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NON-AUTONOMOUS MORSE-DECOMPOSITION AND

LYAPUNOV FUNCTIONS FOR GRADIENT-LIKE PROCESSES

E. R. ARAGÃO-COSTA, T. CARABALLO, A. N. CARVALHO, AND J. A. LANGA

Abstract. We define (time dependent) Morse-decompositions for non-auton-
omous evolution processes (non-autonomous dynamical systems) and prove
that a non-autonomous gradient-like evolution process possesses a Morse-

decomposition on the associated pullback attractor. We also prove the exis-
tence of an associated Lyapunov function which describes the gradient behav-
ior of the system. Finally, we apply these abstract results to non-autonomous
perturbations of autonomous gradient-like evolution processes (semigroups or
autonomous dynamical systems).

1. Introduction

The Fundamental Theorem of Dynamical Systems (see [8]) describes the flow
of autonomous reversible dynamical systems (groups) in compact metric spaces as
a decomposition of an ordered family of isolated invariant sets and connections
between them which respects their ordering. In the terminology of [8], this is
called a Morse-decomposition of a compact invariant set. The extension of this
result to general autonomous dynamical systems (or semigroups) is done in [1] (see
also [20] for the Morse-decomposition for semigroups in compact metric spaces).
For autonomous dynamical systems, the Morse-decomposition plays a fundamental
role in the process of understanding the structure of invariant sets. It allows us to
decompose the dynamics into a gradient part and the dynamics in smaller isolated
invariant sets, reducing the study of the structure of the attractors to the study of
the structure of these isolated invariant sets.

The aim of this paper is to extend the notion of Morse-decomposition to non-
autonomous dynamical systems (or non-autonomous evolution processes) and to
show the pullback attractors for some of these non-autonomous dynamical systems
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can also be decomposed as an ordered family of isolated invariant families and
connections between them respecting their ordering. In particular, under some
mild additional assumptions, we construct a non-autonomous Lyapunov function
for the non-autonomous evolution process with a Morse-decomposition. We show
that this decomposition is observed for non-autonomous perturbations of gradient
autonomous dynamical systems (or gradient semigroups). Some practical examples
are also presented.

Our results contrast with those of [19] because, in our case, the definition of local
attractors takes into account only the usual notion of attraction instead of using past
and forwards notions. We also do not impose the reversibility required in [19]. Our
results can be applied (under mild assumptions) to perturbations of autonomous
dynamical systems (which cannot be said for the results in [19]). Furthermore,
in the case of perturbations of autonomous dynamical systems and under mild
assumptions, we prove some sort of continuity of the Morse-decomposition.

To better describe the results in the paper we will need to introduce some termi-
nology and a few definitions. Let X be a metric space with metric d : X×X → R

+,
where R

+ := [0,∞), and denote by C(X) the set of continuous maps from X into
X. Given a subset A ⊂ X, the ε-neighborhood of A is the set Oε(A) := {z ∈ X :
d(z, a) < ε for some a ∈ A}.

An evolution process in a metric space X is a two-parameter family {T (t, s) :
t ≥ s} in C(X) such that

1) T (t, t) = I, for all t ∈ R,

2) T (t, σ)T (σ, s) = T (t, s), for t ≥ σ ≥ s, and

3) P×X�((t, s), x) �→T (t, s)x ∈ X is continuous, where P := {(t, s) ∈ R
2 : t ≥ s}.

An evolution process {T (t, s) : t ≥ s} is autonomous when T (t, s) = T (t− s, 0) for
all t ≥ s, otherwise it is non-autonomous. A semigroup is a family {S(t) : t ≥ 0} ⊂
C(X) such that

1) S(0) = I, for all t ∈ R,

2) S(t+ s) = S(t)S(s), t, s ≥ 0, and

3) R+ ×X � (t, x) �→ S(t)x ∈ X is continuous.

Note that {T (t, s) : t ≥ s} is an autonomous evolution process iff {T (t, 0) : t ≥ 0} is
a semigroup. A continuous function ξ : R → X is a global solution for the evolution
process {T (t, s) : t ≥ s} when it satisfies

T (t, s)ξ(s) = ξ(t), for all (t, s) ∈ P.

Next we recall the definition of Hausdorff semidistance and Hausdorff distance.
Given A,B ⊂ X, the Hausdorff semidistance from A to B is given by

dist(A,B) := sup
a∈A

inf
b∈B

d(a, b) = sup
a∈A

d(a,B),

where d(a,B) := inf
b∈B

d(a, b) is the usual distance from the point a to the set B,

and the Hausdorff distance between A and B is defined by

dH(A,B) := dist(A,B) + dist(B,A).

Definition 1.1. A family Ξ := {Ξ(t) : t ∈ R} of subsets of X is an invariant family
for the evolution process {T (t, s) : t ≥ s} when T (t, s)Ξ(s) = Ξ(t) for all t ≥ s. An
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GRADIENT PROCESSES UNDER PERTURBATIONS 5279

invariant family {A (t) : t ∈ R} is a pullback attractor when, for each t ∈ R, A (t)
is compact, pullback attracts bounded subsets of X; that is,

lim
s→−∞

dist(T (t, s)B,A (t)) = 0, for each t ∈ R and bounded subset B of X,

and {A (t) : t ∈ R} is minimal among all closed invariant families {C (t) : t ∈ R}
with the property that C (t) pullback attracts bounded subsets of X for each t ∈ R.

Recall that, if {S(t) : t ≥ 0} is a semigroup in a metric space X, it is said that
A ⊂ X is invariant for {S(t) : t ≥ 0} if S(t)A = A, for all t ≥ 0. It is important to
notice that, in the autonomous context, the non-autonomous notion of invariance
also allows for non-constant families.

The notion of an unstable set of an invariant family plays a key role in the
definition of attractor-repeller pairs. On their turn, the attractor-repeller pairs
enter in an essential way in the definition of Morse-decomposition for the pullback
attractor of a non-autonomous evolution process. Next we define these concepts
beginning with the definition of an unstable set of an invariant family.

Definition 1.2. Let {T (t, s) : t ≥ s} be an evolution process. The unstable set of
an invariant family Ξ = {Ξ(t) : t ∈ R} is the set

W u(Ξ) := { (t, z) ∈ R×X : there is a global solution ξ : R → X

such that ξ(t) = z and lim
s→−∞

dist(ξ(s),Ξ(s)) = 0}.

Also, W u(Ξ)(t) := { z ∈ X : (t, z) ∈ W u(Ξ)} for each t ∈ R.

Now we introduce the notions of isolated invariant sets and disjoint families of
isolated invariant sets.

Definition 1.3. Let Ξ := {Ξ(t) : t ∈ R} be an invariant family for the evolution
process {T (t, s) : t ≥ s}. Ξ is an isolated invariant family if there exists a δ > 0
with the property that any global solution ξ : R → X with ξ(t) ∈ Oδ(Ξ(t)) must
satisfy that ξ(t) ∈ Ξ(t) for all t ∈ R. A set Ξ = {Ξ1, · · · ,Ξn} is said to be a disjoint
set of isolated invariant families if each Ξi, 1 ≤ i ≤ n, is an isolated invariant
family and there exists δ > 0 such that Oδ(Ξi(t)) ∩ Oδ(Ξj(t)) = ∅, for all t ∈ R

and for 1 ≤ i < j ≤ n.

Remark 1.4. Let {S(t) : t ≥ 0} be a semigroup in a metric space X. It is important
to notice that:

(1) A subset A of X is an isolated invariant set for {S(t) : t ≥ 0} if it is
invariant and there is a δ > 0 such that A is the maximal invariant set for
{S(t) : t ≥ 0} in Oδ(A).

(2) If ξ : R → X is a uniformly continuous global solution for {S(t) : t ≥ 0},
then {{ξ(t)} : t ∈ R}, t ∈ R, is an invariant family which is not isolated.
Any isolated invariant family {Ξ(t) : t ∈ R} such that ξ(t) ∈ Ξ(t) for all
t ∈ R must satisfy that ξ(R) ⊂ Ξ(t) for all t ∈ R. In the autonomous
context this remark says that, in some sense, the two notions of isolated
invariant sets (autonomous and non-autonomous) are similar.

(3) It is easy to see that if A ⊂ X and δ > 0 is such that A is the maximal
invariant set for {S(t) : t ≥ 0} in Oδ(A), then

• If δ′< δ and x∈X is such that γ+(x)⊂Oδ′(A), then d(T (t)x,A)
t→∞−→ 0.

• If δ′ < δ and there is a global solution ξ : R → X such that ξ(R−) ⊂
Oδ′(A), then d(ξ(t), A)

t→−∞−→ 0.
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5280 E. R. ARAGÃO-COSTA, T. CARABALLO, A. N. CARVALHO, AND J. A LANGA

(4) The preceding remark ensures that a center in a two dimensional dynamical
system or an equilibrium which is part of a continuum of equilibria will not
be an isolated invariant set.

The notions of a local attractor and of an atractor-repeller pair are defined next.

Definition 1.5. Let {T (t, s) : t ≥ s} be an evolution process in a metric space X
with a pullback attractor {A (t) : t ∈ R}. We say that an isolated invariant family
A := {A(t) : t ∈ R}, with A(t) ⊂ A (t) for all t ∈ R, is a (non-autonomous) local
attractor if Wu(A)(t) = A(t) for all t ∈ R.

If A is a local attractor, we define its associated repeller A∗ := {A∗(t) : t ∈ R}
by
(1.1)
A∗(t) := {z ∈ A (t) : dist(T (r + t, t)z, A(r + t)) �−→ 0 as r → ∞}, for each t ∈ R.

The pair (A,A∗) is called an attractor-repeller pair.

The following result ensures that the above definition extends its autonomous
counterpart. We sketch its proof for completeness (see [1, Lemma 2.15] for a com-
plete proof).

Theorem 1.6. Let {S(t) : t ≥ 0} be a semigroup in a metric space X with a global
attractor A . An isolated invariant set A ⊂ A is a local attractor (autonomous)
iff the constant family {A(t) : A(t) = A, t ∈ R} is a local attractor for {T (t, s) :
T (t, s) := S(t− s) for t ≥ s}, in the sense of Definition 1.5.

Proof. Note that

Wu(A) = Wu({A(t) : t ∈ R})(t), ∀ t ∈ R,

where Wu(A) := {z ∈ A : there is a global solution ξ : R → X with ξ(0) = z and
lim

t→−∞
d(ξ(t), A) = 0} and that if A is an isolated invariant set for S(·) such that

Wu(A) = A, then for every δ > 0 there exists δ′ ∈ (0, δ) with

γ+(Oδ′(A)) ⊂ Oδ(A).

The proof now follows easily from the fact that ω(Oδ′(A)) attracts Oδ′(A) and
is invariant (hence it must be contained in A). �

For autonomous evolution processes (semigroups) a repeller is automatically
closed, but that is not the case for non-autonomous evolution processes. How-
ever, if there exists ε > 0 such that Oε(A(t)) ∩ Oε(A

∗(t)) = ∅, for all t ∈ R, then
A∗(t) is closed for each t ∈ R.

Now, we define the notion of Morse-decomposition for non-autonomous evolution
processes.

Definition 1.7. Let {T (t, s) : t ≥ s} be an evolution process in X with a pullback
attractor {A (t) : t ∈ R} and let A0 = {A0(t) : t ∈ R}, A1 = {A1(t) : t ∈ R}, · · · ,
An = {An(t) : t ∈ R} be n + 1 local attractors with ∅ = A0(t) ⊂ A1(t) ⊂ · · · ⊂
An(t) = A (t) for each t ∈ R.

Define Ξj(t) := Aj(t) ∩ A∗
j−1(t) for each t ∈ R and j = 1, 2, · · · , n. The ordered

set of invariant families Ξ := {Ξ1,Ξ2, · · · ,Ξn} is called a Morse-decomposition
for the pullback attractor {A (t) : t ∈ R}.
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In Section 2 we give sufficient conditions to obtain a Morse-decomposition for
the pullback attractor of a gradient-like evolution process.

Section 3 is devoted to obtain, under some mild assumptions, a Lyapunov func-
tion for a gradient-like (non-autonomous) evolution process restricted to the pull-
back attractor. We also give conditions so that the Lyapunov function is defined
and is continuous in R×X.

We prove in Section 4 that the results of Section 2 can be applied (under nat-
ural assumptions) to non-autonomous perturbations of autonomous gradient-like
evolution processes. In this situation, thanks to the results from Section 3, the
Lyapunov function can be defined and is continuous in R ×X. The continuity of
the Lyapunov function under perturbation is also considered.

Section 5 exhibits some concrete examples where the theory developed in the
previous sections can be applied.

2. Morse-decomposition of pullback attractors

for generalized gradient-like evolution processes

We first introduce the notion of a gradient-like process (see [5]). Let {T (t, s) : t ≥
s} be an evolution process with a pullback attractor {A (t) : t ∈ R} which contains
a disjoint set of isolated invariant families Ξ = {Ξ1, · · · ,Ξn}, that is, Ξi(t) ⊂ A (t)
for each i and t. We can now define the concept of pinned-chain recurrence (see
[1, 5, 8, 15] for similar concepts in the autonomous case):

Definition 2.1. Let δ be as in Definition 1.3 and fix ε0 ∈ (0, δ). For Ξ ∈ Ξ
and ε ∈ (0, ε0), an ε−pinned-chain from Ξ to Ξ is a sequence 	i, 1 ≤ i ≤ k, in
{1, · · · , n}, a sequence of real numbers ti, σi, τi with τi < σi < ti , and a sequence of
points zi ∈ X, 1 ≤ i ≤ k, such that zi ∈ Oε(Ξ�i(τi)), T (σi, τi)zi /∈ Oε0(

⋃n
i=1 Ξi(σi))

and T (ti, τi)zi ∈ Oε(Ξ�i+1
(ti)), 1 ≤ i ≤ k, with Ξ = Ξ�k+1

= Ξ�1 . We say that
Ξ ∈ Ξ is pinned-chain recurrent if there is an ε0 ∈ (0, δ) and ε−pinned-chain
from Ξ to Ξ for each ε ∈ (0, ε0).

Remark 2.2. We note that the introduction of ε0 in the above definition is only
needed to account for the case k = 1. When k > 1, it is automatically true that the
solution must leave Oε0(

⋃n
i=1 Ξi(t)), for some t ∈ R, while going from one isolated

invariant family to another.

