of coupled channels continuum discretization.
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En esta contribución presentamos el formalismo de UI1 procedimiento propuesto recientemente de discretización del continuo para la dis-
pen;i6n de núcleos poco ligados. Se presentan asimismo varios tests de convergencia para algunas reglas de suma relevantes, usando como
ejemplo representativo el deutcr6n. Finalmente, aplicamos el método al caso de dispersión elástica y de fragmentación de deuterio, compa-
rando los resultados con los obtenidos a partirdel método standard de discretiz.ación del continuo (CDCC).
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1. Introduction

In recent years, many of lile efforls in Nuclear Physics have
been devote" to the experimemal and lheoretical study of nu-
clei close lO lhe drip lines. For lhese nuclei new struetures are
being observed challenging the established nuclear structure
models. Nowadays, our main souree of information of these
exotic nuclei is lhrough scauering experimenl~ in which ae-
celeraled beams of radioaetive nuelei are eollided with stable
targel~. An important consideration of lilesc expcrimenl~ is
lhal exotie nuelei are oflen very weakly bound systems and,
consequemly, they present a high probabilily of breakup in
Ihe Coulomb and nuclear fields of lile target nucleus. Thus,
in arder lo exlTact rcHable infonnation 00 nuclear structurc
from reactioo experirncnts il is essential lo include in the [or-
malisms lile coupling lO continuum states.

Of special imeresl are the so ealled halo nuclei, which are
very weakly bound systems wilil one or two ouler parlicles
with a high probability of exploring lile cla"ically forbidden
regioo.

Rcaction calculations whcrc brcakup couplings are inclu-
ded havc the addilional complication tha1 brcakup states are
not squarc-normalizable. This problem is frequemly overco-
me by rcplacing lhe sta tes in lhe continuum by a finitc sel

of tlonnalizcd slalcs. Convergence checks with re."'pcct10 lhe
number of states considered or the parameters eharacterizing
these states are rcquired in order to make lile method reliable.

Several methods have been developed to obtain a finile
basis of normalized states to deseribe lile conlinuum. Proha-
bly, the mosl widely used of lilese approaches is lile melhod
of continuum discretization eoupled channels (CDCC) [IJ.
The melilod is bascd on lile partition of the continuum inlo a
set of energy intervals (bins). Eaeh bin is characteri7ed by a
single radial wave funclion, which is obtained a~ an average
of lhe continuum wavc functions ayer lhe bino In this ave.
raged radial wave funetion, the oscillations of the different
componenl~ tend to cancel beyond a eertain distan ce, and so
lhe bin radial wave function becomes normalizable. Then, for
each bin, a representalive normalizcd square integrable rela-
live motion wave function of lile form

.1, () 1>j(r) (')'Pi,lm r = --Ylm r 1 (1)
r

is defined. Its radial wave function is a superposition of lhe
sealtering states ~l(k) wililin the bin defined by lhe inlerval
~ki = k¡ - ki-t, with a ccrtain weight function f¡(k), ¡.e.•

1>í(r) = V N
2
. J."' f¡(k)~l(k, r) dk, (2)

1T I ki_l



104 A.M. MORO el ul.

3. Convergence of the method

Due lo lhe simple analylical struclure of lhe harmonic
oscillator wave functions, this is equivaJenl lo mulliply lhe
ground slale funClion by lhe appropriale orlhogonal polyno-
mials Pn(s) [4]

Once the s(r) is known, a sel of orthogonal wave func-
tions, lhe THO basis, is generalcd by applying lhe same LST
lIsed for lhe ground slale lo lhe resl of HO wave funcoons,
i.e.,

(6)

(5)

(4)

1
V(r)= -D---,

cosh2(or)

with lhe deplh (D) and range (o) adjusled lo reproduce
lhe experimental binding energy and rms of lhe deuteron:
D = 102.73MeVando =O.9407fm-1

