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THE EFFECT OF NOISE ON THE CHAFEE-INFANTE
EQUATION: A NONLINEAR CASE STUDY
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(Communicated by Walter Craig)

Abstract. We investigate the effect of perturbing the Chafee-Infante scalar
reaction diffusion equation, ut−∆u = βu−u3, by noise. While a single multi-
plicative Itô noise of sufficient intensity will stabilise the origin, its Stratonovich
counterpart leaves the dimension of the attractor essentially unchanged. We
then show that a collection of multiplicative Stratonovich terms can make the
origin exponentially stable, while an additive noise of sufficient richness reduces
the random attractor to a single point.

1. Introduction

In this paper we investigate the effect of noise on the Chafee-Infante scalar
reaction diffusion equation

(1.1) ut − ∆u = βu − u3 for x ∈ D, with u|∂D = 0,

where D is a smooth bounded domain in Rm. We show that the effect of the noise
is highly dependent on the precise way in which it is included in the model.

We choose the Chafee-Infante equation since it is the canonical example of those
infinite-dimensional gradient systems in which the structure of the global attractor
can be fully described, and we recall this theory very briefly in Section 2.

We then consider the effect of adding a single multiplicative noise: in Section 3 we
show that an Itô noise +σu dWt of sufficient intensity will stabilise the origin, while
in Section 4 we show that a Stratonovich noise +σu ◦ dWt leaves the complexity of
the system, as measured by the dimension of its attractor, essentially unchanged
whatever the value of σ.

The order-preserving property of the deterministic model is retained by its sto-
chastic counterparts, and this is the key to the two new results presented here: in
Section 5 we adapt the linear result of Caraballo & Robinson [10] to show that
the zero solution can be made exponentially stable by the addition of a number of
multiplicative noise terms (in the Stratonovich sense) and in Section 6 we give a
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374 TOMÁS CARABALLO ET AL.

simple proof that the addition of a rich enough additive noise reduces the random
attractor to a single random point (cf. Chueshov & Scheutzow [11]).

2. The deterministic Chafee-Infante equation

The Chafee-Infante equation is probably the best understood deterministic par-
abolic PDE, and one of the few for which we have a full understanding of the
structure of its attractor (see Hale [23] and Henry [24], for example).

Existence and uniqueness results for the deterministic equation are proved in
Marion [28] and Robinson [30]: given an initial condition u0 ∈ L2(D) there exists
a unique weak solution u(t; u0) such that for any T > 0

u(t; u0) ∈ L2(0, T ; H1
0 (D)) ∩ L4((0, T ) × D) ∩ C([0, T ]; L2(D)),

which we can use to define a semigroup S(t) on L2(D), via S(t)u0 = u(t; u0).
It is shown in both of the above references (and Temam [32]) that the equation

also enjoys the existence of a global attractor A, that is, a compact invariant set
that attracts the orbits of all bounded sets, i.e., S(t)A = A for all t ∈ R and

dist(S(t)B,A) → 0 as t → ∞,

where B is any bounded subset of L2(D) and dist(A, B) is the Hausdorff semidis-
tance between A and B,

dist(A, B) = sup
a∈A

inf
b∈B

|a − b|.

Since the equation defines a gradient system, the attractor consists of the col-
lection of all the stationary points and their unstable manifolds (see [23], [30], or
[32]).

For the case of a one-dimensional domain it is known that as β passes through
each successive eigenvalue λn of the Laplacian on [0, L] another direction becomes
unstable and two new stationary points appear in a pitchfork bifurcation. It follows
that for λn < β < λn+1 the dimension of the attractor is n. Since λn ∼ n2, it follows
that d(A) ∼ β1/2. (Here we use the upper box-counting or ‘fractal’ dimension.)

In a smooth m-dimensional domain D a similar result is valid for the dimension
of the attractor, namely that d(A) ∼ βm/2; see Temam [32] for the upper bound
and Babin & Vishik [5] for the lower bound.