Before we proceed let us point out the distinctions between the notion of pinned-
chain recurrence introduced in the above definition and the notion of chain recur-
rence defined in [8]. We start with the definition of chain recurrence given in [8].

Definition 2.3 (Conley). Let {S(t) : t ∈ R} be a group in a metric space X and
Ξ ⊂ X be a compact invariant set. Given ε > 0, t > 0 and ξ, ξ′ ∈ Ξ, an (ε, t)−chain
from ξ to ξ′ is a sequence ξ = ξ0, ξ1, · · · , ξn = ξ′; t1, · · · , tn such that ti ≥ t for all i
and d(S(ti)ξi−1, ξi) < ε, i = 1, · · · , n. A subset R(Ξ) of an invariant set Ξ is called
chain recurrent if for any ξ ∈ R(Ξ), ε > 0 and t > 0 there is a (ε, t)-chain from ξ to
itself.

Remark 2.4. The notions of pinned-chain recurrence and chain recurrence are
different, even in the autonomous context. However, the first is strongly inspired by
the second. In the pinned-chain recurrence notion the jumping points are pinned
in the isolated invariant sets, and in chain recurrence notion the jumping points
occur around points which are not pinned.
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Another important difference is that an equilibrium is always chain recurrent
(Conley’s concept), whereas they may not be pinned-chain recurrent (our concept).
In fact, for gradient semigroups having a global attractor and with a finite set of
equilibria, no equilibria is pinned-chain recurrent. To be pinned-chain recurrent
there should exist solutions starting arbitrarily close to the isolated invariant set
that leave a fixed neighborhood of it and come back arbitrarily close (possibly
jumping only near other isolated invariant sets).

The notion of pinned-chain recurrence, in the autonomous case, is closely related
to the existence of homoclinic structures, as shown in Lemma 2.2 in [5]. It is
tailored to describe the dynamical properties of a gradient semigroup, without a
priori requiring the existence of a Lyapunov function.

Definition 2.5. Let X be a metric space and {T (t, s) : t ≥ s} be an evolution
process in X with a pullback attractor {A (t) : t ∈ R} and a disjoint set of isolated
invariant families Ξ = {Ξ1, · · · ,Ξn} in {A (t) : t ∈ R}. We say that {T (t, s) : t ≥ s}
is a gradient-like evolution process with respect to Ξ if the following two
conditions are satisfied:

(H1) Any global solution ξ : R → X in {A (t) : t ∈ R} satisfies

lim
t→−∞

dist(ξ(t),Ξi(t)) = 0 and lim
t→∞

dist(ξ(t),Ξj(t)) = 0,

for some 1 ≤ i, j ≤ n.
(H2) Ξ = {Ξ1, · · · ,Ξn} does not contain any pinned-chain recurrent isolated

invariant family.

Let us now define the notion of a homoclinic structure.

Definition 2.6. Let {T (t, s) : t ≥ s} be an evolution process which possesses
a disjoint set of isolated invariant families Ξ = {Ξ1, · · · ,Ξn}. A homoclinic
structure associated to Ξ is a finite subset {Ξi1 , · · · ,Ξip} of Ξ together with a set
of global solutions {ξ1, · · · , ξp} such that

lim
t→−∞

dist(ξk(t),Ξik(t)) = 0 and lim
t→∞

dist(ξk(t),Ξik+1
(t)) = 0, 1 ≤ k ≤ p,

where Ξip+1
:= Ξi1 .

Next we prove the invariance of the repeller A∗ of a local attractor A.

Proposition 2.7. Let {T (t, s) : t ≥ s} be an evolution process with a pullback
attractor {A (t) : t ∈ R} and let A = {A(t) : t ∈ R} be a local attractor. Then, the
repeller A∗ of A is invariant.

Proof. If A∗(t0) is empty for some t0 ∈ R, then it is empty for all t ∈ R and the
proof is obvious. Assume that A∗(t) is non-empty for all t ∈ R, and let s ∈ R, t ≥ s
and w ∈ A∗(s). If T (t, s)w �∈ A∗(t) we have that

lim
τ→∞

dist(T (τ, t)T (t, s)w,A(τ )) = 0,

that is,

lim
τ→∞

dist(T (τ, s)w,A(τ )) = 0,

which contradicts the fact that w ∈ A∗(s) and proves that T (t, s)A∗(s) ⊂ A∗(t).
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Conversely, if z ∈ A∗(t) ⊂ A (t) = T (t, s)A (s), let w ∈ A (s) be such that
z = T (t, s)w. It follows that w ∈ A∗(s), for otherwise

0 = lim
τ→∞

dist (T (τ, s)w,A(τ ))

= lim
τ→∞

dist(T (τ, t)T (t, s)w,A(τ )) = lim
τ→∞

dist(T (τ, t)z, A(τ )),

contradicting the fact that z ∈ A∗(t) and proving that T (t, s)A∗(s) ⊃ A∗(t). �

We note that if A0 = {A0(t) : t ∈ R}, A1 = {A1(t) : t ∈ R}, · · · , An = {An(t) :
t ∈ R} are n + 1 local attractors with ∅ = A0(t) ⊂ A1(t) ⊂ · · · ⊂ An(t) = A (t),
for each t ∈ R, then ∅ = A∗

n(t) ⊂ A∗
n−1(t) ⊂ · · · ⊂ A∗

0(t) = A (t), for each t ∈ R.
Next we describe the construction of a Morse-decomposition for the pullback

attractor of a generalized gradient-like evolution process relative to the disjoint
set of isolated invariant families {Ξ1, · · · ,Ξn}, and of the associated collection of
increasing local attractors starting from the collection of isolated invariant sets.
The following result plays a fundamental role on that.

Lemma 2.8. Let {T (t, s) : t ≥ s} be a gradient-like evolution process with an
associated disjoint set of isolated invariant families Ξ = {Ξ1, · · · ,Ξn}. Then, there
exists i ∈ {1, · · · , n} such that Ξi is a local attractor.

Proof. We first note that each Ξi is an isolated invariant family which is not pinned-
chain recurrent, and we need to show that there is some i ∈ {1, · · · , n} such that
Wu(Ξi)(t) = Ξi(t) for each t ∈ R.

If that is not the case, for each 1 ≤ i ≤ n there is a global solution ξi(t) ∈ A (t)
(with ξi(s) �∈ Ξi(s) for some s ∈ R) such that lim

t→−∞
dist(ξi(t),Ξi(t)) = 0. Since ξi(t)

converges to some element of Ξ as t → ∞, this necessarily produces a homoclinic
structure and provides a contradiction with (H2). �

Let {T (t, s) : t ≥ s} be a gradient-like evolution process with the associated
disjoint set of isolated invariant families Ξ = {Ξ1, · · · ,Ξn}. If (after possible re-
ordering) Ξ1 is a local attractor and Ξ∗

1 as in Definition 1.5, then we have that
each Ξi(s), for i ≥ 2 and s ∈ R, is contained in Ξ∗

1(s) (also if ξ : R → X is

a global bounded solution and dist(ξ(t),Ξi(t))
t→∞−→ 0 with i > 1, we have that

ξ(s) ∈ Ξ∗
1(s) for all s ∈ R) and then for any z ∈ A (t)\(Ξ1(t) ∪ Ξ∗

1(t)) and global
solution ξ : R → X with ξ(s) ∈ A (s), for each s ∈ R, and ξ(t) = z we have that

lim
s→−∞

dist(ξ(s),Ξ∗
1(s)) = 0 and lim

s→∞
dist(ξ(s),Ξ1(s)) = 0.

We can repeat the reasoning in Lemma 2.8 to conclude that there is i ≥ 2 such that

Wu(Ξi)(t) ∩ Ξ∗
1(t) = Ξi(t) for all t.

We relabel this isolated invariant family as Ξ2 and define

(2.1) Ξ∗
2,1(t) := {z ∈ Ξ∗

1(t) : dist(T (r + t, t)z,Ξ2(r + t)) �−→ 0 as r → ∞}.

Then we have that, for each t ∈ R and i = 3, · · · , n, Ξi(t) ⊂ Ξ∗
2,1(t) (also if

ξ : R → X is a global bounded solution and dist(ξ(t),Ξi(t))
t→∞−→ 0 with i > 2, we

have that ξ(s) ∈ Ξ∗
1(s) for all s ∈ R, and therefore ξ(s) ∈ Ξ∗

2,1(s) for all s ∈ R). As
before, we can assume that Wu(Ξ3)(t) ∩ Ξ∗

2,1(t) = Ξ3(t) for each t and define Ξ∗
3,2

in analogy to (2.1).
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Proceeding in this way until all isolated invariant families are exhausted, we
obtain a reordering of Ξ = {Ξ1, · · · ,Ξn} such that Ξ1 is a local attractor for
{T (t, s) : t ≥ s}, the set Ξ∗

1,0 := Ξ∗
1, and

Wu(Ξi)(t) ∩ Ξ∗
i−1,i−2(t) = Ξi(t) for all t and i = 2, · · · , n,

where, for i = 2, · · · , n,

Ξ∗
i,i−1(t) := {z ∈ Ξ∗

i−1,i−2(t) : dist(T (r + t, t)z,Ξi(r + t)) �−→ 0 as r → ∞}.

Lemma 2.9. Let {T (t, s) : t ≥ s} be a gradient-like evolution process with associ-
ated (reordered) disjoint set of isolated invariant families Ξ = {Ξ1, · · · ,Ξn}. Then,
any global bounded solution ξ : R → X satisfies

(2.2) lim
t→−∞

dist(ξ(t),Ξi(t)) = 0 and lim
t→∞

dist(ξ(t),Ξj(t)),

with i ≥ j.

Proof. Indeed, if j = 1 in (2.2) there is nothing to prove. If j = 2 and (2.2) holds,
we have that ξ(t) ∈ Ξ∗

1(t) for all t ∈ R, so if 1 = i < j = 2, we have that ξ(t) ∈
Wu(Ξ1)(t) = Ξ1(t) for each t, which contradicts the fact that Ξ∗

1(t)∩Ξ1(t) = ∅ for
each t ∈ R. It follows that i ≥ j.

For the general case, we suppose that j ≥ 3 and that (2.2) holds. Then ξ(t) ∈
Ξ∗
j−1,j−2(t) for all t, so if i < j, we have that Ξ∗

j−1,j−2(t) ⊂ Ξ∗
i−1,i−2(t) for all t

and ξ(t) ∈ Wu(Ξi)(t) ∩ Ξ∗
i−1,i−2(t) = Ξi(t) for every t. Thanks to the fact that the

invariant families in Ξ are isolated, we must have i = j, which is a contradiction
and proves the lemma. �

We will prove that this reordering of {Ξ1, · · · ,Ξn} (which we denote the same)
is a Morse-decomposition for {A (t) : t ∈ R} with a suitably chosen sequence
A0(t) ⊂ A1(t) ⊂ A2(t) ⊂ · · · ⊂ An(t) of local attractors:

For each t ∈ R, define A0(t) := ∅, A1(t) := Ξ1(t), and for j = 2, 3, · · · , n,

(2.3) Aj(t) := Aj−1(t) ∪W u(Ξj)(t) =

j⋃
i=1

W u(Ξi)(t).

It is clear that An(t) = A (t).

Theorem 2.10. Let {T (t, s) : t ≥ s} be a gradient-like process with a pullback
attractor {A (t) : t ∈ R} and an associated disjoint set of isolated invariant families
Ξ = {Ξ1, · · · ,Ξn} reordered as explained above.

Assume that there exists δ > 0 such that, for j = 1, 2, · · · , n − 1 and t ∈ R, it
holds that

(2.4) Oδ(Aj(t)) ∩

⎛⎝ n⋃
i=j+1

Ξi(t)

⎞⎠ = ∅.

Then, for each j = 0, 1, · · · , n, the invariant family Aj defined in (2.3) is a local
attractor for {T (t, s) : t ≥ s} and

Ξj(t) = Aj(t) ∩ A∗
j−1(t), for all t ∈ R and 1 ≤ j ≤ n.

Consequently, Ξ defines a Morse-decomposition for {A (t) : t ∈ R}.
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Proof. Clearly {Aj(t) : t ∈ R} is invariant and Aj(t) ⊂ Wu(Aj)(t) for each t ∈
R. On the other hand, if z ∈ Wu(Aj)(t), there is a global solution ξ : R →
X with ξ(t) = z and lims→−∞ dist(ξ(s), Aj(s)) = 0. Since {T (t, s) : t ≥ s} is
gradient-like and from (2.4) we have that there exists k ∈ {1, 2, · · · , j} such that
lims→−∞ dist(ξ(s),Ξk(s)) = 0. Therefore, z ∈ Wu(Ξk)(t) with k ≤ j. This implies
that z ∈ Aj and Wu(Aj)(t) ⊂ Aj(t). Now we prove that {Aj(t) : t ∈ R} is an
isolated invariant family. Indeed, let δ > 0 be as in (2.4) and ξ : R → X be a global
solution with ξ(t) ∈ Oδ(Aj(t)), for all t ∈ R. Since {T (t, s) : t ≥ s} is gradient-

like, there is a k ∈ {1, · · · , j} such that dist(ξ(t),Ξk(t))
t→−∞−→ 0. It follows that

ξ(t) ∈ Wu(Ξk)(t) ⊂ Aj(t) for all t ∈ R. This proves that {Aj(t) : t ∈ R} is a local
attractor.

It is easy to see that Ξj(t) ⊂ Aj(t)∩A∗
j−1(t). For the reverse inclusion, note that

if z ∈ Aj(t)∩A∗
j−1(t), there exists a global solution ξ : R → X with ξ(t) = z. Since

z ∈ Aj(t) we must have that lims→−∞ dist(ξ(s),Ξk(s)) for some k ≤ j. As {T (t, s) :
t ≥ s} is gradient-like, there is i ∈ {1, 2, · · · , n} such that lims→∞ dist(ξ(s),Ξi(s))
and, due to the fact that z ∈ A∗

j−1(t), it follows that i ≥ j. Since from Lemma 2.9
we must have that i ≤ k, it follows that k = i = j, and again taking into account
that {T (t, s) : t ≥ s} is gradient-like, we have that ξ(s) ∈ Ξj(s) for each s ∈ R

and, in particular, z = ξ(t) ∈ Ξj(t). This proves that Aj(t) ∩ A∗
j−1(t) ⊂ Ξj(t) and

completes the proof. �

Remark 2.11. Hypothesis (2.4) is not necessary in the autonomous case (see [1,
Theorem 2.18]).