Once the ground stale wave function is obtained, lhe sel
of THO funclions are calculaled using Eq. (5). Finally, the
deuleron Hamillonian is diagonalized in a truncaled THO ba-
siso The resulling eigenfunctions are represented in Fig. 1.
Il is interesting lo study lhe syslemaoc of lhe eigenvalues
wilh respecl to Ule basis dimensiono This is illustralcd in
Fig. 2, where lhe energy levels resulling from lhe diagonali-
zation are sehematica!Iy represcnted versus the ba~is dimen-
sion M = N + 1. In lhe case of lhe deuteron (which is also

In order lo check lhe adequacy of lhe THO rnelhod, we eva-
Juate in this scction several suro ruJes which invoJvc the eou-
pling of the ground state with lhe continuum wavc functians.
In particular, we will focus in lhe case of lhe deuleron. For
lhe sake of simplicily, we consider a simple scenario in
which lhe deuleron ground slale is assumed 10 be in apure
e = O state and only lhe s-wave continuum is considered.

The proton-neulron iOleracOon is described by means of
lhe Pocschl-Teller potenlial,

Notice lhallhe new funclions <I>~HO(r) are orthogonal by
cons1nlclion and constilule a complele sel. Also, lhey decay
exponenOally allarge dislance, thus reproducing lhe correCl
asymplotic bchavior of the bound wave functians. Hawever,
in general, they are not eigenstates of the interna! Hamillo-
nian. Thcn, one has to diagonalize the Hamiltonian using a
lruncated THO basis. As a resull of the diagonalization a
new sel of funclions, {4>£' (r); k = O, ... , N}, wilh eigen-
vaJues €o, ... 1 €N are generated. Here, N + 1 is the number
of functions relained in lhe THO basis, k = O slanding for

lhe ground slale. Thus 4>~ (r) = 4>óllO(r) = 4>b(r) and so
fO = fb, while lhe reSl of eigenslates lie al posilive energies
and they eonstilute our represenlation of the continuum.

wilh Ni = J:"_, Ifi(k)¡2dk. For a non-resonanl continuum,

lypically fi(k) = 1, in which ca'e Ni = {)'ki. In general, lhe
integral (2) has 10 be solved numerically. This mcans lhal,
for cach hin funclioo, 4>¡(r), lhe CDCC melh(xl requires lhe
solulion of lhe Schrooioger equalioo for many values of k.

Fae me calculation of scaucring observables it is also nc-
cessary lO consider lhe coupling belween lhe ground slate and
the continuum bins, and bctwccn the bins themsclvcs, due
to lhe ouclear and Coulomb pOlenlial. In praclice, lhis com-
monly Icads 10 a sel of coupled cquations [oc aH the valucs
of i and f. In arder 10 make !.he numbcr of cquations finile,
it is necessary 10 pcrfonn a doublc lnmcalion in both angular
and linear morncnlum. Thus, the continuum is rCSlriClcd lo
the subspace O :5 e :5 em•• and o :5 k :5 km ••. To demons-
trale convergence in a CDCC caIculalion il is oecessary lo
check lhal lhe caIculaled scaltering magniludes are nol mo-
dified when incrcasing maximum energy (km •• ) and angular
momcnturn ((max) oc whcn dccrca'iing the bin widths, ók¡.

Despile lhe Iimitaoons ciled above, Ule CDCC ha, been
successfully applied lo a largc numbcr of nuclear rcactions
and it is one of lhe moS[ reliable approaches to the sludy of
reactions involving binary compositc syslcms. Thc aim of me
Transformed Harmooic Oscillalor (THO) melhod is lo cons-
lruct a finile sel of normalizcd and orlhogonal states which
can be use<! a, an allernative representalion of lhe conlinuum
spcctrum of a weakly bound nucleus and thal overcomes or,
al leasl, reduce somc of the limitations of olher discrelizalion
procedures, such as lhe CDCC.