3. Linear stabilisation via a multiplicative Itô noise

The effect of perturbing the equation by a multiplicative noise in the Itô sense,

(3.1) du = [∆u + βu − u3] dt + σu dWt,

is to introduce a somewhat ‘artificial’ stabilising effect. This is most easily seen by
considering the equivalent Stratonovich equation

(3.2) du = [∆u + (β − 1
2
σ2)u − u3] dt + σu ◦ dWt,

where the linear stability has clearly been enhanced by the new −1
2σ2u term. Mak-

ing the change of variable v = ue−σWt produces a family of nonautonomous equa-
tions parametrised by ω:

vt = ∆v + (β − 1
2
σ2)v − e2σWt(ω)v3.
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THE EFFECT OF NOISE ON THE CHAFEE-INFANTE EQUATION 375

Taking the inner product of this equation with v in L2(D) we obtain
1
2

d
dt

|v|2 = −|Dv|2 + (β − 1
2
σ2)|v|2 − e2σWt‖v‖4

L4

≤ −λ1|v|2 + (β − 1
2
σ2)|v|2.

It follows that we have

|v(t)|2 ≤ |v(0)|2e−γt, where γ = 2(λ1 − β) + σ2,

and hence
|u(t)|2 ≤ |u(0)|2e2σWte−γt.

Since P-almost surely (P-a.s.)

lim
t→∞

|Wt|
t

= 0,

it follows that for σ2 > 2(β − λ1) the origin becomes (pathwise) exponentially
stable.

We note here that the addition of nonlinear multiplicative Itô noise can also
have a stabilising effect (see e.g. Caraballo, Liu, & Mao [9]). However, here and in
Section 5 our aim is to demonstrate that stabilisation can be obtained using a very
simple multiplicative noise, namely a linear one.

4. A single multiplicative Stratonovich noise

The above observation that an Itô noise produces a somewhat artificial stabilising
effect led us to study the effect of a single multiplicative Stratonovich term on the
Chafee-Infante equation

(4.1) du = [∆u + βu − u3] dt + σu ◦ dWt

(Wt is a two-sided one-dimensional Brownian motion) using the framework of ran-
dom dynamical systems, which we now recall.

4.1. Random dynamical systems and random attractors. In the interest of
brevity we only state the definitions here (for more background on random dynam-
ical systems see Arnold [2]).

Let (Ω, F , P) be a probability space and {ϑt : Ω → Ω, t ∈ R} a family of
measure preserving transformations such that (t, ω) 	→ ϑtω is measurable, ϑ0 = id,
and ϑt+s = ϑtϑs for all s, t ∈ R. The flow ϑt together with the corresponding
probability space

(Ω, F , P, (ϑt)t∈R)
is called a (measurable) dynamical system.

A continuous random dynamical system (RDS) on a Polish space (X, d) with
Borel σ-algebra B over ϑ on (Ω,F , P) is a measurable map

ϕ : R
+ × Ω × X → X

(t, ω, x) 	→ ϕ(t, ω)x

such that P-a.s.
i) ϕ(0, ω) = id on X,
ii) ϕ(t + s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω) for all t, s ∈ R

+ (cocycle property),
and

iii) ϕ(t, ω) : X → X is continuous.
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376 TOMÁS CARABALLO ET AL.

A random attractor for an RDS ϕ is a random set ω 	→ A(ω) such that
(i) A is a random compact set, that is, P-a. s., A(ω) is compact, and for all

x ∈ X the map ω 	→ dist
(
x,A(ω)

)
is measurable with respect to F ,

(ii) P-a. s. ϕ(t, ω)A(ω) = A(ϑtω) for all t ≥ 0, and
(iii) for every D ⊂ X bounded, P-a. s.,

lim
t→∞

dist
(
ϕ(t, ϑ−tω)D,A(ω)

)
= 0.

4.2. Our equation as a random dynamical system, and its attractor. In
order to cast our equation as a random dynamical system we let (Ω, F , P) denote
the probability space generating the two-sided Wiener process Wt, and define a
shift ϑt on Ω by

Wt(ϑsω) = Wt+s(ω) − Ws(ω),

the additional subtracted term ensuring that W·(ϑsω) is still a Brownian motion.
Existence and uniqueness results due to Pardoux [29] guarantee that for each

initial condition u0 ∈ L2(D) and T > 0, there exists a unique strong solution

u(t; u0) ∈ L2(Ω × (0, T ); H1
0 (D)) ∩ L4(Ω × (0, T ) × D) ∩ L2(Ω; C(0, T ; L2(D))).

We can use the resulting solution to define a random dynamical system ϕ on the
phase space L2(D) by setting ϕ(t, ω)u0 = u(t; u0).

