
Bright and dark breathers in Fermi-Pasta-Ulam lattices

B. Sánchez-Rey,1 G. James,2 J. Cuevas,1 and J. F. R. Archilla1
1Nonlinear Physics Group, University of Seville, 41001 Seville, Spain

2Laboratoire Mathématiques pour l’Industrie et la Physique (UMR 5640), INSA de Toulouse, 31077 Toulouse, Cedex 4, France
(Received 6 June 2003; revised manuscript received 5 February 2004; published 9 July 2004)

In this paper we study the existence and linear stability of bright and dark breathers in one-dimensional FPU
lattices. On the one hand, we test the range of validity of a recent breathers existence proof[G. James, C. R.
Acad. Sci., Ser. I: Math,332, 581 (2001)] using numerical computations. Approximate analytical expressions
for small amplitude bright and dark breathers are found to fit very well exact numerical solutions even far from
the top of the phonon band. On the other hand, we study numerically large amplitude breathers nonpredicted
in the above cited reference. In particular, for a class of asymmetric FPU potentials we find an energy threshold
for the existence of exact discrete breathers, which is a relatively unexplored phenomenon in one-dimensional
lattices. Bright and dark breathers superposed on a uniformly stressed static configuration are also investigated.
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I. INTRODUCTION AND MODEL

Discrete breathers, also called intrinsic localized modes,
are classical exact spatially localized time-periodic solutions
which can be sustained by many nonlinear lattices(see Refs.
1 and 2 for a review). In 1994 MacKay and Aubry3 rigor-
ously proved their existence in Hamiltonian lattices with an-
harmonic on-site potentials and weak coupling. Breathers are
obtained by continuation from the uncoupled case in which
trivial breathers exist(e.g., breathers with only one oscillator
excited, the others being at rest). With the same technique,
the existence of breathers was also proved for diatomic
Fermi-Pasta-Ulam(FPU) chains.4 In this model, two differ-
ent masses alternate on the chain and are nonlinearly coupled
to their nearest neighbors via an interaction potentialV. This
result is valid for a large mass ratio, since light masses(next-
nearest neighbors) are weakly coupled due to the presence of
a heavy mass in between.

Unfortunately this method is not applicable to homoge-
neous FPU lattices, which do not possess an uncoupled limit
in which trivial breathers exist. For some years the only ex-
istence result concerned the particular potentialsVsxd=x2m

with mù2.5 FPU lattices seemed elusive to a rigorous math-
ematical treatment in spite of numerous approximate6–8 and
numerical9,10 studies, which have indicated the existence of
discrete breathers in these systems.

Nevertheless, recent papers have presented rigorous exis-
tence proofs for discrete breathers in infinite FPU lattices. On
the one hand, Aubryet al.11 have proved the existence of
breathers with frequencies above the phonon spectrum, when
V is a strictly convex polynomial of degree 4. These results
are obtained via a variational method and apply in fact to
higher dimensional generalizations of FPU lattices. Without
additional assumptions onV, these results give only a partial
information on breathers amplitudes. Under the additional
condition thatV is even, Aubryet al. prove the existence of
breathers of arbitrarily small amplitudes in one-dimensional
FPU lattices.

On the other hand, the existence(respectively, nonexist-
ence) of small amplitude breathers with frequencies slightly

above the phonon band has been established whenV satisfies
(respectively, violates) a local hardening condition.12 The
proof is based on a center manifold technique, which shows
more generally that all small amplitude time-periodic solu-
tions of the FPU system(including breathers) are determined
by a two-dimensional map, provided their frequency lies
near the phonon band edge. The discrete center manifold
method has been put in a general framework13 and applied to
other systems, namely diatomic FPU chains14 (far from the
uncoupled regime) and spin lattices.15

The aim of this work is to test numerically the range of
validity of the center manifold method12 and to explore new
phenomena, far from the small amplitude regime.