The following result plays a key role in the proof of the main results in this paper
concerning the continuity of the Lyapunov function of a gradient-like evolution
process. It extends Lemma 2.11 in [1] to the non-autonomous case.

Lemma 2.12. Let {T (t, s) : t ≥ s} be an evolution process with a pullback attractor
{A (t) : t ∈ R} and let A = {A(t) : t ∈ R} be a local attractor which is not pinned-
chain recurrent. Suppose that there exists ε > 0 with

(2.5) A (t) ∩ Oε(A(t)) ∩Oε(A
∗(t)) = ∅, for all t ∈ R.

Then, for each δ ∈ (0, ε) there is δ′ ∈ (0, δ) such that

T (t, s)(A (s) ∩ Oδ′(A(s))) ⊂ A (t) ∩Oδ(A(t)) whenever t ≥ s.

Proof. We argue by contradiction. Assume that there are δ > 0, sequences (sj)j∈N,
(tj)j∈N in R, and (xj)j∈N in X with xj ∈ A (sj) for each j, such that

sj ≤ tj ,

dist(xj , A(sj)) <
1

j
, but dist(T (tj , sj)xj , A(tj)) ≥ δ,

for all j ∈ N. Choose j0 ∈ N with dist(xj , A(sj)) <
1
j < ε for all j ≥ j0. By the

definition of a repeller, for each j ≥ j0 there is a τj ≥ tj such that

dist(T (τj , sj)xj , A(τj)) <
1

j
.

It follows that A is pinned-chain recurrent. This is a contradiction, and the lemma
is proved. �
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Remark 2.13. Note that the uniform separation property assumed in (2.5) is auto-
matically satisfied in the autonomous case.

We can now show the following proposition:

Proposition 2.14. Let A = {A(t) : t ∈ R} be an isolated invariant family for the
evolution process {T (t, s) : t ≥ s}, with pullback attractor {A (t) : t ∈ R}, such that
A(t) ⊂ A (t) for all t, and for each δ > 0 there is δ′ ∈ (0, δ) satisfying

T (t, s)(A (s) ∩ Oδ′(A(s))) ⊂ A (t) ∩Oδ(A(t)), whenever t ≥ s.

Then, A = {A(t) : t ∈ R} is a local attractor for {T (t, s) : t ≥ s}, which is not
pinned-chain recurrent.

Proof. Since {A(t) : t ∈ R} is an isolated invariant family, there exists δ > 0
such that if ξ : R → X is a global solution with ξ(t) ∈ Oδ(A(t)) for each t ∈ R,
then ξ(t) ∈ A(t) for each t ∈ R. Clearly A(t) ⊂ Wu(A)(t) for each t ∈ R, and
if ξ : R → X is a global solution such that lim

s→−∞
dist(ξ(s), A(s)) = 0, choose

δ′ ∈ (0, δ) with

T (t, s)(A (s) ∩ Oδ′(A(s))) ⊂ A (t) ∩Oδ(A(t)), whenever t ≥ s.

Choosing sδ ∈ R such that dist(ξ(s), A(s)) < δ′ for all s ≤ sδ, we must have ξ(t) ∈
Oδ(A(t)) for all t ∈ R. Consequently, ξ(t) ∈ A(t) for all t ∈ R and Wu(A)(t) ⊂ A(t)
for all t ∈ R.

Finally, if {A(t) : t ∈ R} is pinned-chain recurrent, there are δ > 0, sequences
(sj)j∈N, (tj)j∈N and (τj)j∈N of real numbers, and a sequence (xj)j∈N in X, with
xj ∈ A (sj) for each j, such that

sj ≤ tj ≤ τj ,

dist(xj , A(sj))<
1

j
, dist(T (tj , sj)xj , A(tj))≥δ and dist(T (τj , sj)xj , A(τj))<

1

j
.

That is clearly in contradiction with the fact that there exists δ′ ∈ (0, δ) with

T (t, s)(A (s) ∩ Oδ′(A(s))) ⊂ A (t) ∩Oδ(A(t)) whenever t ≥ s,

and the proof is complete. �

Our next result is a first consequence of Lemma 2.12.

Lemma 2.15. Let {T (t, s) : t ≥ s} be an evolution process and A = {A(t) : t ∈ R}
be a local attractor which is not pinned-chain recurrent. Suppose that there exists
ε > 0 with

A (t) ∩ Oε(A(t)) ∩Oε(A
∗(t)) = ∅, for all t ∈ R.

If K ⊂ A (t) is compact and K ∩ A∗(t) = ∅, then

lim
τ→∞

dist(T (τ, t)K,A(τ )) = 0.

Proof. We prove the result by contradiction. Assume that there are δ > 0, a

sequence {τj}j∈N in R with τj
j→∞−→ ∞, and a sequence {xj}j∈N in K with xj

j→∞−→
x0 ∈ K such that

(2.6) dist(T (τj , t)xj , A(τj)) ≥ δ, for all j.

Thanks to Lemma 2.12, we can choose δ′ ∈ (0, δ) such that

T (s, r)Oδ′(A(r)) ⊂ Oδ(A(s)) whenever s ≥ r.
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Thus, it follows from (2.6) that

(2.7) dist(T (s, t)xj, A(s)) ≥ δ′ for all s ∈ [t, τj ] and all j.

Since τj → ∞, using (2.7), we have that

dist(T (s, t)x0, A(s)) ≥ δ′ for all s ≥ t.

From the definition of A∗(t) we have that x0 ∈ A∗(t), which is in contradiction
with K ∩A∗ (t) = ∅, and the proof is therefore complete. �

3. A Lyapunov function for a generalized gradient-like process

In this section we will prove that gradient-like evolution processes are gradient
processes. A gradient evolution process is defined as follows:

Definition 3.1. We say that an evolution process {T (t, s) : t ≥ s} with a pullback
attractor {A (t) : t ∈ R} and a disjoint set of isolated invariant families Ξ =
{Ξ1, · · · ,Ξn} is a gradient evolution process with respect to Ξ if there is a
function V : R×X → R such that:

i) For each z ∈ X and t ∈ R, the function [0,∞) � r �→ V (r+ t, T (r+ t, t)z) ∈ R

is non-increasing.
ii) Given t ∈ R and z ∈ A (t), V (r + t, T (r + t, t)z) = V (t, z) for all r ≥ 0 iff

z ∈
n⋃

i=1

Ξi(t) and V (t,Ξi(t)) is a unitary set for each t ∈ R and i ∈ {1, · · · , n}.

iii) For each t ∈ R, the function Vt : A (t) → R, given by Vt(z) := V (t, z) for
z ∈ A (t), is continuous.

A function V : R × X → R with the properties above is called a Lyapunov
function for the generalized gradient process {T (t, s) : t ≥ s} with respect to Ξ.

Before proving our main result, we need to establish the continuity of the invari-
ant families (A,A∗) of attractor–repeller pairs in the following sense:

Lemma 3.2. Let {T (t, s) : t ≥ s} be a gradient-like evolution process in a metric
space X with a pullback attractor {A (t) : t ∈ R}, and let (A,A∗) be an attractor-
repeller pair for {T (t, s) : t ≥ s}.

Then, for each t0 ∈ R we have

(3.1) lim
t→t0

dH(A(t), A(t0)) = 0 and lim
t→t0

dH(A
∗(t), A∗(t0)) = 0.

Proof. In fact, we know that A∗ is invariant and then, by Lemma 2.10 and the
proof of Theorem 2.9, both in [6], we obtain the conclusion (3.1). �

Now, we can prove the main result in this paper.

Theorem 3.3. Let {T (t, s) : t ≥ s} be an evolution process in a metric space X,
with a pullback attractor {A (t) : t ∈ R}, let (A,A∗) be an attractor-repeller pair for
{T (t, s) : t ≥ s}, and assume that (A,A∗) is not pinned-chain recurrent. Suppose
that there exists ε > 0 with

(3.2) Oε(A(t)) ∩ Oε(A
∗(t)) = ∅, for all t ∈ R.

Then, there exists a function k : R×X → R satisfying the following four properties:
i) For each z ∈ X and t ∈ R, the function [0,∞) � r �→ k(r+ t, T (r+ t, t)z) ∈ R

is non-increasing.
ii) If kt : X → R is defined by kt(z) := k(t, z), for each t ∈ R and z ∈ X, then

k−1
t (0) = A(t) and k−1

t (1) ∩ A (t) = A∗(t).
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iii) Given t ∈ R and z ∈ A (t), if k(r + t, T (r + t, t)z) = k(t, z) for all r ≥ 0,
then z ∈ A(t) ∪A∗(t).

iv) kt : A (t) → R is continuous, in A (t), for each t ∈ R.

Proof. First, with the convention that dist(z,∅) = 1, let l : R × X → [0, 1] be
the Uryshon function associated to the attractor-repeller pair (A,A∗). That is, for
each t ∈ R and z ∈ X,

l(t, z) :=
dist(z, A(t))

dist(z, A(t)) + dist(z, A∗(t))
.

We have that l is well defined and that l (R×X) ⊂ [0, 1] is continuous in both
variables (t, z) and, for each t ∈ R, is uniformly continuous in X (that is, the
family {lt : X → [0, 1] : t ∈ R} is uniformly Lipschitz continuous, where lt : X → R

is given by lt(z) := l(t, z), for each t ∈ R and z ∈ X). In fact, since, by (3.2),

(3.3) d0 := inf
t∈R

{inf {d(x, y) : x ∈ A(t), y ∈ A∗(t)}} ≥ ε > 0,

it holds that |l(t, z)− l(t, w)| ≤ 2
d0
d(z, w), for any z, w ∈ X and t ∈ R.

Now, from Lemma 3.2, it is not difficult to see that l : R×X → [0, 1] is continuous
in both variables. Moreover, it is easy to see that l−1

t (0) = A(t) and l−1
t (1) = A∗(t).

We define k : R×X → R by

k(t, z) := sup
r≥0

l(r + t, T (r + t, t)z).

We now show that k : R×X → R has properties i) - iv) above.
Clearly, k(R ×X) ⊂ [0, 1]. To prove that, given t ∈ R and z ∈ X, the function

[0,∞) � r �→ k(r + t, T (r + t, t)z) ∈ [0, 1] is non-increasing, observe that, if 0 ≤
r1 ≤ r2, we have

k(r2 + t, T (r2 + t, t)z) = sup
r≥0

l(r + r2 + t, T (r + r2 + t, t)z)

= sup
r≥r2

l(r + t, T (r + t, t)z)

≤ sup
r≥r1

l(r + t, T (r + t, t)z)

= sup
r≥0

l(r + r1 + t, T (r + r1 + t, t)z)

= k(r1 + t, T (r1 + t, t)z).

By the definition of k and from the invariance of A and A∗, it is clear that
kt(A(t)) = {0} and kt(A

∗(t)) = {1}. Now, if z ∈ X is such that k(t, z) = 0, then
l(r + t, T (r + t, t)z) = 0 for all r ≥ 0. In particular, 0 = l(t, z), and then, z ∈ A(t),
that is, k−1

t (0) ⊂ A(t), which shows that k−1
t (0) = A(t). On the other hand, if z ∈

A (t) is such that kt(z) = 1 and z /∈ A∗(t), then lim
r→∞

dist(T (r+ t, t)z, A(r+ t)) = 0.

From the definition of l we obtain that lim
r→∞

l(r+t, T (r+t, t)z) = 0. Therefore, there

exists r0 > 0 such that 1 = k(t, z) = sup
0≤r≤r0

l(r + t, T (r + t, t)z). The continuity

of [0,∞) � r �→ l(r + t, T (r + t, t)z) ∈ [0, 1] implies the existence of r′ ∈ [0, r0]
such that l(r′ + t, T (r′ + t, t)z) = 1; that is, T (r′ + t, t)z ∈ A∗(r′ + t) which
contradicts the fact that lim

r→∞
l(T (r + t, t)z, A(r + t)) = 0. Thus, if k(t, z) = 1 for
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some t ∈ R and z ∈ A (t), we must have that z ∈ A∗(t). From this, we conclude
that k−1

t (1) ∩ A (t) ⊂ A∗(t) and, consequently, k−1
t (1) ∩ A (t) = A∗(t).

We now prove that if z ∈ A (t) and k(r + t, T (r + t, t)z) = k(t, z) for all r ≥ 0,
then z ∈ A(t)∪A∗(t). If z /∈ A(t)∪A∗(t), then lim

r→∞
dist(T (r+ t, t)z, A(r+ t)) = 0,

and from the definition of k, we have that k(t, z) = lim
r→∞

k(r + t, T (r + t, t)z) = 0.

Since k−1
t (0) = A(t), z must belong to A(t), which is a contradiction.

Next we prove the continuity of kt : A (t) → R. We split the proof into three
cases:

Case 1). Continuity of kt : A (t) → R in A∗(t). Since l(t, z) ≤ k(t, z) ≤ 1, for all
t ∈ R and z ∈ X, given z0 ∈ A∗(t) and z ∈ X we have

|k(t, z)− k(t, z0)| = 1− k(t, z) ≤ 1− l(t, z).

This and the continuity of l : R×X → R in (t, z0) imply the continuity of kt : X → R

in z0.

Case 2). Continuity of kt : A (t) → R in A(t). From the equicontinuity of the
family of functions {lt : X → R : t ∈ R}, given ε > 0, there is δ > 0 such that
ls(Oδ(A(s))) ⊂ [0, ε) for all s ∈ R. Now, Lemma 2.12 implies that there exists
δ′ ∈ (0, δ) such that T (r+ t, t)(A (t)∩Oδ′(A(t))) ⊂ A (r+ t)∩Oδ(A(r+ t)), for all
r ≥ 0, from which we can conclude that kt(A (t) ∩Oδ′(A(t))) ⊂ [0, ε].

Case 3). Continuity of kt : A (t) → R in A (t)\(A(t)∪A∗(t)). Given z ∈ A (t)\(A(t)
∪ A∗(t)), since z �∈ A∗(t), it follows that lim

r→∞
dist(T (r + t, t)z, A(r + t)) = 0 and,

since z �∈ A(t), it holds that l(t, z) > 0. Choose δ > 0 such that ls(Oδ(A(s))) ⊂
[0, l(t,z)2 ) for all s ∈ R and, from Lemma 2.12, we can choose δ′ ∈ (0, δ) such that
T (r + t, t)(A (t) ∩Oδ′(A(t))) ⊂ A (r + t) ∩ Oδ(A(r + t)), for all r ≥ 0.