The present paper is s1nIClured as follows. In Sec. 2 lhe
basic ideas of lhe THO method are presenled. Seclion 3 is
devolcd lo show resuJls for sorne stmelure surn rules for tran-
sitions involving lhe hound slale and lhe eonlinuum for lhe
deuleron. In Sec. 4 we apply lhe melhod lo describe some
scaltering observables of the reaclion d + 208Pb al 50 McV,
comparing lhe resulL' wilh lhe slandard CDCC method. Fi-
nally, Sec. 5 is left for conclusions.

The THO presented here was firSl formulated and applied lo
simple one dimensional problems [21. Subscquenlly, il was
eXlended lo lhe three dimensional case and successfully ap-
plicd 10 describe global struclure magnitudes rclaled lo lhe
coupling of lhe conlinuum [31 and scallering observables [4].
In lhe presem work, we will eoneenlralC on lhe formulalion
of lhe melhod in lhe lhrce dimensional case and ilS applica-
tion lo deuleron slmelUre and scaucring.

In both lhe one- and lhrce-dimensional cases, lhe sland-
point of lhe melhod is to define a local scale lransfonnation
(LST) [5] which is such lhal eonverlS lhe bound slalc wavc
funclion of lhe weakly bound syslem, rcpresentcd by <I>.(r),
imo a hannonic oseillator (HO) wavc funelion. Thc funetinn,
s(r) defining lhe LST is given by

<I>.(r)= ¡r¡<I>~IO[s(r)). (3)

2. The THO method
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TABLE L Convergence of the total strength (TS), energy weigh-
tcd suro rule (EW) and poJarizabilily (PO) for the Jacal opcralor
O(r) ;;; r as a function of lhe size of the THO basis, Al ;;;
N + L Lengths are givcn in uníls of O'-1 and energies in units
of (h2o' /2/').
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FIGURE 1. R¡¡dial pan 01'¡he funclions: <1>: (r). k = O, ... ,5 tha!
result [rom the diagonalization oC lhe deutcron Hamillonian (csing
a Poeschl.Tellcr potential) in the THO hasis. Thc pararnclcrs oC (he
potcntial are adjustcd lo givc lo binding cncrgy and eros oC Ihe dcu-
tcroo.

50

TABLEn. The same as in Tablc J, bUl for lhe short range operalor
O(r) = Ver).

M TS(O;N) EW(O;N) PO(O;N)
3 0.4252 0.1126 0.551771

6 0.4883 0.4676 0.551867

9 0.4978 0.6906 0.551868

12 0.5012 0.7737 0.551869

14 0.50142 0.7925 0.551869

Exact 0.501464 0.803147 0.551869

FIGURE 2. Encrgy Icvcls rcsulting from the diagonaliz.ation of the
dcu[cron Ilarnillonian in the a truncated TilO basis I'f'rsu.r lhe basis
dimensiono

• TO~11Slrenglh (TS): TS(O; N) = L;¡(N ilOIN 0)1'

• Energy Weighled Sum Rule (EW): EW(O; N)
¿JE¡' - Eb)I(N ilOIN 0)12

• Polarizahility (PO): PO (O; N) LÓ1'O(E¡' -
Eb)-'I(N ilOIN 0)1'

lhe case of other inleresting syslems, sueh as many halo nu-
elei) lhere is only one bound stale. Accordingly, lhe diagona-
lization of lbe Hamiilonian in lbe THO basis gives rise lO a
eigenslate wilh eigenvalue EO = Eb = -2.22 MeV (aclually,
lhe deuleron ground slale) and a sel of positive eigenvalues,
which are takcn al) a rcprcscntation of the continuum. Anol-
hcr intcrcsting property is Lhatthe positivc cigenvalucs do nol
appear unifonnly distribuled along lhe conlinuum, bul con-
centraled above lhe lhreshold. As we shall scc in lbe nexl scc-
tion, this propcrty has notable con sequen ces when the met-
hod is applicd 10 scauering problems.