The one-dimensional FPU system is given by the follow-
ing equations:

ẍn = V8sxn+1 − xnd − V8sxn − xn−1d, n P Z, s1d

wherexn represents mass displacements from their equilib-
rium positions andV is a smooth interaction potential satis-
fying V8s0d=0, V9s0d=1. In Ref. 12, the existence of small
amplitude breatherssSABd with frequenciesvb slightly
above the phonon bandsvb.2d is obtained forB.0, where

B = 1
2Vs4ds0d − sVs3ds0dd2, s2d

and their nonexistence is proved forB,0 (see Refs. 16 and
17 for related results on the modulational instability of non-
linear normal modes and the tangent bifurcation of standing
waves, respectively).

The parameterB can be interpreted as a hardening coef-
ficient, since breathers with amplitudeA<0 have frequency
vb<2+sB/8dA2. Note thatB is slightly different from the
classical hardening coefficient of an anharmonic potential[V
is hard if 3

5Vs4ds0d−sVs3ds0dd2.0 and soft for 3
5Vs4ds0d

−sVs3ds0dd2,0].
In this paper we consider anharmonic potentials
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Vsud =
u2

2
+

K3

3
u3 +

K4

4
u4 s3d

(at least one of the coefficientsK3, K4 is nonzero). One has
B=3K4−4K3

2 and thus the parameterB is positive if
uK3u,Î3K4/2. In the caseK3=0 we have an even potential
and the sign ofB coincides with the sign of the quartic co-
efficient K4.

In Section II we compute numerically SAB and find that
they are very well fitted by leading order analytical expres-
sions deduced from Ref. 12. In Section III we consider a
class of potentials for which numerical computations yield
large amplitude breatherssLAB d with frequencies near the
top of the phonon band. In this case there is an energy
threshold for the existence of exact discrete breathers. The
existence of an energy threshold for breather creation in
higher-dimensional lattices is well known,18,19but only a few
one-dimensional examples have been given where such a
threshold exists.11,20,21 Section III explores in more details
the example of Ref. 21. Section IV deals with dark breathers,
i.e., spatially modulated standing waves whose amplitude is
constant at infinity and vanishes at the center of the chain.
Leading order analytical expressions for small amplitude
dark breathers(with frequencies inside the phonon band) fit
the numerically computed dark breathers very well in the
case of even potentials. In Sec. V we analyze bright and dark
breathers superposed on uniformly stretched or compressed
static states. In each section the linear stability of the above-
mentioned solutions is numerically investigated.

II. SMALL AMPLITUDE BREATHERS

A. Summary of the theory

We consider time-periodic solutions of(1) having a given
frequencyvb. We introduce the interaction force

yn = V8sund = un + K3un
2 + K4un

3, s4d

where

un = xn − xn−1. s5d

The time-average ofyn is independent ofn [integrate(1)],
and is fixed to 0 in Ref. 12, as it is the case for all spatially
localized solutions. Then, problem(1) leads to

d2

dt2
sV8d−1synd = yn+1 − 2yn + yn−1, n P Z. s6d

The main results of Ref. 12 can be formulated as follows.
For vb<2 (maximal phonon frequency), all small amplitude
solutionsyn (even int) have the form

ynstd = bn cossvb td + wst,bn−1,bn,vbd, s7d

wherew is a smooth time-periodic function with frequency
vb and SuptPf0,2p/vbguwst ,bn−1,bn,vbdu=Ossubn−1u+ ubnud
3subn−1u+ ubnu+ uvb−2u2dd. This result can be seen as an exact
version of the rotating-wave approximation method,6 in the
small amplitude limit. Note thatw can be computed at an
arbitrary order(see Ref. 13, p. 51). Moreover,bn satisfies the
second order nonlinear recurrence relation

bn+1 + 2bn + bn−1 = − m bn + B bn
3 + h.o.t s8d

where m=vb
2−4!1 and the coefficientB is given in (2).

Higher order terms areOsubnu ssubn−1u + ubnu d2+ um u d2d [note
that the right-hand side of(8) can be computed at an arbi-
trary order]. Consequently, the problem of finding small am-
plitude time-periodic solutions of(6) reduces to the problem
(8), which can be viewed as a two-dimensional map
sbn,bn−1d→ sbn+1,bnd.