From lim
r→∞

dist(T (r + t, t)z, A(r + t)) = 0, there exists σ > 0 with the property

that T (r + t, t)z ∈ Oδ′(A(r + t)), for all r ≥ σ. From the continuity of T (σ + t, t) :
X → X, there is a neighborhood U1 of z inX such that T (σ+t, t)U1 ⊂ Oδ′(A(σ+t)).
Then, for all w ∈ U1 we have that T (σ+t, t)w ∈ Oδ′(A(σ+t)) so that T (r+t, t)w ∈
Oδ(A(r + t)) for all r ≥ σ and w ∈ U1 ∩ A (t).

Finally, from the continuity of lt, let U2 be a neighborhood of z in X such that

l(t, w) > l(t,z)
2 for all w ∈ U2 and write U := U1∩U2∩A (t) so that, for all w ∈ U , it

holds that k(t, w) = sup
0≤r≤σ

l(r+ t, T (r+ t, t)w), from which we obtain the continuity

of kt in points of A (t)\(A(t) ∪ A∗(t)). �

The proof of our next result is very similar to the proof of Theorem 3.3 and
follows the ideas in [1]. It brings up a special case for which the continuity of the
“Lyapunov functions” in both variables holds. We observe that the last theorem
says that the “Lyapunov function” is continuous for each fixed t and in the pullback
attractor only.

Proposition 3.4. Let {T (t, s) : t ≥ s} be an evolution process in a metric space
X with a pullback attractor {A (t) : t ∈ R}, and let (A,A∗) be an attractor-repeller
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pair for {T (t, s) : t ≥ s} with

(3.4) Oε0(A(t)) ∩ Oε0(A
∗(t)) = ∅, for all t ∈ R,

for some ε0 > 0. Also assume that the following two conditions hold:

(a) The conclusion of Lemma 2.12 holds, considering neighborhoods of A in X.
That is, for each δ > 0 there is δ′ ∈ (0, δ) such that

T (r + t, t)(Oδ′(A(t))) ⊂ Oδ(A(r + t)), for all r ≥ 0 and t ∈ R.

(b) For each t ∈ R and z ∈ X\(A(t) ∪ A∗(t)) we have

lim
r→∞

dist(T (r + t, t)z, A(r + t)) = 0 or lim
r→∞

dist(T (r + t, t)z, A∗(r + t)) = 0.

Then, the function k : R×X → R, defined in Theorem 3.3, is continuous (in both
variables (t, x) and for all (t, x) ∈ R×X).

Remark 3.5. Hypotheses (a) and (b) are automatically satisfied in the autonomous
case (see Lemma 2.11 and part (iii) of Lemma 2.13 in [1]).

Proof. Let us prove the continuity of k in a point (t0, z0) ∈ R×X. As in the proof
of Theorem 3.3, we consider three cases:

Case 1) z0 ∈ A∗(t0). Since l(t, z) ≤ k(t, z) ≤ 1, for all t ∈ R and z ∈ X we can
write

|k(t, z)− k(t0, z0)| = 1− k(t, z) ≤ 1− l(t, z).

This and the continuity (in both variables) of l : R ×X → R in (t0, z0) imply the
continuity of k : R×X → R in (t0, z0).

Case 2) z0 ∈ A(t0). From

|l(t, z)− l(t, w)| ≤ 2

ε0
d(z, w), ∀z, w ∈ X and t ∈ R,

given ε > 0, there is δ > 0 such that l(s,Oδ(A(s))) ⊂ [0, ε) for all s ∈ R.

On the other hand, from (a) there exists δ′∈(0, δ) such that T (r+t, t)(Oδ′(A(t)))
⊂ Oδ(A(r + t)), for all r ≥ 0 and t ∈ R, from which we can conclude that
k(t,Oδ′(A(t))) ⊂ [0, ε] for each t ∈ R.

Now, by Lemma 3.2, let δ′′ > 0 be such that O δ′
2
(A(t0)) ⊂ Oδ′(A(t)) whenever

|t− t0| < δ′′. Hence, for |t− t0| < δ′′ and d(z, z0) <
δ′

2 we have that k(t, z) ≤ ε.
This proves the continuity of k : R×X → R in (t0, z0) with z0 ∈ A(t0).

Case 3) z0 ∈ X\(A(t0) ∪ A∗(t0)). By hypothesis (b) we have

lim
r→∞

dist(T (r+t0, t0)z0, A(r+t0)) = 0 or lim
r→∞

dist(T (r+t0, t0)z0, A
∗(r+t0)) = 0.

First consider the case when lim
r→∞

dist(T (r + t0, t0)z0, A(r + t0)) = 0. Since

z0 �∈ A∗(t0) it holds that l(t0, z0) > 0. Choose δ > 0 such that l(s,Oδ(A(s))) ⊂
[0, l(t0,z0)2 ) for all s ∈ R and, from hyphotesis (a), we choose δ′ ∈ (0, δ) such
that T (r + t, t)(Oδ′(A(t))) ⊂ Oδ(A(r + t)), for all r ≥ 0. From the fact that
lim
r→∞

dist(T (r + t0, t0)z0, A(r + t0)) = 0, there exists σ > 0 with the property that

T (σ+t0, t0)z0 ∈ O δ′
2
(A(σ+t0)). From the continuity of the process {T (t, s) : t ≥ s}

and Lemma 3.2, there is a neighborhood U1 of z0 in X and δ′′ > 0 such that
T (σ + t, t)U1 ⊂ O δ′

2
(A(σ + t0)) ⊂ Oδ′(A(σ + t)) whenever |t− t0| < δ′′. Then, for
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all z ∈ U1 and t ∈ (t0 − δ′′, t0 + δ′′), we have that T (σ + t, t)z ∈ Oδ′(A(σ + t)) so
that T (r + t, t)z ∈ Oδ(A(r + t)) for all r ≥ σ, z ∈ U1 and t ∈ (t0 − δ′′, t0 + δ′′).

Now, from the continuity of l : R × X → R, let U2 be a neighborhood of z0
in X and 0 < η < δ′′ such that l(t, z) > l(t0,z0)

2 for all z ∈ U2 and |t− t0| < η,
and write U := U1 ∩ U2 so that, for all z ∈ U and |t− t0| < η, it holds that
k(t, z) = sup

0≤r≤σ
l(r+t, T (r+t, t)z), from which we obtain the continuity of k in points

(t0, z0) with z0 ∈ X\(A(t0) ∪ A∗(t0)) and lim
r→∞

dist(T (r + t0, t0)z0, A(r + t0)) = 0.

Now consider the case lim
r→∞

dist(T (r+t0, t0)z0, A
∗(r+t0)) = 0. Hence k(t0, z0) =

1 and, given ε > 0, we can choose δ > 0 such that l(s,Oδ(A
∗(s))) ⊂ (1 − ε, 1] for

all s ∈ R. We choose σ > 0 with T (σ + t0, t0)z0 ∈ O δ
2
(A∗(σ + t0)).

From the continuity of the process {T (t, s) : t ≥ s} and Lemma 3.2, there is a
neighborhood U of z0 in X and δ′ > 0 such that T (σ + t, t)U ⊂ O δ

2
(A∗(σ + t0)) ⊂

Oδ(A
∗(σ + t)) whenever |t− t0| < δ′. Therefore, k(t, z) ≥ l(t, z) > 1− ε whenever

z ∈ U and |t− t0| < δ′, and the proof of the proposition is complete. �

Now, we wish to construct a continuous function h : R ×X → R which is non-
increasing along solutions and such that, given t ∈ R and z ∈ X, if h(r + t, T (r +
t, t)z) = h(t, z) for all r ≥ 0, then z ∈ A(t).

Lemma 3.6. Let {T (t, s) : t ≥ s} be an evolution process in a metric space X, with
a pullback attractor {A (t) : t ∈ R} satisfying the fact that for each z ∈ X we have

lim
r→∞

dist(T (r + t, t)z,A (r + t)) = 0,

and for every δ > 0 there is δ′ ∈ (0, δ) such that

T (r + t, t)(Oδ′(A (t))) ⊂ Oδ(A (r + t)), for all r ≥ 0 and t ∈ R.

Then, the function h : R×X → R given by

h(t, z) := sup
r≥0

dist(T (r + t, t)z,A (r + t)), (t, z) ∈ R×X,

is continuous (in both variables), and for each (t, z) ∈ R×X, the function [0,∞) �
r �→ h(r + t, T (r + t, t)z) ∈ R is non-increasing with h(t, z) = 0 iff z ∈ A (t).

Proof. Indeed, the proof of the fact that the function [0,∞) � r �→ h(r + t, T (r +
t, t)z) ∈ R is non-increasing, for each z ∈ X and t ∈ R, is analogous to the proof
of the same property for the function k : R ×X → R in Theorem 3.3. The proof
of the continuity can be done in the same way as in cases 2) and 3) in the proof of
the continuity of k in Proposition 3.4. �

In the conditions of the last two results, using some ideas from [1], we can improve
the conclusion of Theorem 3.3 by proving the following theorem.

Theorem 3.7. Let {T (t, s) : t ≥ s} be an evolution process in a metric space X,
with a pullback attractor {A (t) : t ∈ R} satisfying the fact that for each z ∈ X we
have

lim
r→∞

dist(T (r + t, t)z,A (r + t)) = 0,

and for every δ > 0 there is δ′ ∈ (0, δ) such that

T (r + t, t)(Oδ′(A (t))) ⊂ Oδ(A (r + t)), for all r ≥ 0 and t ∈ R.
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Also, let (A,A∗) be an attractor-repeller pair for {T (t, s) : t ≥ s} with

Oε(A(t)) ∩ Oε(A
∗(t)) = ∅, for all t ∈ R,

for some ε > 0 and, furthermore, satisfying the following conditions:

(a) The conclusion of Lemma 2.12 holds, considering neighborhoods of A in X.
That is, for each δ > 0 there is δ′ ∈ (0, δ) such that

T (r + t, t)(Oδ′(A(t))) ⊂ Oδ(A(r + t)), for all r ≥ 0 and t ∈ R.

(b) For each t ∈ R and z ∈ X\(A(t) ∪ A∗(t)) we have

lim
r→∞

dist(T (r + t, t)z, A(r + t)) = 0 or lim
r→∞

dist(T (r + t, t)z, A∗(r + t)) = 0.

Then, there exists a function f : R×X → R satisfying the following four properties:

i) For each (t, z) ∈ R×X, the function [0,∞) � r �→ f(r+ t, T (r+ t, t)z) ∈ R

is non-increasing.
ii) If t ∈ R and ft : X → R is defined by ft(z) := f(t, z), for each z ∈ X, then

f−1
t (0) = A(t) and f−1

t (1) ∩ A (t) = A∗(t).
iii) Given t ∈ R and z ∈ X, if f(r+ t, T (r+ t, t)z) = f(t, z) for all r ≥ 0, then

z ∈ A(t) ∪ A∗(t).
iv) f : R×X → R is continuous (in both variables).

Proof. In fact, let k : R × X → R be the function given in Theorem 3.3 and
h : R×X → R be the function given in Lemma 3.6. We define f : R×X → R by

f(t, z) := k(t, z) + h(t, z), (t, z) ∈ R×X.

It follows immediately from the properties of h and k that f is continuous (in
both variables) and that, for each (t, z) ∈ R × X, the function [0,∞) � r �→
f(r + t, T (r + t, t)z) ∈ R is non-increasing.

Proof of ii). First, let z ∈ A(t) ⊂ A (t). Then h(t, z) = 0 and, by Theorem
3.3, we have that k(t, z) = 0. Hence f(t, z) = 0 and A(t) ⊂ f−1

t (0). Conversely, if
z ∈ X is such that ft(z) = 0, we have that h(t, z) = 0 and k(t, z) = 0, therefore
z ∈ A (t), and by ii) in Theorem 3.3, z ∈ A(t). This proves that f−1

t (0) ⊂ A(t). On
the other hand, if z ∈ A∗(t) ⊂ A (t), we have that h(t, z) = 0, and thus, f(t, z) =
k(t, z) + h(t, z) = k(t, z) = 1 and z ∈ A∗(t). It follows that A∗(t) ⊂ f−1(1) ∩A (t).
Now, let z ∈ A (t) with f(t, z) = 1. It follows that h(t, z) = 0 and k(t, z) = 1.
Therefore z ∈ A∗(t) and the proof of ii) is complete.

Proof of iii). Let (t, z) ∈ R×X with f(r+ t, T (r+ t, t)z) = f(t, z) for all r ≥ 0.
If z ∈ A (t) we have h(r+t, T (r+t, t)z) = 0 for all r ≥ 0, and k(r+t, T (r+t, t)z) =
k(t, z) for all r ≥ 0, and, from iii) in Theorem 3.3, the conclusion follows. On the
other hand, if z ∈ X\A (t), then lim

r→∞
dist(T (r + t, t)z, A∗(r + t)) = 0. Indeed, if

that was not the case, by assumption lim
r→∞

dist(T (r+ t, t)z, A(r+ t)) = 0 it is easy

to see that

f(t, z) = lim
r→∞

f(r + t, T (r + t, t)z)

= lim
r→∞

k(r + t, T (r + t, t)z) + lim
r→∞

h(r + t, T (r + t, t)z) = 0.
(3.5)

Thus, k(t, z) = 0 and z ∈ A(t), which is in contradiction with the fact that z ∈
X\A (t). It follows that lim

r→∞
dist(T (r+ t, t)z, A∗(r+ t)) = 0. Now, using the same
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reasoning as in (3.5), we obtain

f(t, z) = lim
r→∞

f(r + t, T (r + t, t)z)

= lim
r→∞

k(r + t, T (r + t, t)z) + lim
r→∞

h(r + t, T (r + t, t)z) = 1 + 0 = 1,

but this cannot be true since the fact that k(t, z) ≥ k(r+ t, T (r+ t, t)z) for all r ≥ 0
implies 1 ≥ k(t, z) ≥ lim

r→∞
k(r + t, T (r + t, t)z) = 1, that is, k(t, z) = 1. Therefore

z ∈ A∗(t), contradicting z ∈ X\A (t). This completes the proof. �

Remark 3.8. We note that the function h plays a fundamental role in the proof of
iii).