As a firsl check to evaluale lbe reliabilily of lhe THO ba-
sis to represcnt Lhecontinuum, we have calculated the follo-
wing sum rules which depend on lbe coupling belween lhe
ground state and Lhecontinuum stales for a givcn opcmlor O:

• TS(O} = TS(O; N --+ 00) = J drI0(r)<pb(r)12

• EW(O) = EW(O; N --+ 00) = J drl d~;r) <Pb(r>j'

1<1'= 2" dt2(<po(t}IH -• POcO) = POcO; N --+ 00)

Ebl<AJ(t)),

The summalions run from O lON. We have used lhe abbre-
vialed notation: IN i} == I<p['}. Two differenl operalors have
been considered: a long range operalor, O(r} = r, lOdescri-
be effecLs of long-range eXlemal fields, such as lbe Coulomb
palemial, and a short-range palemial, O(r} = Ver), 10 des-
cribe couplings associaled wilb lbe nuclear inleraction.

In Tahles 1 and II we presem lhe caleulaled sum rules
for differem values of N, along wilb lbe exaCl resulls for
N --+ oo. The laller were obtained from lbe expressions:

where 1<AJ(t)} represenLs lbe ground slale for a perturbed Ha-
miltonian H(t) = H + tO(r).

Comparing lhe exacl values wilb lhose for finile N we
find lbal lbe convergenee of lhe melbod is very satisfaclory.
It remains lo assess lbe adequacy of lhe THO basis lOrepre-
senl propcrly lhe continuum in the description of scattcring
processes. IL is importan1 lO note 1ha1these proce.c;scs¡nvol.
ve no1 only ground state 10 continuum transitions bUI ale;o
continuum-continuum couplings.

12
,

4 6 8 10
~t(basis dimcnsion)

,
o

o
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FIGURE 3. Elastic scattering differential cross sections (as ratio to
RUlherford cross section) for the reaction d+ 208Pb al 50 MeV. The
doued line is the Watanabe folding potential. The salid line is the
CDCC calculation. Thc dotted-dashed and dasbcd lines represent
Ihe TilO ca!Cuiation with N = 2 and N = 10 stales, respectively.
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4. Application lo deuleron 5cattering

In this section we apply the THO fonnalism lo the reaclion
d + 208Pb al 50 MeV for which standard mcc calculations
rcvcaled lhallhc dcuteron continuum is relevanl.

We used thc same binding potenlial as in the previous sec-
lion. 10e proton-targct and neutron-targel iOleractions werc
described in lenns of optical polentials, using lhe Becchelti-
Grecnless parameterization [6], evalualed al half of the deu-
teron ineidenl energy. Only the coupling lO s-wave breakup
stales was considered. Moreover, we neglecl Coulomb brea-
kup and thus we assume lhallhe Coulomb iOleraction belwe-
en the projectile and largel has only a monopole parl. Due lo
lhese restrictions, we will compare our resulLs with those of
themcc calculalions, inslead of experimeOlal dala.

Using the sel of wave functions {4>i: (r); k = 1, ... ,N}
as a represenlation of the continuum, the scallering calcu-
lation is equivaleOl 10 a slandard couplcd ehannels calcula-
tion for bound stales. In both cases, namely the THO and
CDCC melhods, we have sol ved lhe coupled channels equa-
lions using the computer code FRESCO [7]. In arder lOachie-
ve convergence of lhe mcc, a maximum excitation energy
of fmax = 30 MeV was considered. 10is energy inlerval was
divided in 10 bins of unifonn widlh in k.