For B.0 fixed andm.0 sufficiently small, the recur-
rence relation(8) has homoclinic solutions to 0 satisfying
limn→±`bn=0 [a proof has been given in Refs. 12 and 13,
using the invariancen→−n of (8)]. More precisely, there
exist homoclinic solutions to 0 denoted as ±bn

1, ±bn
2, having

different symmetriesb−n−1
1 =−bn

1, b−n
2 =bn

2.
Beyond this particular result, one can expect the existence

of infinitely many homoclinic solutions to 0(not necessarily
symmetric). Indeed, forB.0 the intersections of the stable
and unstable manifolds ofbn=0 are generically transverse,
which yields the existence of “homoclinic tangles.”22

A formal way to understand why homoclinic orbits exist
is the following. Settingjn=s−1dnbn yields the recurrence
relation

jn+1 + jn−1 − 2jn = mjn − Bjn
3 + h.o.t. s9d

Since 0,m!1, Eq. (9) can be approximated by an inte-
grable differential equation

v9 = v − v3 s10d

with

jn =Îm

B
vsnÎmd. s11d

Equation (10) has the homoclinic solutions vsxd
= ±Î2/coshsx+cd.

Using the above analysis, it has been proved that forB.0
andvb−2.0 sufficiently small, there exist SAB solutions of
(6) given by Eq.(7) and homoclinic solutions of(8) (see
Refs. 12 and 13). SAB have the form

yn = s− 1dnjn cossvbtd + h.o.t., s12d

where jn=s−1dnbn satisfies the recurrence relation(9) and
ujnu→0 asn→ ±`. The above homoclinic solutionsbn

1, bn
2

correspond via Eq.(7) to SAB yn
1, yn

2 having different sym-
metries y−n−1

1 std=yn
1st+Tb/2d, y−n

2 =yn
2, where Tb=2p /vb is

the breather period(see Ref. 13, pp. 58 and 59). Note that
ynst+Tb/2dÞ−ynstd in general due to higher order terms in
(12) (however the egality holds ifV is even). Homoclinic
solutions −bn

i of (8) simply correspond toyn
i st+Tb/2d.

The exact solutionsyn
1, yn

2 can be approximated at leading
order using(10) and (11) with vsxd=Î2/coshx. This yields

yn
2std . s− 1dnÎ2m

B

cosvbt

coshsnÎmd
, s13d

and by symmetry we construct the second approximation
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yn
1std . s− 1dnÎ2m

B

cosvbt

coshssun + 1/2u − 1/2dÎmd
. s14d

Under these approximations one hasyn
i st+Tb/2d<−yn

i std and
y0

1std<y0
2std. In fact, the exact solutions satisfyyn

i st+Tb/2d
=−yn

i std+Osumud andy0
1std=y0

2std+Osumu3/2d asm→0+.
Notice that approximation(13) can also be derived using

multiscale expansions.16 Moreover, these expressions also
approximateun sinceun=yn+Osyn

2d.
These calculations show that the maximum amplitudeA

<Î2m /B of the SAB isOsuvb−2u1/2d aswb→2+. More pre-
cisely, breathers with amplitudeA<0 have frequencyvb
<2+sB/8dA2.

Although SAB decay exponentially asunu→ +`, their
width is Osuvb−2u−1/2d and diverges aswb→2+. As a conse-
quence, ifB.0 breathers exist for any small value of energy
in the FPU system(1).

B. Numerical continuation

We have computed these solutions numerically in order to
check the range of validity of approximations(13) and(14).
We have fixedK4=1 in Eq. (3) and thus the parameterB is
positive if uK3u,K3

p=Î3/2.0.86.
We have performed our computations using a numerical

scheme based on the concept of anticontinuous limit and
path continuation with the Newton method.23 With this tech-
nique it is more convenient to use the difference displace-
ments variablesun. Indeed, with these new variables the dy-
namical equations become

ün + 2V8sund − CfV8sun+1d + V8sun−1dg = 0, n P Z,

s15d

whereC=1 for our system, but it makes possible to consider
the system(15) as a Klein–Gordon system, with an on-site
potentialV and an anticontinuous limit atC=0. Note thatun
is one-to-one related to the forcesyn at small amplitudes,
becauseV8 is locally invertible sinceV9s0dÞ0.