Finally, analogously to Theorem 3.4 in [1], joining all of the results in this section,
the following result holds.

Theorem 3.9. Let {T (t, s) : t ≥ s} be a gradient-like evolution process with respect
to the isolated invariant families Ξ = {Ξ1, · · · ,Ξn}, reordered in the way described
in Theorem 2.10, and with a pullback attractor {A (t) : t ∈ R}.

Let Aj(t) =
j⋃

i=1

Wu(Ξi)(t), for 1 ≤ j ≤ n and t ∈ R.

Assume that the following conditions hold:

(S1) There exists δ > 0 such that Oε(Aj(t)) ∩ Oε(A
∗
j (t)) = ∅, for all 1 ≤ j ≤ n

and t ∈ R.
(S2) Given δ > 0, there is δ′ ∈ (0, δ) such that

T (r + t, t)(A (t) ∩ Oδ′(Aj(t))) ⊂ A (t+ r) ∩ Oδ(Aj(r + t)),

for all r ≥ 0, 1 ≤ j ≤ n and t ∈ R.

Then, there exists a Lyapunov function V : R × X → R with properties i)-iii) of
Definition 3.1, and such that V (t,Ξk(t)) = {k− 1}, for all t ∈ R and k = 1, · · · , n.

Moreover, if (S2) holds for neighborhoods of the Aj’s in X and given (t, z) ∈
R ×X and 1 ≤ j ≤ n, lim

r→∞
dist(T (r + t, t)z, Aj(r + t) ∪ A∗

j (r + t)) = 0, then the

Lyapunov function V : R×X → R can be chosen continuous in both variables.

4. Non–autonomous perturbations

of autonomous evolution processes

Now, we will exhibit a class of examples to which our previous abstract theory can
be applied. This class consists of the non-autonomous perturbations of gradient-like
semigroups.

To begin with, we recall Theorem 3.9 in [5]:

Theorem 4.1. Let X be a metric space and, for each η ∈ [0, 1], let {Tη(t, s) : t ≥ s}
be an evolution process on X with a pullback attractor {Aη(t) : t ∈ R}. Assume
that the following conditions hold:

(a)
⋃

η∈[0,1]

⋃
t∈R

Aη(t) is compact.

(b) {T0(t, s) : t ≥ s} is an autonomous evolution process and {T0(t, 0) = S(t) :
t ≥ 0} is a gradient-like semigroup relative to the set of equilibria E0 =
{y∗1,0, · · · , y∗n,0}.
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(c) For each η ∈ (0, 1], {Tη(t, s) : t ≥ s} possesses n isolated global solutions
ξ∗i,η : R → X, i = 1, 2, · · · , n, η ∈ (0, 1], and lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) =

0.
(d) For each compact set K ⊂ R

+ ×X,

lim
η→0+

sup
s∈R

sup
(t,x)∈K

d(Tη(t+ s, s)x, T0(t+ s, s)x) = 0.

(e) There exist μ > 0 and η1 ∈ (0, 1] such that, if ξη : R → X is a bounded solu-
tion of {Tη(t, s) : t ≥ s} with η ≤ η1 so that there exists t0 ∈ R and some i ∈
{1, · · · , n} with sup

t≤t0

dist(ξη(t), ξ
∗
i,η(R)) < μ (resp. sup

t≥t0

dist(ξη(t), ξ
∗
i,η(R))

< μ), then lim
t→−∞

d(ξη(t), ξ
∗
i,η(t)) = 0 (resp. lim

t→∞
d(ξη(t), ξ

∗
i,η(t)) = 0).

Then, there exists η0 ∈ (0, η1] such that, for each η ∈ (0, η0], {Tη(t, s) : t ≥ s} is
a non-autonomous gradient-like evolution process with respect to the disjoint set of
isolated invariant families Eη = {ξ∗1,η, · · · , ξ∗n,η}.

The following lemma will be crucial to establish our main results in this section
(see Lemma 3.1 in [7] for the proof).

Lemma 4.2. Let X be a metric space and {Tη(t, s) : t ≥ s}η∈[0,1] be a family of
evolution processes on X with pullback attractors {Aη(t) : t ∈ R}η∈[0,1]. Assume
that conditions (a), (b) and (d) of Theorem 4.1 are satisfied.

Let {ηk}k∈N be a sequence in (0,∞) with ηk
k→∞−→ 0, {tk}k∈N be a sequence in R

and {ξk}k∈N be a sequence in C(R, X) such that, for each k ∈ N, ξk : R → X is a
bounded global solution for {Tηk

(t, s) : t ≥ s}.
Then, there is a subsequence of {ξk}k∈N, which we denote the same, and a global

solution ξ : R → A0 for {T0(t, 0) = S(t) : t ≥ 0} such that

lim
k→∞

sup
|t|≤R

d(ξk(t+ tk), ξ(t)) = 0, for each R > 0.

Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s} an evolution
process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies conditions
(a)-(e) in Theorem 4.1. We suppose that the set of equilibria, E0 = {y∗1,0, · · · , y∗n,0},
of {T0(t, 0) = S(t) : t ≥ 0} is reordered so that it is a Morse-decomposition of
the global attractor A0, as in Theorem 2.10 (see also Theorem 2.17 in [1] for the
autonomous framework).

For η ∈ [0, 1], reordering the Eη = {ξ∗1,η, · · · , ξ∗n,η} so that sup
1≤i≤n

sup
t∈R

d(ξ∗i,η(t), y
∗
i,0)

η→0+−→ 0, let A0,η(t) := ∅, A1,η(t) := {ξ∗1,η(t)} and

(4.1) Aj,η(t) := Aj−1,η(t) ∪Wu(ξ∗j,η)(t), j = 2, · · · , n,

for each t ∈ R. Also, for each η ∈ [0, 1], 1 ≤ j ≤ n and t ∈ R, let

(4.2) A∗
j,η(t) := {z ∈ Aη(t) : dist(Tη(r + t, t)z, Aj,η(r + t)) �−→ 0 as r → ∞}.

If we assume these constructions, we can prove the following results:

Lemma 4.3. Consider a metric space X and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies
conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is reordered
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so that it is a Morse-decomposition for {T0(t, 0) = S(t) : t ≥ 0} and that Eη is
reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0.

Then, the families of Aj,η and A∗
j,η defined by (4.1) and (4.2) behave upper

semicontinuously as η → 0+, that is,

(4.3) lim
η→0+

sup
t∈R

dist(Aj,η(t), Aj,0) = 0

and

(4.4) lim
η→0+

sup
t∈R

dist(A∗
j,η(t), A

∗
j,0) = 0

for each j = 1, 2, · · · , n.

Proof. Indeed, thanks to the fact that Aj,0 and A∗
j,0 are disjoint compact sets (see

[1]) for all j, we can pick ε > 0 such that, for all j = 1, 2, · · · , n,
(4.5) Oε(Aj,0) ∩ Oε

(
A∗

j,0

)
= ∅.

First, we will prove that lim
η→0+

max
1≤j≤n

sup
t∈R

dist(Aj,η(t), Aj,0) = 0. If this is not true,

there are δ ∈ (0, ε), j ∈ {1, 2, · · · , n}, a sequence {ηk}k∈N in (0, 1] with ηk
k→∞−→ 0+,

a sequence {τk}k∈N in R and a sequence {xk}k∈N in X such that, for each k ∈ N,
xk ∈ Aj,ηk

(τk) and

(4.6) dist(xk, Aj,0) ≥ δ.

Now, by the definition of Aj,η(t), we can assume that there is i ≤ j, fixed, such
that for each natural k, there is a global solution ξk : R → X for {Tηk

(t, s) : t ≥ s}
with ξk(τk) = xk and

(4.7) lim
t→−∞

d(ξk(t), ξ
∗
i,ηk

(t)) = 0.

On the other hand, by hypothesis (c), it follows the existence of ηδ > 0 such
that, for all η ≤ ηδ,

sup
t∈R

dist(ξ∗i,η(t), Aj,0) <
δ

2
.

Consequently, by (4.6) and (4.7), for each k there exists tk ∈ R such that

(4.8) dist(ξk(t), Aj,0) < δ for all t < tk

and

(4.9) dist(ξk(tk), Aj,0) = δ.

Thus, we define ξ̃k : R → X by ξ̃k(t) := ξk(t + tk), t ∈ R, and, by Lemma
4.2, we can assume that there is a global solution ξ : R → X for the semigroup
{T0(t, 0) = S(t) : t ≥ 0} such that, for each R > 0,

lim
k→∞

sup
|t|≤R

d(ξ̃k(t), ξ(t)) = 0.

By (4.8), we have that dist(ξ(t), Aj,0) ≤ δ for all t ≤ 0, so, by (4.5), we must
have ξ(0) ∈ Aj,0, but (4.9) means that dist(ξ(0), Aj,0) = δ. This contradiction
proves (4.3).

Now, we prove that lim
η→0+

max
1≤j≤n

sup
t∈R

dist(A∗
j,η(t), A

∗
j,0) = 0. If it does not hold,

there exist δ ∈ (0, ε), j = 1, 2, · · · , n, a sequence {ηk}k∈N in (0, 1] with ηk
k→∞−→ 0,
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a sequence {τk}k∈N in R, and a sequence {xk}k∈N in X such that, for each k ∈ N,
xk ∈ A∗

j,ηk
(τk) and

(4.10) dist(xk, A
∗
j,0) ≥ δ.

Now, by the definition of A∗
j,η(t) (and Theorem 4.1), we can assume that there

is i ≥ j + 1, fixed, such that for each k ∈ N, there is a global solution ξk : R → X
for {Tηk

(t, s) : t ≥ s} with ξk(τk) = xk and

(4.11) lim
t→∞

d(ξk(t), ξ
∗
i,ηk

(t)) = 0.

On the other hand, hyphotesis (c) implies the existence of η∗δ > 0 such that, for
all η ≤ η∗δ ,

sup
t∈R

dist(ξ∗i,η(t), A
∗
j,0) <

δ

2
,

whence, by (4.10) and (4.11), for each k ∈ N, there exists tk ∈ R such that

(4.12) dist(ξk(t), A
∗
j,0) < δ for all t > tk

and

(4.13) dist(ξk(tk), A
∗
j,0) = δ.

Thus, we define ξ̃k : R → X by ξ̃k(t) := ξk(t + tk), t ∈ R, and, by Lemma
4.2, we can assume that there is a global solution ξ : R → X for the semigroup
{T0(t, 0) = S(t) : t ≥ 0} such that, for each R > 0,

lim
k→∞

sup
|t|≤R

d(ξ̃k(t), ξ(t)) = 0.

From (4.12) we have that dist(ξ(t), A∗
j,0) ≤ δ for all t > 0 and, as a conse-

quence of (4.5), we must have ξ(0) ∈ A∗
j,0. On the other hand, (4.13) implies that

dist(ξ(0), A∗
j,0) = δ. This is a contradiction and (4.4) is proved, completing the

proof of the lemma. �

Lemma 4.4. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies
conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is reordered
in such a way that it is a Morse-decomposition for {T0(t, 0) = S(t) : t ≥ 0} and
that Eη is reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0.

If the families of local unstable sets {Wu
η,ρ(ξ

∗
j )(t)}η∈[0,1] behave lower semicon-

tinuously, then the families of Aj,η behave lower semicontinuously as η → 0+; that
is,

lim
η→0+

sup
t∈R

dist(Aj,0, Aj,η(t)) = 0.

If the families of local stable sets {W s
η,ρ(ξ

∗
j )(t) ∩ Aη(t)}η∈[0,1] behave lower semi-

continuously and Tη(t, s) : A(s) → A(t) is injective for each t ≥ s, η ∈ [0, 1],
then

lim
η→0+

sup
t∈R

dist(A∗
j,0, Aj,η(t)

∗) = 0.

Proof. It follows analogously to the proof of Theorem 2.13 in [6]. �
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Next we exhibit an example (pictorial) for which we have lower semicontinuity
of repellers but for which we do not have structural stability. The purpose of this
example is to show that the systems which satisfy the hypothesis imposed in the last
part of Lemma 4.4 are a larger class than that of the structurally stable systems.

Below, the figure labelled 01.a corresponds to the perturbed attractor-repeller
pair (Ai,η, A

∗
i,η) with Ai,η pictured in black and A∗

i,η pictured in red, 0 ≤ i ≤ 5.
The figure labelled 01.b corresponds to the limiting attractor-repeller (Ai, A

∗
i ) pair

with Ai pictured in black and A∗
i pictured in red, 1 ≤ i ≤ 5. Of course A5,η (A∗

0,η)
and A5 (A∗

0) correspond to the global attractor, whereas A∗
5,η (A0,η) and A∗

5 (A0)
correspond to the empty set. Color can be seen online.
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Proposition 4.5. Consider a metric space X and, for each η ∈ [0, 1], {Tη(t, s) :
t ≥ s} an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which
satisfies conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is
reordered so that it is a Morse-decomposition for {T0(t, 0) = S(t) : t ≥ 0} and that
Eη is reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0.

Then, there are ε > 0 and η0 > 0 such that

Oε(Aj,η(t)) ∩Oε

⎛⎝ n⋃
i=j+1

{ξ∗i,η(t)}

⎞⎠ = ∅

for each j = 1, 2, · · · , n− 1, t ∈ R and η ∈ [0, η0].

Proof. Indeed, by Theorem 2.17 in [1], we can take ε > 0 such that, for each
j = 1, 2, · · · , n− 1 and t ∈ R,

(4.14) O2ε(Aj,0) ∩ O2ε

⎛⎝ n⋃
i=j+1

{y∗i,0}

⎞⎠ = ∅.

We note that the proposition will be accomplished if we show the following
stronger conditions:

For each δ ∈ (0, ε] there is ηδ > 0 such that

(4.15) Aj,η(t) ⊂ Oδ(Aj,0)

and

(4.16)

n⋃
i=j+1

{ξ∗i,η(t)} ⊂ Oδ

⎛⎝ n⋃
i=j+1

{y∗i,0}

⎞⎠
for all t ∈ R, j = 1, 2, · · · , n− 1 and η ∈ [0, ηδ].
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Clearly (4.16) follows from hyphotesis (c), and (4.15) is a direct consequence of
(4.3) in Lemma 4.3. This completes the proof of the proposition. �

Using Proposition 4.5 we can show that the sets Aj,η, defined above, are all local
attractors for all suitable η. This is proved in the following proposition.