The computations presented in Caraballo et al. [7], which are relatively standard,
show that (4.1) has a random attractor. We then used the stochastic extension
of the deterministic theory (due to Debussche [20]) to show that the Hausdorff
dimension of the attractor (which is P-a.s. constant; see Crauel & Flandoli [16]) is
bounded by d when

β <
1
d

d∑
j=1

λj ,

where λj are the eigenvalues of the Laplacian arranged in increasing order. It follows
from recent work of Langa & Robinson [26] that these calculations also provide the
same upper bound on the upper box-counting dimension of the attractor (which is
also constant P-a.s. [26]). Since λn ∼ n2/m, this implies that d(A) ≤ cβm/2.

In a subsequent paper [8] we adapted a proof of Da Prato & Debussche [17]
to show that provided m ≤ 5 (a technical condition) the unstable manifold near
the origin has dimension at least d when β > λd. This leads to a lower bound
on the dimension of the same order as the upper bound, and hence shows that
the dimension of the random attractor is of the same order as its deterministic
counterpart, namely

d(A(ω)) ∼ βm/2.

In this sense the addition of a single multiplicative Stratonovich noise has no effect
on the asymptotic complexity of the dynamics.

5. Exponential stability of the zero solution

via a number of Stratonovich multiplicative noise terms

Generalising the finite-dimensional result of Arnold, Crauel, & Wihstutz [4],
Caraballo and Robinson [10] recently showed that a linear PDE ut = Au can be
stabilised by a collection of multiplicative Stratonovich noisy terms if and only if
the trace of the linear partial differential operator A is negative.
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In this section we show that the nonlinear equation (1.1) can be stabilised by
adding a similar collection of noisy terms:

(5.1) du = [∆u + βu − u3] dt +
d∑

i=1

Biu ◦ dW i
t .

Essentially we show that solutions of (5.1) can be bounded using appropriate posi-
tive solutions of the linear equation

(5.2) du = [∆u + βu] dt +
d∑

i=1

Biu ◦ dW i
t .

Since (5.2) can be stabilised via a suitable choice of {Bi}, so can (5.1). The proof
makes essential and continual use of the order-preserving properties of (5.1).

To begin with, we recall the stabilisation result for linear equations given in
[10]: we suppose that A is a linear operator with a sequence of eigenvalues µj with
corresponding eigenfunctions ej that form an orthonormal basis of a Hilbert space
H. We also assume that the eigenvalues µj are bounded above, and order them so
that µ1 ≥ µ2 ≥ . . ..

Theorem 5.1. If the trace of A is negative, then there exist bounded linear opera-
tors Bk : H → H, k = 1, . . . , d, such that the zero solution of

du = Au dt +
d∑

j=1

Bku ◦ dWk

is exponentially stable with probability one.

The proof is simple: choose N such that
∑N

j=1 µj < 0, and consider the pro-
jection of ut = Au onto the two complementary subspaces P and Q spanned by
{ej}N

j=1 and {ej}∞j=N+1 respectively. The Q components of the equation converge
exponentially to zero, while the solutions of the finite-dimensional ODE ṗ = −Ap
(where p denotes the orthogonal projection of u onto P ) can be stabilised [4] by
adding a collection of noisy terms +Bkp ◦ dWk, where the Bk are N × N skew-
symmetric matrices. These matrices correspond to linear operators Bk : H → H.

In our case we will choose H = L2(D); we will also denote by −A the linear
operator in H associated to the Laplacian. We then take A = −A + βI, which
clearly satisfies the conditions of Theorem 5.1, and let N be the smallest integer
such that

∑N
j=1(β−λj) < 0. It follows that there exist linear operators Bk : H → H

such that the zero solution of

(5.3) du = [−Au + βu] dt +
d∑

j=1

Bku ◦ dW k
t

is exponentially stable with probability one.
We now show how to use this to deduce stabilisation of the nonlinear equation

via the addition of the same noisy terms.

Theorem 5.2. There exist bounded linear operators Bk : H → H, and independent
real Wiener processes W k

t , k = 1, . . . d, such that the zero solution of

(5.4) du = (−Au + βu − u3) dt +
d∑

j=1

Bku ◦ dW k
t

is exponentially stable with probability one.
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Before giving the proof, we note that by considering the equivalent Itô form of
(5.4) it follows from results of Pardoux [29] that for each u0 ∈ L2(D) and T > 0,
there exists a unique strong solution satisfying

u(t; u0) ∈ L2(Ω × (0, T ); H1
0 (D)) ∩ L2(Ω; C(0, T ; L2(D))).