In Fig. 3 we present the differential clastic cross section
angular distribulion. 10e dotled line corresponds lo the cal-
culation wilh lhe Walanabe folding polential. This is obtained
by folding lhe prolon-larget and neutron-targel polentials in
lhe ground slale of lhe deuleron and, lherefore, ignores com-
pletely lhe deuleron continuum. The solid line is the conver-
ged CDCC calculation. The differences wilh lhe folding cal-
culations give an insighl of the importance of the continuum
at lhe differenl angles. 10e dashed line corresponds to the
THO calculalion with N = 10 continuum stales, for whi.
ch convergence was achieved. It is noticeable the excellenl
agreement belween the THO and the CDCC. We preseOl also
a THO calculalion wilh N = 2 continuum Slales, which gives
alreadya very reasonable description of this observable.

FIGURE4. Breakup cross section as a funclion of the e~citation
energy of the deuteron, !, for the reaction d + 208pb at 50 MeV,
and thrce differcnt values of the deuleron binding energy: lb =
0.556 MeY (upper panel), Eb = 2.226 MeY (middle panel) and
lb = 4.45 MeV (bouom panel). thc sccond one corresponding to
the physical value. The histograms corresponds to the CDCC cal-
culations and the dots to the THO with N = 10.

In Fig. 4 the breakup cross section as a funclion of lhe
excilalion energy of the deuleron is depicted far lhe CDCC
and THO approaches. In the mcc case, this distribution is
obtained dividing the cross section for each bin by the width
of lhe bin. In lhe THO case, il is obtained dividing lhe cross
seclion of each continuum slale, corresponding 10 an energy
Ej, by an energy widlh which is given by (EH1-Ei_¡)/2. The
THO calculations were pcrfonned wilh N = la slales. The
calculations of the central panel were carried oul wilh lhe ex-
perimental value, Eb = -2.22 MeV. It is nOliceable thallhe
eigenvalues associaled with lhe THO slales lend 10 concen-
trale wilhin lhe continuum region where the breakup resulLs
are more importanl and vary more abruptly. This distinctive
fealure permils an adequate descriplion of lhe breakup dis-
lribution wilh a relativeIy small number of continuum stales,
withoul the need of adjusting by hand the bins widths, as in a
typical mcc calculation.

In order lO check the generalily of lhis result, we have
perfonned leSl calculations in which the binding energy of
lhe demeron is artificially reduced or increased with respccl
lo ilS experimenlal value. In the firsl case (upper panel), lhe-
re is an increment in lhe breakup probabililY, and lhe maxi-
mum of lhe distribution approximales lo the breakup lhres-
hold. This behavior is perfectly accounted for by lhe distri-
bution of THO states. On the other side, when lhe binding
energy is incremenled (lower panel), the breakup probabi-
lily decreases and lhe distribution becomes smoother. Again,
the THO slatcs distributc according lo mis bchavior, giving a
very reasonable descriplion of the breakup distribution.
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5. Conclusions

In conclusion, wc havc shown in this contribution lhat thc
cOnlinuum discrctization dcvelopcd in Rcfs. 2-4 and discus-
sed here is a rcliahle alternative lo other me!hods of eonti.
nuum discretizatioTl.

An attractivc [eature of this mcthod is its simplicity. Thc
construction of thc conlinuum basis only rcquires thc kno-
wlcdgc of the ground 81a1C,eithcr analytically or nurncri-
cally. Then, !he TilO basis is oblained jusI by multiplying
lhis ground slale by !he appropriale sel of orlhogonal poly.
nomials. Finally, lhe wave functions lhal represeOl !he conli.
nuum are oblained by diagonalization of lhe Hamillonian in
lhe THO basis. Thus, lhe calculation does nol rcquire lhc in.
legralion of!he SchrMinger equalion lo oblain !he conlinuum
statcs. Morcovcr, [he convcrgencc of the method is contro~
lIed by only one inleger pararneler, lhe basis dimensiono This
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is in contrasl wilh !he CDCC melhod, for whieh convergen.
ce wi!h respecllo several pararnelers has lo be checked. The
lesls pcrfortncd in lhe case of!hc deUleron struClure and scal.
lering suggesl !hal !he preseOl rne!hod can be considercd as a
reliable 100110 model !he scallering involving loosely bound
nuclci.
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