Proposition 4.6. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies
conditions (a)-(e) from Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is reordered
so that it is a Morse-decomposition for {T0(t, 0) = S(t) : t ≥ 0} and that Eη is
reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0.

Then, there exists η0 > 0 such that the invariant family Aj,η := {Aj,η(t) :
t ∈ R} is a local attractor for the evolution process {Tη(t, s) : t ≥ s}, for each
j = 1, 2, · · · , n and η ∈ (0, η0].

Proof. Indeed, by Lemma 4.3 and the proof of Proposition 4.5, we can choose ε > 0,
δ ∈ (0, ε] and η0 > 0 such that

Aj,η(t) ⊂ Oδ(Aj,0)

and
n⋃

i=j+1

{ξ∗i,η(t)} ⊂ Oδ

⎛⎝ n⋃
i=j+1

{y∗i,0}

⎞⎠
for each j = 1, 2, · · · , n− 1, t ∈ R and η ∈ [0, η0], where ε > 0 satisfies

O2ε(Aj,0) ∩ O2ε

⎛⎝ n⋃
i=j+1

{y∗i,0}

⎞⎠ = ∅.

Thus, if Γj,η is the trace of the family Aj,η, it follows that Γj,η ⊂ Oε(Aj,0) for
j = 1, 2, · · · , n− 1 and η ∈ [0, η0], and therefore

(4.17) Oε(Γj,η) ∩Oε

⎛⎝ n⋃
i=j+1

{ξ∗i,η(t)}

⎞⎠ = ∅

for each j = 1, 2, · · · , n− 1, t ∈ R and η ∈ [0, η0].
Now, for a fixed η ∈ [0, η0], let ξη : R → X be a global solution for {Tη(t, s) :

t ≥ s} with ξη(t) ∈ Oε(Γj,η) for all t ∈ R and, recalling that {Tη(t, s) : t ≥ s} is a
gradient-like evolution process with respect to Eη = {ξ∗1,η, · · · , ξ∗n,η} for η ∈ [0, η0]
(by Theorem 4.1), let i ∈ {1, 2, · · · , n} such that

lim
t→−∞

d(ξη(t), ξ
∗
i,η(t)) = 0.

By (4.17), we must have i ≤ j, so ξη(t) ∈ Wu(ξ∗i,η)(t) ⊂ Aj,η(t) for all t ∈ R, which
tells us that the family Aj,η = {Aj,η(t) : t ∈ R} is invariant and isolated for each
j = 1, 2, · · · , n and η ∈ [0, η0].

On the other hand, let ξη : R → X be a global solution for {Tη(t, s) : t ≥ s} with
η ∈ [0, η0] and lim

t→−∞
dist(ξη(t), Aj,η(t)) = 0. If t0 is such that dist(ξη(t), Aj,η(t)) <

ε for t ≤ t0, as Oε(Aj,η(t)) ∩ Oε

⎛⎝ n⋃
i=j+1

{ξ∗i,η(t)}

⎞⎠ = ∅ for all t ∈ R, using the

above reasoning, we must have ξη(t) ∈ Aj,η(t) for all t ∈ R, which shows that
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Wu(Aj,η)(t) ⊂ Aj,η(t) for each t ∈ R. Now, the inclusion Aj,η(t) ⊂ Wu(Aj,η)(t),
for each t ∈ R, holds thanks to the invariance of the family Aj,η, showing that
Wu(Aj,η)(t) = Aj,η(t) for all t ∈ R, and completing the proof of the proposition. �

The separation property between the local attractor and its repeller is also satis-
fied for the class of the non-autonomous perturbation of a gradient-like semigroup.
This is what we will show in the next proposition.

Proposition 4.7. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies
conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is reordered
so that it is a Morse-decomposition for {T0(t, 0) : t ≥ 0} and that Eη is reordered
in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0. Consider the families of local

attractors and corresponding repellers defined in (4.1) and (4.2).
Then, there exist ε > 0 and η0 > 0 such that, for all t ∈ R, j = 1, 2, · · · , n and

η ∈ [0, η0], we have

Oε(Aj,η(t)) ∩ Oε

(
A∗

j,η(t)
)
= ∅.

Proof. Indeed, thanks to the fact that Aj,0 and A∗
j,0 are disjoint compact sets (see

[1]) for all j, we can choose ε > 0 such that, for all j = 1, 2, · · · , n,
(4.18) O2ε(Aj,0) ∩ O2ε

(
A∗

j,0

)
= ∅.

By Lemma 4.3, for each δ ∈ (0, ε], there is ηδ > 0 such that

Aj,η(t) ⊂ Oδ(Aj,0)

and

(4.19) A∗
j,η(t) ⊂ Oδ(A

∗
j,0),

for every η ∈ [0, η∗δ ], t ∈ R and j = 1, 2, · · · , n. The result now follows. �

Theorem 4.8. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
a nonlinear evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which
satisfies conditions (a)-(e) of Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is
reordered so that it is a Morse-decomposition for {T0(t, 0) : t ≥ 0} and that Eη
is reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0. Also consider

the families of local attractors Aj,η = {Aj,η(t) : t ∈ R} defined in (4.1) and their
associated repellers A∗

j,η = {A∗
j,η(t) : t ∈ R} given by (4.2).

Then, there exists η0 > 0 such that for all η ∈ (0, η0], t ∈ R and j = 1, 2, · · · , n,
Aj,η(t) ∩ A∗

j−1,η(t) = {ξ∗j,η(t)}.
That is, the set Eη = {ξ∗1,η, · · · , ξ∗n,η} determines a Morse decomposition of the
pullback attractor {Aη(t) : t ∈ R} for {Tη(t, s) : t ≥ s} for each η ∈ (0, η0]. In
particular, such Morse-decomposition behaves continuously.

Proof. Indeed, it is clear that ξ∗j,η(t) ∈ Wu(ξ∗j,η)(t) ⊂ Aj,η(t) for each 1 ≤ j ≤ n,
t ∈ R and η ∈ [0, 1]. Now, using Proposition 4.5, let ε > 0 and η0 > 0 be such that,
for all t ∈ R, 2 ≤ j ≤ n and η ∈ [0, η0], we have

(4.20) O2ε(Aj−1,η(t)) ∩ O2ε

⎛⎝ n⋃
i=j

{ξ∗i,η(t)}

⎞⎠ = ∅.
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From (4.20), dist(Tη(r+t, t)ξ∗j,η(t), Aj−1,η(t+r)) = dist(ξ∗j,η(t+r), Aj−1,η(t+r)) ≥
ε for all r ≥ 0. Hence ξ∗j,η(t) ∈ A∗

j−1,η(t) for all t ∈ R. Therefore, {ξ∗j,η(t)} ⊂
Aj,η(t) ∩ A∗

j−1,η(t) for every η ∈ (0, η0], t ∈ R and 1 ≤ j ≤ n.
Conversely, we note that, by Lemma 4.3, given δ ∈ (0, ε] there exists ηδ > 0 such

that for all η ∈ (0, ηδ], t ∈ R and 1 ≤ j ≤ n we have that

Aj,η(t) ∩ A∗
j−1,η(t) ⊂ O δ

2
(Aj,0) ∩ O δ

2

(
A∗

j−1,0

)
.

Now, if the statement

Aj,η(t) ∩ A∗
j−1,η(t) ⊂ {ξ∗j,η(t)} for all t ∈ R, 1 ≤ j ≤ n and for all η > 0

suitably small

does not hold, there are j ∈ {1, · · · , n}, a sequence {ηk}k∈N in (0, 1] with ηk → 0+,
a sequence {tk}k∈N in R, and a sequence {zk}k∈N in X with zk ∈ Aj,ηk

(tk) ∩
A∗

j−1,ηk
(tk)\{ξ∗j,ηk

(tk)} for all k ∈ N. Hence, for each k ∈ N, there exists a global
solution ξk : R → X for {Tηk

(t, s) : t ≥ s} with ξk(tk) = zk, and we can assume
that there are i ≤ j and l ≥ j, fixed, with

lim
t→−∞

d(ξk(t), ξ
∗
i,ηk

(t)) = 0 and lim
t→∞

d(ξk(t), ξ
∗
l,ηk

(t)) = 0.

Moreover, ξk(t) ∈ O δ
2
(Aj,0) ∩ O δ

2

(
A∗

j−1,0

)
for each k ∈ N and t ∈ R. Therefore,

if we choose, for suitably large k, τk and σk with

d(ξk(t), y
∗
i,0) <

δ

2
for t ≤ τk and d(ξk(t), y

∗
l,0) <

δ

2
for t ≥ σk,

we must have y∗i,0, y
∗
l,0 ∈ Oδ(Aj,0) ∩ Oδ

(
A∗

j−1,0

)
. Then, by (4.20), i = l = j;

that is, y∗i,0 = y∗l,0 = y∗j,0. Thus ξ∗i,ηk
= ξ∗l,ηk

= ξ∗j,ηk
, which means that the

solution ξk : R → X is a homoclinic solution (because zk �= ξ∗j,ηk
(tk) for every

k), contradicting the fact that {Tηk
(t, s) : t ≥ s} is gradient-like with respect to

Eηk
= {ξ∗1,ηk

, · · · , ξ∗n,ηk
}, completing the proof. �

Definition 4.9. We say that the family {Tη(t, s) : t ≥ s}η∈[0,1] of evolution pro-
cesses in a metric space X is collectively asymptotically compact if {Tηk

(tk +
τk, τk)xk}k∈N is relatively compact whenever {ηk}k∈N is a sequence in (0, 1], {xk}k∈N

is a bounded sequence in X, {tk}k∈N is a sequence in R
+ and {τk}k∈N is a sequence

in R with ηk
k→∞−→ 0 and tk

k→∞−→ ∞.

Lemma 4.10. Let {Tη(t, s) : t ≥ s}η∈[0,1] be a family of evolution processes in a
metric space X with a corresponding family of pullback attractors {Aη}η∈[0,1] :=
{Aη(t) : t ∈ R}η∈[0,1], which satisfies conditions (a) and (d) in Theorem 4.1. As-
sume that the family {Tη(t, s) : t ≥ s}η∈[0,1] is collectively asymptotically compact
and that T0(t, s) = S(t− s) for all t ≥ s, where {S(t) : t ≥ 0} is a semigroup.

Let {Aη}η∈[0,1] := {Aη(t) : t ∈ R}η∈[0,1] be such that Aη(t) ⊂ Aη(t) for every t ∈
R with A0 a local attractor for the semigroup {S (t) : t ≥ 0} (that is, ω(Oε(A0)) =
A0 for some ε > 0).

If {Aη}η∈[0,1] is continuous at η = 0, that is,

lim
η→0+

sup
t∈R

dH(Aη(t), A0) = 0,

then, given δ ∈ (0, ε), there exist δ′ ∈ (0, δ) and ηδ > 0 such that, for all η ∈ [0, ηδ],
it holds that

Tη(t, s)(Oδ′(Aη(s))) ⊂ Oδ(Aη(t)) whenever t ≥ s.
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Proof. If not, there are δ > 0 and sequences {zj}j∈N in X, {ηj}j∈N in (0, 1], {tj}j∈N

in R
+ and {τj}j∈N in R such that ηj

j→∞−→ 0+, tj
j→∞−→ ∞, dist(zj , Aηj

(τj)) <
1
j for

all j,

dist(Tηj
(t+ τj , τj)zj , Aηj

(t+ τj)) < δ for all t ∈ [0, tj), j ∈ N,

and

dist(Tηj
(tj + τj , τj)zj , Aηj

(tj + τj)) = δ for all j ∈ N.

If, for each j, we now define ξj : [−tj ,∞) → X by ξj(t) := Tηj
(t+ tj + τj , τj)zj ,

from the collective asymptotic compactness and the uniform convergence in com-
pact sets (hypothesis (d)), it is not difficult to see that there exists a bounded global
solution ξ0 : R → X for {T0(t, 0) = S(t) : t ≥ 0} and a subsequence of {ξj}j∈N,
denoted the same, such that for all t, ξ0(t) = lim

j→∞
ξj(t).

On the other hand, given t < 0, for all j large enough, it holds that

dist(ξj(t), A0) ≤ dist(ξj(t), Aηj
(t+ τj)) + dist(Aηj

(t+ τj), A0),

from where, by the upper-semicontinuity of {Aη}η∈[0,1], we obtain that for all t < 0,

dist(ξ0(t), A0) ≤ δ,

and from δ = dist(ξj(0), Aηj
(tj + τj)) ≤ dist(ξj(0), A0) + dist(A0, Aηj

(tj + τj)),
by the lower-semicontinuity of {Aη}η∈[0,1], it follows that dist(ξ0(0), A0) = δ.

But, as δ < ε, then A0 attracts K = {ξ0(t) : t ≤ 0}, which contradicts the fact
that dist(ξ0(0), A0) = δ. �

Proposition 4.11. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) :
t ≥ s} an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which
satisfies conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is
reordered so that it is a Morse-decomposition for {T0(t, 0) : t ≥ 0} and that Eη
is reordered in such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0. Consider the

families of local attractors and corresponding repellers defined in (4.1) and (4.2),
and assume that the families of local unstable sets {Wu

η,ρ(ξ
∗
j )(t)}η∈[0,1] behave lower

semicontinuously.
Then, there exists η0 > 0 such that for every η ∈ [0, η0] and every j = 1, 2, · · · , n,

the local atractor Aj,η = {Aj,η(t) : t ∈ R} satisfies the conclusion of Lemma 2.12
for a neighborhood of Aj,η in X (see hypothesis (a) in Proposition 3.4).

Proof. Indeed, we fix δ1 ∈ (0, ε), η1 > 0 and δ′1 ∈ (0, δ1) such that the conclusion of
Lemma 4.10 holds. That is, for every η ∈ [0, η1] and each j = 1, 2, · · · , n, we have

(4.21) Tη(t, s)(Oδ′
1
(Aj,η(s))) ⊂ Oδ1(Aj,η(t)) whenever t ≥ s.