Proof. The stabilisation of the zero solution follows once we show that solutions of
(5.4) can be bounded by appropriate solutions of the linear equation (5.3).

The key observation is that we can bound from above an arbitrary solution of
(5.4) pointwise by a positive solution of the same equation (and from below by a
negative one). Indeed, if u0(x) ≤ U0(x), then the order-preserving property of (5.4)
(see Kotelenez [25] or Chueshov & Vuillermot [12]) guarantees that

(5.5) u(t, x, ω; u0) ≤ u(t, x, ω; U0) for almost all (t, x, ω) ∈ [0, +∞)×[0, L]×Ω,

where with the obvious notation u(t, x, ω; u0) denotes the solution of (5.4) with
u(0, x) = u0(x) and noise ω. It follows that

u(t, x, ω;−|u0|) ≤ u(t, x, ω; u0) ≤ u(t, x, ω; |u0|).
Now, positive solutions of the nonlinear equation enjoy a comparison principle

with those of the linear equation (see Chueshov & Vuillermot [12] again): if u0 ≥ 0,
then

u(t, x, ω; u0) ≤ uL(t, x, ω; u0),
where uL(t, x, ω) is the solution of the corresponding linear stochastic PDE

du = (−Au + βu) dt +
d∑

j=1

Bku ◦ dW k
t .

It follows that

uL(t, x, ω;−|u0|) ≤ u(t, x, ω; u0) ≤ uL(t, x, ω; |u0|),
which can be rewritten, since uL solves a linear equation, as

|u(t, x, ω; u0)| ≤ uL(t, x, ω; |u0|).
Since solutions of (5.3) tend exponentially to zero with probability one, so do all

solutions of (5.4). �

6. Collapse of the random attractor produced by additive noise

In this final section we show that the addition of a sufficiently rich additive white
noise will reduce the random attractor of the equation to a single (random) point.

Such behaviour was originally demonstrated for the one-dimensional ordinary
differential equation

dx = [αx − x3] dt + εdWt with α > 0

by Crauel & Flandoli [15], and has recently been shown by Tearne [31] for a general
gradient ODE of the form

dx = −∇V (x) + εdWt,

where x ∈ Rm, Wt is an m-dimensional Brownian motion, and ε is sufficiently small
(note that this is not in general an order-preserving system).

Here we prove a similar result for the equation

(6.1) du = [∆u + βu − u3] dt +
√

C dWt, x ∈ D = [0, L],
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where Wt, t ∈ R, is a two-sided cylindrical Wiener process on H = L2(D) and C is
a bounded linear operator with bounded inverse on H. Note that here we have to
restrict ourselves to a one-dimensional domain.

Our argument, which we will make precise below, could be generalised to treat
more abstract problems (cf. Chueshov & Scheutzow [11]) but the underlying idea
is simple: Results of Arnold & Chueshov [3] on the structure of random attractors
in order-preserving systems guarantee the existence of two random fixed points a
and a that are contained in the attractor and are such that

a(ω) ≤ u ≤ a(ω) for all u ∈ A(ω).

Corresponding to these random fixed points there are invariant measures δa(ω) and
δa(ω). Since the noise in (6.1) is sufficiently rich to guarantee that the equation has
a unique invariant measure (e.g., Da Prato, Debussche, & Goldys [18]) it follows
that the laws of a(ω) and a(ω) must coincide. It is only a small step from this,
using the fact that a(ω) ≤ a(ω), to the deduction that a(ω) = a(ω) = a(ω), and
hence that A(ω) = {a(ω)}, i.e., the attractor is a single point.

We now recall the formal existence and uniqueness results for (6.1), and give a
rigorous proof that the random attractor is a point.

We take (Ω, F , P) to be the probability space that generates the cylindrical
Wiener process Wt, and define a shift ϑt on Ω by Wt(ϑsω) = Wt+s(ω) − Ws(ω) as
in Section 4.

Under these assumptions, it is known (Da Prato and Zabczyk [19]) that for each
u0 ∈ L2(D) and T > 0 there exists a unique solution u(t; u0) for (6.1), with

u(t; u0) ∈ L2
(
Ω × (0, T ); H1

0 (D)
)
∩ L4

(
Ω × (0, T ) × D

)
∩ L2

(
Ω; C(0, T ; L2(D))

)
.