On the other hand, from Lemma 4.4, there are 0 < δ′3 < δ′2 < δ′1 and η2 ∈
(0, η1] such that Oδ′

3
(Aj,η(s)) ⊂ Oδ′

2
(Aj,0) ⊂ Oδ′

1
(Aj,η(s)) for each η ∈ [0, η2],

j = 1, 2, · · · , n and s ∈ R. Hence, by (4.21), ωη(Oδ′
2
(Aj,0), s)

1 ⊂ Oδ1(Aj,η(s)) for
all s ∈ R, η ∈ [0, η2] and j = 1, 2, · · · , n.

It is clear that ωη(Oδ′
2
(Aj,0), s) is contained in Aj,η(s) for all s ∈ R. Otherwise,

there would be a global solution ξ : R → X with ξ(t) ∈ Oδ1(Aj,η(t)) for all t ∈ R

1ωη(Oδ′
2
(Aj,0), s) indicates the ω-limit set of Oδ′

2
(Aj,0) at time s in the pullback sense with

respect to the process {Tη(t, s) : t ≥ s}. We have that the set ωη(Oδ′
2
(Aj,0), s) pullback attracts

Oδ′
2
(Aj,0) at time s (see [4]).
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and such that ξ(t0) /∈ Aj,η(t0) for some t0 ∈ R, but that contradicts the result of
Proposition 4.7.

Now the ωη(Oδ′
2
(Aj,0), t) pullback attracts Oδ′

2
(Aj,0) and, given δ > 0 and t ∈ R,

there exists τt > 0 such that

Tη(t, t− τ )Oδ′
3
(Aj,η(t− τ )) ⊂ Oδ(Aj,η(t))

for all τ ≥ τt.
From the continuity of the evolution process, choose δ′ ∈ (0,min{δ, δ′3}) such

that

Tη(t, t− τ )Oδ′(Aj,η(t− τ )) ⊂ Oδ(Aj,η(t))

for all τ ∈ [0, τt].
This completes the proof of the proposition. �

We now conclude that the class of a non-autonomous perturbation of a gradient-
like semigroup satisfies all the hypotheses that we have used to develop the abstract
framework in the previous section. We can therefore state the following result:

Theorem 4.12. Let X be a metric space and, for each η ∈ [0, 1], {Tη(t, s) : t ≥ s}
an evolution process on X with a pullback attractor {Aη(t) : t ∈ R} which satisfies
conditions (a)-(e) in Theorem 4.1. Assume that E0 = {y∗1,0, · · · , y∗n,0} is reordered
so that it is a Morse-decomposition for {T0(t, 0) : t ≥ 0} and that Eη is reordered in
such a way that lim

η→0+
sup

1≤i≤n
sup
t∈R

d(ξ∗i,η(t), y
∗
i,0) = 0. Then, there exists η0 > 0 such

that for all η ∈ [0, η0] the n-tuple (ξ∗1,η, · · · , ξ∗n,η) determines a Morse-decomposition
for the pullback attractor of {Tη(t, s) : t ≥ s}. Furthermore, {Tη(t, s) : t ≥ s}
is a gradient evolution process with respect to the set of isolated global solutions,
Eη = {ξ∗1,η, · · · , ξ∗n,η}, in the sense of Definition 3.1, with Lyapunov function Vη :
R×X → R continuous in both variables and satisfying Vη(t, ξ

∗
i,η(t)) = i− 1, for all

t ∈ R and i = 1, · · · , n.

4.1. Convergence of the Lyapunov functions. Now, following [2], we are going
to study the continuity of the Lyapunov functions Vη as η tends to zero.

Theorem 4.13. Let {Tη(t, s) : t ≥ s}η∈[0,1] be a family of evolution processes in
a metric space X with a corresponding family of pullback attractors {Aη}η∈[0,1] :=
{Aη(t) : t ∈ R}η∈[0,1] which satisfies conditions (a) and (d) in Theorem 4.1. Assume
that T0(t, s) = S(t− s) for all t ≥ s, where {S(t) : t ≥ 0} is a semigroup.

For each η ∈ [0, 1], let {Aη} := {Aη(t) : t ∈ R} be a local attractor for {Tη(t, s) :
t ≥ s} with associated repeller {A∗

η} := {A∗
η(t) : t ∈ R} and such that A0(t) = A0,

where A0 is a local attractor for {T0(t, 0) = S(t) : t ≥ 0}.
Suppose that {Aη}η∈[0,1], {A∗

η}η∈[0,1], and {Aη}η∈[0,1] are continuous at η = 0;
that is,

lim
η→0+

sup
t∈R

dH(Aη(t), A0) = 0,

lim
η→0+

sup
t∈R

dH(A∗
η(t), A

∗
0) = 0,

lim
η→0+

sup
t∈R

dH(Aη(t),A0) = 0.

Finally, for each η ∈ [0, 1], let fη : R × X → R be the Lyapunov function
associated to the attractor repeller pair (Aη, A

∗
η) defined by

fη(t, z) := kη(t, z) + hη(t, z), (t, z) ∈ R×X,
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where

hη(t, z) := sup
r≥0

dist(Tη(r + t, t)z,Aη(t+ r)), (t, z) ∈ R×X,

kη(t, z) := sup
r≥0

dist(z, Aη(t))

dist(z, Aη(t)) + dist(z, A∗
η(t))

, (t, z) ∈ R×X.

Then, for each compact subset K of X we have

lim
η→0+

sup
t∈R

sup
z∈K

|fη(t, z)− f0(z)| = 0.

Proof. We split the proof into three steps:

Step 1. We have the following convergence:

lim
η→0+

sup
t∈R

sup
z∈X

|lη(t, z)− l0(z)| = 0.

Note that, for each η ∈ [0, 1], z ∈ X and t ∈ R,

(4.22) |dist(z, Aη(t))− dist(z, A0)| ≤ dH(Aη(t), A0)

and

(4.23)
∣∣dist(z, A∗

η(t))− dist(z, A∗
0)
∣∣ ≤ dH(A∗

η(t), A
∗
0).

Now, given η ∈ [0, 1], t ∈ R and z ∈ X, we have

lη(z, t)− l0(z)

=
[dist(z,Aη(t))−dist(z,A0)]dist(z,A

∗
0)+dist(z,A0)[dist(z,A

∗
0)−dist(z,A∗

η(t))]

[dist(z, Aη(t)) + dist(z, A∗
η(t))][dist(z, A0) + dist(z, A∗

0)]
.

Since d(A0, A
∗
0) > μ for some μ > 0, using the fact that the families of local

attractors and their corresponding repellers are continuous, there exists η̃ ∈ (0, 1]
such that d(Aη(t), A

∗
η(t)) ≥ μ, for all η ∈ [0, η̃]. From (4.22) and (4.23)

|lη(t, z)− l0(z)| ≤
1

dist(z, Aη(t)) + dist(z, A∗
η(t))

[dH(Aη(t), A0) + dH(A
∗
η(t), A

∗
0)]

≤ 1

μ
[dH(Aη(t), A0) + dH(A∗

η(t), A
∗
0)],

for each z ∈ X and η ∈ [0, η̃]. Hence

|lη(t, z)− l0(z)| ≤
1

μ
[dH(Aη(t), A0) + dH(A∗

η(t), A
∗
0)],

for all t ∈ R, z ∈ X and η ∈ [0, η̃]. From the continuity assumptions (on the local
attractors and corresponding repellers) the uniform convergence (in R × X) of lη
to l0 follows.

Step 2. For every compact K ⊂ X we have

lim
η→0+

sup
t∈R

sup
z∈K

|kη(t, z)− k0(z)| = 0.
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Indeed, given z ∈ X we know, by Lemma 2.13(iii) from [1], that S(t)z
t→∞→

A0 ∪ A∗
0. Then consider the following three cases:

Case 1: S(t)z
t→∞→ A0 with l0(z) > 0. Choose 0 < θ < l0(z). Since l0 : X → R is

continuous, there is a σ1 > 0 such that l0(Oσ1
(z)) ⊂ ( θ2 , 1]. From Step 1, there is

an η0 ∈ (0, 1] such that lη(t,Oσ1
(z)) ⊂ (θ, 1] for all η ∈ [0, η0] and t ∈ R.

Again using the continuity of l0 : X → R, given 0 < α < θ
2 , there is a δ > 0

such that l0(Oδ(A0)) ⊂ [0, α). Now, from Lemma 4.10, there is a δ′ ∈ (0, δ
2 ) and

η1 ∈ (0, η0] such that

(4.24) Tη(t, s)(Oδ′(Aη(s))) ⊂ O δ
2
(Aη(t)) whenever t ≥ s, ∀η ∈ [0, η1].

From the lower semicontinuity of {Aη}η∈[0,1] at η = 0, there is η2 ∈ (0, η1] such
that

(4.25) A0 ⊂ O δ′
2
(Aη(t)) for all t ∈ R ∀η ∈ [0, η2].

From the fact that T0(t)z
t→∞→ A0, choose t0 > 0 such that T0(t0)z ∈ O δ′

4
(A0), and

from the continuity of T0(t0) : X → X choose σ2 ∈ (0, σ1] such that T0(t0)(Oσ2
(z))

⊂ O δ′
4
(A0). From hypothesis (d), we can find σ3 ∈ (0, σ2] and η3 ∈ (0, η2] such that

for all η ∈ [0, η3] we have Tη(t0 + s, s)(Oσ3
(z)) ⊂ O δ′

2
(A0) for all s ∈ R. From this

and (4.25), we obtain that Tη(t0 + s, s)(Oσ3
(z)) ⊂ Oδ′(Aη(t)) for all s ∈ R and

t ∈ R when η ∈ [0, η3], and from (4.24), in particular, we conclude that

(4.26) Tη(t+ s, s)(Oσ3
(z)) ⊂ O δ

2
(Aη(t+ s)) for all t ≥ t0, η ∈ [0, η3] and s ∈ R.

On the other hand, observe that, from the uniform convergence of lη
η→0+→ l0 in

R×X,we obtain η4 ∈ (0, η3] so that, for each η ∈ [0, η4], it holds that lη(t,Oδ(A0)) ⊂
[0, 2α) for all t ∈ R. From the upper semicontinuity of {Aη}η∈[0,1] at η = 0, there
exists η5 ∈ (0, η4] such that, if η ∈ [0, η5], then Aη(t) ⊂ O δ

2
(A0) for all t ∈ R.

Therefore, O δ
2
(Aη(t)) ⊂ Oδ(A0) for all η ∈ [0, η5] and t ∈ R. So lη(t,O δ

2
(Aη(τ ))) ⊂

[0, 2α) for all η ∈ [0, η5] and t, τ in R. From (4.26), we have that

sup
t≥t0

lη(t+ s, Tη(t+ s, s)w) ≤ 2α < θ < lη(s, w) ≤ kη(s, w),

for each η ∈ [0, η5], s ∈ R and w ∈ Oσ3
(z) ⊂ Oσ1

(z). Consequently kη(s, w) =
sup

0≤t≤t0

lη(t+ s, Tη(t+ s, s)w) for all η ∈ [0, η5], s ∈ R and w ∈ Oσ3
(z).

Finally, given ε > 0, from Step 1, there exists η6 ∈ (0, η5] such that

|lη(t, x)− l0(x)| <
ε

2
for all η ∈ [0, η6], x ∈ X and t ∈ R.

From the uniform continuity of the function l0 : X → R, consider β > 0 such that if
x, x′ ∈ X satisfy d(x, x′) < β, then |l0(x)− l0(x

′)| < ε
2 so that, by the convergence

in (d), we can choose η7 ∈ (0, η6] and σ4 ∈ (0, σ3] such that

sup
s∈R

sup
w∈Oσ4

(z)

sup
0≤t≤t0

d(Tη(t+ s, s)w, S(t)w) < β for all η ∈ [0, η7].

Thus

|lη(t+ s, Tη(t+ s, s)w)− l0(S(t)w)| ≤ |lη(t+ s, Tη(t+ s, s)w)− l0(Tη(t+ s, s)w)|
+ |l0(Tη(t+ s, s)w)− l0(T0(t)w)| < ε,
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for all w ∈ Oσ4
(z), t ∈ [0, t0], s ∈ R and η ∈ [0, η7]. This implies that

(4.27) sup
s∈R

sup
w∈Oσ4

(z)

|kη(s, w)− k0(w)| ≤ ε, for all η ∈ [0, η7],

where σ4 > 0 and η7 only depends on z ∈ X and ε > 0.

Case 2: l0(z) = 0. Under these conditions, note that z ∈ A0 and, consequently,
k0(z) = 0.

Given ε > 0, by the continuity of l0 : X → R , take δ > 0 such that l0(Oδ(A0)) ⊂
[0, ε

4 ).
Now, the uniform convergence of (lη)η∈[0,1] to l0 in R×X implies the existence

of η0 ∈ (0, 1] such that

(4.28) lη(t,Oδ(A0)) ⊂ [0,
ε

2
) for each η ∈ [0, η0] and each t ∈ R.

By the upper semicontinuity of {Aη}η∈[0,1] at η = 0, we have the existence of
η1 ∈ (0, η0] such that for all η ∈ [0, η1] and all t ∈ R we have Aη(t) ⊂ O δ

2
(A0), from

which O δ
2
(Aη(t)) ⊂ Oδ(A0) if η ∈ [0, η1] and t ∈ R. From (4.28) we conclude that

for all η ∈ [0, η1],

(4.29) lη(t,O δ
2
(Aη(s))) ⊂ [0,

ε

2
) for all s, t ∈ R.

Choose η2 ∈ (0, η1] and δ′ ∈ (0, δ
2 ), by Lemma 4.10, such that

(4.30) Tη(t, s)(Oδ′(Aη(s))) ⊂ O δ
2
(Aη(t)) whenever t ≥ s and for all η ∈ [0, η2].

Finally, from the lower semicontinuity of {Aη}η∈[0,1] at η = 0, there is a η3 ∈
(0, η2] such that

(4.31) A0 ⊂ O δ′
2
(Aη(t)) for all η ∈ [0, η3] and t ∈ R.

Thus, from (4.31) and (4.30), for η ∈ [0, η3], for s ∈ R and w ∈ O δ′
2
(A0) ⊂

O
δ′ (Aη(s)), we have that Tη(t+ s, s)w ∈ O δ

2
(Aη(t+ s)) for all t ≥ 0. From (4.29)

it follows that

kη(s, w) = sup
t≥0

lη(t+ s, Tη(t+ s, s)w) ≤ ε

2
,

for all η ∈ [0, η3], s ∈ R and w ∈ O δ′
2
(A0). In particular,

(4.32) sup
s∈R

sup
w∈O δ′

2
(A0)

|kη(s, w)− k0(w)| ≤ ε, for all η ∈ [0, η3],

where δ′ > 0 and η3 only depend on ε > 0 and A0.