It follows that the solutions of (6.1) generate a random dynamical system on L2(D)
if we define

ϕ(t, ω)u0 = u(t; ω, u0),
where u(t; ω, u0) is the solution of (6.1) with noise ω and initial condition u(0) = u0.

Theorem 6.1. The random attractor for (6.1) consists of a single point, i.e., there
exists a random variable a : Ω → H with

ϕ(t, ω)a(ω) = a(ϑtω) for every t ≥ 0 P-a.s.

such that A(ω) = {a(ω)}.

Proof. The existence of a random attractor A(ω) for (6.1) can be proved using
standard techniques (see, e. g., Allouba and Langa [1], Debussche [20] or Yuhong
Li [27]). From Theorem 3.3 in Crauel [13] we know that ω 	→ A(ω) is measurable
with respect to the past F−, which is the σ-algebra

F− = σ{ω 	→ ϕ(s, ϑ−tω)x : x ∈ X, 0 ≤ s ≤ t} .

Theorem 5.8 in Chueshov and Vuillermot [12] guarantees that the random dy-
namical system associated with (6.1) is order-preserving, i.e., if u ≤ v, then P-a. s.,
for every t ≥ 0, ϕ(t, ω)u ≤ ϕ(t, ω)v . As a consequence (Theorem 2 in Arnold &
Chueshov [3]) there exist equilibria a and a such that, P-a.s.,

a(ω) ≤ u ≤ a(ω) for all u ∈ A(ω).

We now wish to associate invariant measures with the two extremal equilibria. In
order to do this we first show that they are measurable with respect to the past F−:
it will then follow from Crauel [14] that for each equilibrium a(ω), ρ = E(δa(ω)) is
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a Pt-invariant Markov measure, i.e., ρ ∈ Pr(H) (it is a probability measure on H)
such that Ptρ = ρ for every t ≥ 0, where (Pt)t≥0 is the canonical Markov semigroup
on Pr(H) associated with ϕ.

Since A(ω) is a closed random set that is measurable with respect to the past F−,
there exists a countable family {an}n∈N of F−-measurable selections, such that
A(ω) = cl {an : n ∈ N} a. s. We now define a sequence (bn)n∈N, which need not be
selections of A(ω), by b1 = a1, and bn+1 = max{an+1, bn}, or, more explicitly,

bn+1(ω) =

{
an+1(ω) if an+1(ω) ≥ bn(ω),

bn(ω) otherwise,

for n ≥ 1. Then every bn is F−-measurable, and the sequence is increasing.
Furthermore we have ak ≤ bn ≤ a P-a. s. for all k ≤ n, and n ∈ N. We claim
that bn converges to a P-a. s. In fact, if bn would be bounded away from a with
positive probability, we would get that an is bounded away from a with positive
probability, hence sup an < a with positive probability, which would contradict
A = cl {an : n ∈ N} P-a. s., and a ∈ A. Consequently, a = lim bn is F−-measurable.

A similar argument implies that a is F−-measurable as well.
We therefore obtain two Pt-invariant Markov measures E(δa) and E(δa). These

are just the laws of the equilibria, i.e., for any Borel set B ∈ B(H)

E(δa)(B) = L (a)(B) = P(u ∈ B).

Now, Da Prato et al. [18] (Section 6) showed that the Markov semigroup associ-
ated with (6.1) has a unique invariant measure,1 which means that L (a) = L (a),
and so in particular we must have E(a) = E(a). Since P-a.s. a ≤ a and a and a are
real functions defined on [0, L], we must have a = a, P-a.s.

Setting a(ω) = a(ω) = a(ω), it follows that P-a.s. A(ω) = {a(ω)}, i.e., the
attractor consists of a single random point. �

7. Conclusion

Here we have aimed to draw attention to the very different effects that different
types of noise can have on the asymptotic behaviour of deterministic systems. Of
course, all the above analysis could be carried out for more general systems, but
we believe that treating a simple canonical model helps to clarify the arguments.

In particular, although elementary, it seems worthwhile to emphasise the some-
what artificial stabilisation effect produced by the multiplicative Itô noise +σu dWt

discussed in Section 3. That the intensity of the corresponding Stratonovich noise
+σu ◦ dWt has no effect on the dimension of the random attractor is remarkable.

We would also like to highlight the possibilities for detailed analysis afforded by
order-preserving systems, as demonstrated by the Stratonovich stabilisation and
‘attractor collapse through additive noise’ results of Sections 5 and 6.
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