Case 3: T0(t)z
t→∞→ A∗

0. In this case k0(z) = 1. By the continuity of l0 : X → R,
given ε > 0, let δ > 0 such that

l0(Oδ(A
∗
0)) ⊂ (1− ε

4
, 1]

and, by the uniform convergence lη
η→0+→ l0 in R×X, take η0 ∈ (0, 1] such that

(4.33) lη(t,Oδ(A
∗
0)) ⊂ (1− ε

2
, 1] for all η ∈ [0, η0] and t ∈ R.

On the other hand, consider t0 > 0 such that T0(t0)z ∈ O δ
2
(A∗

0) and, from the

continuity of T0(t0) : X → X, take σ1 > 0 such that T0(t0)(Oσ1
(z)) ⊂ O δ

2
(A∗

0). By
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hypothesis (d), let η1 ∈ (0, η0] and σ2 ∈ (0, σ1] such that Tη(t0 + s, s)(Oσ2
(z)) ⊂

Oδ(A
∗
0) for all η ∈ [0, η1] and all s ∈ R.

Finally, from (4.33) we deduce that lη(t0+s, Tη(t0+s, s)(Oσ2
(z))) ⊂ (1− ε

2 , 1] for
all η ∈ [0, η1] and all s ∈ R. Thus, 1− ε

2 < lη(t0 + s, Tη(t0 + s, s)w) ≤ kη(s, w) ≤ 1
for all w ∈ Oσ2

(z), s ∈ R and η ∈ [0, η1]. This implies that |kη(s, w)− k0(w)| ≤ ε
for η ∈ [0, η1], s ∈ R and w ∈ Oσ2

(z) and

(4.34) sup
s∈R

sup
w∈Oσ2

(z)

|kη(s, w)− k0(w)| ≤ ε, for η ∈ [0, η1],

where σ2 > 0 and η1 only depends on A∗
0 and ε > 0.

Now, joining Cases 1, 2 and 3, we have that:
Given a compact subset K ⊂ X and ε > 0, by (4.27), (4.32) and (4.34), there

exist an open subset U = U(ε,K) ⊂ X with K ⊂ U , and an index η′ = η′(ε,K) > 0
such that

sup
s∈R

sup
w∈U

|kη(s, w)− k0(w)| ≤ ε, for all η ∈ [0, η′],

from which we can conclude that lim
η→0+

sup
s∈R

sup
w∈K

|kη(s, w)− k0(w)| = 0.

Step 3. For every compact K ⊂ X we have

lim
η→0+

sup
t∈R

sup
z∈K

|hη(t, z)− h0(z)| = 0.

Indeed, given z ∈ X now consider two cases:

Case 1: dist(z,A0) > 0. Given α > 0 with 0 < α < dist(z,A0), let, by Lemma
4.10, α′ ∈ (0, α) and η0 ∈ (0, 1] such that

(4.35) Tη(t, s)(Oα′(Aη(s))) ⊂ Oα(Aη(t)) whenever t ≥ s, for all η ∈ [0, η0].

Choose t0 > 0 such that T0(t0)z ∈ Oα′
4
(A0) and, by the continuity of T0(t0) :

X → X, let σ1 > 0 such that T0(t0)(Oσ1
(z)) ⊂ Oα′

4
(A0).

Now, from (d), let η1 ∈ (0, η0] and σ2 ∈ (0, σ1] such that Tη(t0 + s, s)(Oσ2
(z)) ⊂

Oα′
2
(A0) for each η ∈ [0, η1] and each s ∈ R. From the lower semicontinuity

of {Aη}η∈[0,1] at η = 0, choose η2 ∈ (0, η1] such that A0 ⊂ Oα′
2
(Aη(t)) for all

η ∈ [0, η2] and t ∈ R. Hence, Oα′
2
(A0) ⊂ Oα′(Aη(t)) for η ∈ [0, η2] and t ∈ R. In

particular, Tη(t0 + s, s)(Oσ2
(z)) ⊂ Oα′(Aη(t0 + s)) for all η ∈ [0, η2] and s ∈ R.

From (4.35) we obtain that Tη(t+ s, s)(Oσ2
(z)) ⊂ Oα(Aη(t+ s)) for all η ∈ [0, η2],

all s ∈ R and t ≥ t0. Consequently,

(4.36) sup
t≥t0

dist(Tη(t+s, s)w,Aη(t+s)) ≤ α for all η ∈ [0, η2], s ∈ R, w ∈ Oσ2
(z).

On the other hand, for all w ∈ X, all t ∈ R and all η ∈ [0, 1], we have

(4.37) |dist(w,Aη(t))− dist(w,A0)| ≤ dH(Aη(t),A0).

Then, we can choose η3 ∈ (0, η2] and σ3 ∈ (0, σ2] such that dist(w,Aη(t)) > α for
all η ∈ [0, η3], t ∈ R and w ∈ Oσ3

(z). This and (4.36) implies that

sup
t≥t0

dist(Tη(t+ s, s)w,Aη(t+ s)) ≤ α < dist(w,Aη(s)),
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for all η ∈ [0, η3], s ∈ R and w ∈ Oσ3
(z). So,

hη(s, w) = sup
0≤t≤t0

dist(Tη(t+ s, s)w,Aη(t+ s))

for η ∈ [0, η3], s ∈ R and w ∈ Oσ3
(z).

Note that, for all w ∈ X, η ∈ [0, 1], s ∈ R and t ≥ 0, we have that

|dist(Tη(t+ s, s)w,Aη(t+ s))−dist(S(t)w,A0)| ≤ dH(Aη(t+ s),A0)

+ d(Tη(t+ s, s)w, S(t)w),

so that, for all η ∈ [0, η3],

sup
s∈R

sup
w∈Oσ3

(z)

|hη(s, w)− h0(w)| ≤ sup
s∈R

dH(Aη(s),A0)

+ sup
s∈R

sup
w∈Oσ3

(z)

sup
0≤t≤t0

d(Tη(t+ s, s)w, S(t)w),

and so, it is easy to see that, given ε > 0, there exist σ ∈ (0, σ3] and η4 ∈ (0, η3]
such that

sup
s∈R

sup
w∈Oσ(z)

|hη(s, w)− h0(w)| ≤ ε for all η ∈ [0, η4].

Case 2: dist(z,A0) = 0; that is, z ∈ A0. From Lemma 4.10, given ε > 0, there are
ε′ ∈ (0, ε

2 ) and η0 ∈ (0, 1] such that

(4.38) Tη(t, s)(Oε′(Aη(s))) ⊂ O ε
2
(Aη(t)) for each t ≥ s and η ∈ [0, η0].

Also, since {Aη}η∈[0,1] is lower semicontinuous at η = 0, we can choose η1 ∈
(0, η0] such that A0 ⊂ O ε′

2
(Aη(s)) whenever η ∈ [0, η1] and s ∈ R. It follows that

O ε′
2
(A0) ⊂ Oε′(Aη(s)) for all η ∈ [0, η1] and s ∈ R. From this and (4.38) we have

that

Tη(t, s)(O ε′
2
(A0)) ⊂ O ε

2
(Aη(t)) if η ∈ [0, η1] and t ≥ s.

Consequently, hη(s, w) = sup
t≥0

dist(Tη(t + s, s)w,Aη(t + s)) ≤ ε
2 for all η ∈ [0, η1]

and w ∈ O ε′
2
(A0), so that

sup
s∈R

sup
w∈O ε′

2

(A0)

|hη(s, w)− h0(w)| ≤ ε for all η ∈ [0, η1].

In these conditions, given ε > 0 and z ∈ X, there are σ = σ(ε, z) > 0 and
η′ = η′(ε, z) > 0 such that

sup
s∈R

sup
w∈Oσ(z)

|hη(s, w)− h0(w)| ≤ ε for all η ∈ [0, η′].

We now obtain the convergence lim
η→0+

sup
t∈R

sup
z∈K

|hη(t, z)− h0(z)| = 0 by an argument

similar to that of Step 2. This completes the proof. �

5. Applications

In this section we consider some applications of the abstract results in the previ-
ous sections and conclude that some non-autonomous evolutions processes possess
a Morse-decomposition and, therefore, a Lyapunov function.
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Example 5.1. Consider the initial boundary value problem

(5.1)

⎧⎪⎨⎪⎩
ut = uxx + λfη(t, u), x ∈ (0, π), t > τ,

ux(0, t) = ux(π, t) = 0, t > τ,

u(·, τ ) = φ0 ∈ H1
0 (0, π),

where λ ∈ [0,∞), η ∈ [0, 1] and fη ∈ C2(R2,R) satisfying:

1) There exists M > 0 such that fη : R2 → R is such that fη(t, u)u < 0 for all
(t, u) ∈ R

2 with |u| > M . Suppose also that f0(t, u) = f0(u) for all t ∈ R.
2) For each r > 0,

lim
η→0+

sup
t∈R

sup
|u|≤r

{|fη(t, u)− f0(u)|+ |(fη)u(t, u)− f ′
0(u)|+ |(fη)uu(t, u)− f ′′

0 (u)|} = 0.

It is not difficult to see that, under these assumptions, problem (5.1) possesses
a pullback attractor {Aη(t) : t ∈ R}.

If (5.1) with η = 0 has a finite number of equilibria, all of them hyperbolic, the
hypotheses of Theorem 4.12 are clearly satisfied and there exists η0 > 0 such that
{Aη(t) : t ∈ R} has a Morse-decomposition and a continuous (uniformly in R×K
for each compact subset K of H1

0 (0, π)) Lyapunov function Vη : R×H1
0 (0, π) → R

(in the sense of Definition 3.1).

Example 5.2. Consider a general cascade system of the form

(5.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u̇1 = f1(u1),
u̇2 = f2(u1, u2),
...

...
...

u̇n = fn(u1, · · · , un),

where fj : Rj → R, 1 ≤ j ≤ n, are C1 functions. Assume that there is ξ > 0
such that fj(u1, · · · , uj)uj < 0 for all (u1, · · · , uj) ∈ R

j such that |uj | ≥ ξ and for
all 1 ≤ j ≤ n. Assume that all equilibria of (5.2) are hyperbolic. It follows from
the results in [1] that the semigroup associated to (5.2) is gradient-like (therefore
gradient). Now we consider a small non-autonomous perturbation of the above
problem; that is,

(5.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u̇1 = f1(u1) + g1(t, u1, · · · , un),
u̇2 = f2(u1, u2) + g2(t, u1, · · · , un),
...

...
...

u̇n = fn(u1, · · · , un) + gn(t, u1, · · · , un).

If gj(t, ·) : Rn → R is a C1(Rn,R) function with the property that

sup
t∈R

sup
(u1,··· ,un)∈Rn

{
|gj(t, u1, · · · , un)|+

n∑
i=1

∣∣∣∣∂gj∂ui
(t, u1, · · · , un)

∣∣∣∣
}

is suitably small, it follows from the results in [5] that the evolution process {Tg(t, s)
: t ≥ s} associated to (5.3) is gradient-like and, as a consequence of the results in
Section 4, the pullback attractor of {Tg(t, s) : t ≥ s} has a Morse-decomposition
and a Lyapunov function.

One can easily see that cascade systems of semilinear parabolic problems can
also be considered.
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6. Conclusive remarks

In this paper we have presented a theory for the Morse-decomposition of pullback
attractors of evolution processes suitable for the class of non-autonomous pertur-
bations of semigroups. Our approach extends the notions and main results of the
associated autonomous theory in [8, 20, 1]. In particular, it is shown that a non-
autonomous perturbation of a gradient semigroup is a gradient non-autonomous
evolution process, in the sense that it has a (time-dependent) continuous (in the
whole phase space) Lyapunov function. Moreover, this Lyapunov function behaves
continuously with respect to the underlying perturbation.

Concerning the autonomous theory, two main remarks are well worth being em-
phasized:

a) According to Definition 1.5, a local attractor must be an isolated invariant
family. This property allows us prove that our definition of local attractor
extends the notion of local attractor of the autonomous case (see Theorem
1.6). Again, a hypothesis of uniform separation on the attractor-repeller
pair (automatic in the autonomous case) ensures that the associated repeller
is closed. In Remark 1.4 we discuss some properties of isolated invariant
sets in the autonomous framework, among them, a dichotomous behavior
of solutions around them (topological hyperbolicity).

b) In [1], restricted to the autonomous case, it is shown that gradient systems
are stable under perturbation by showing that a gradient semigroup (with
a Lyapunov functional) is gradient-like in the sense of Definition 2.5 (or
Definition 2.8 in [1]) and that a gradient-like semigroup is gradient (has
a Lyapunov function). Note that, in the non-autonomous framework, we
do not have that the existence of a Lyapunov functional implies that the
evolution process is gradient-like. This fact deserves further attention.

In a non-autonomous framework, Rasmussen [19] (see also Kloeden and Ras-
mussen [12]) adopts a different approach towards a Morse-decomposition for evolu-
tion processes, specially adapted for finite dimensional phase spaces. In particular,
if {T (t, s) : t � s} is an invertible non-linear evolution process with pullback at-
tractor {A(t) : t ∈ R}, a compact invariant family {A(t) : t ∈ R} with A(t) ⊆ A(t)
for every t ∈ R is defined as a local pullback attractor if there exists η > 0 such that

lim
s→−∞

distH(T (t, s)Oη(A(s)), A(t)) = 0, for all t ∈ R,

where Oη(A(s))
.
= {x ∈ A(s) : distH(x,A(s)) < η}, for all s ∈ R.

Observe that a local pullback attractor is a pullback attractor with respect to
the attraction universe D containing all the families {Oζ(A(t)) : t ∈ R} where
ζ ∈ (0, η]. On the other hand, a compact invariant family A∗ = {A∗(t) : t ∈ R}
with A∗(t) ⊂ A(t) for every t ∈ R is called a local repeller if there exists η > 0 such
that

lim
s→−∞

distH(T (s, t)Oη(A
∗(t)), R(s)) = 0, for all t ∈ R.

This is not clear, and we think that it would need deeper research if similar
results to ours in this paper could be developed from this approach of pullback
attraction for the local attractors. The same kind of situation is found in the case
of random dynamical systems (see Liu [14]) related to some stochastic differential
equations.
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