We use periodic boundary conditionsun+2pstd=unstd. The
periodicity is considered for an even number of sites in order
that the maximum frequency of the linear phonons is exactly
2 as in the infinite lattice(this frequency corresponds to the
phonon with wave numberp).

We have obtained breathers with symmetriesunstd
=u−nstd (site-centered mode) and unstd=u−n−1st+Tb/2d
(bond-centered mode). Note that the coordinates transforma-
tion (5) produces an exchange of the symmetry properties
between both modes, i.e., in the difference displacements
variables the site-centered mode is the Page mode7 and the
bond-centered mode is the Sievers-Takeno mode.6

Figure 1 shows the excellent agreement between the ap-
proximation (13) (dashed line) and an exact site-centered
mode obtained numerically(circles) for vb=2.01 sm
<0.04d.

We have continued the SAB obtained numerically for
B.0 asvb goes away from the phonon band. In Fig. 2 we
have plotted the maximum amplitude of the forces supuynu
(dashed lines) versusm1/2 for two different values of the

cubic coefficient, K3=−0.6 sB=1.56d and K3=−0.3 sB
=2.64d from top to bottom, respectively. The maximum am-
plitude of the forces is an approximately linear function of
m1/2 up to m<0.6. The continuous lines represent the
maxima given by approximation(13). This approximation is
not satisfactory for very small values ofB since higher order
terms in(8) cannot be neglected whenB→0. More precisely,
the smallerB is, the smallerm must be chosen in(13) in
order to have a good approximation.

The maximum amplitude of the relative displacements
supuunu is also an approximately linear function ofm1/2 (see
squares in Fig. 2). This was expected for smallm sinceun
=yn+Osyn

2d, but it occurs far from the phonon band, at least
until values ofm<2.25. In fact, we have checked that, sur-
prisingly, expressions(13) and (14) fit very well the profile
of the relative displacementsun even far from the phonon
band as Fig. 3 shows. Note that the vibration amplitudes of
the breather in Fig. 3 are quite large.

In Fig. 4 we have plotted again the maximum amplitude
of the relative displacements(squares), but now for an even
potentialsK3=0d and larger frequencies, in order to compare
approximation(14) with an approximation derived by Siev-
ers and Takeno in the large amplitude regime.6 The Sievers-
Takeno approximation is obtained using the rotating wave
approximation(only the first Fourier component of solutions
is taken into account) and Green’s function techniques. For

FIG. 1. Comparison between an exact site-centered mode
(circles) and the approximation(13) (dashed line) for vb=2.01 sm
<0.04d. The cubic coefficient of the potential isK3=−0.3 sB
=2.64d, but similar results are obtained for any other fixed value of
K3 with uK3u ,K3

p sB.0d andm.0 small enough.

FIG. 2. Force(dashed line) and relative displacements(squares)
maxima versusm1/2. The continuous line corresponds to the
maxima given by approximation(13). Parameters from top to bot-
tom: K3=−0.6 sB=1.56d andK3=−0.3 sB=2.64d.

BRIGHT AND DARK BREATHERS IN FERMI-PASTA-… PHYSICAL REVIEW B 70, 014301(2004)

014301-3



the Sievers-Takeno mode andK4=1 sB=3d it predicts

supuunu < 2
3
Îwb

2 − 3. s16d

This amplitude-frequency relation corresponds to the dashed
line in Fig. 4. On the other hand, from Eq.(14) it follows
(continuous line):

supuunu <Î2swb
2 − 4d
3

. s17d

Clearly we see that approximation(16) fits better very local-
ized solutions with large amplitudes, whereas approximation
(17) works better up to moderate amplitudes(vb<2.4 in this
case). In this sense both approximations can be considered
complementary.

In addition we have performed a Floquet analysis in order
to study the linear stability of the SAB.24 In the symmetric
potential case the result is well known:9 the Page mode is
stable while the Sievers-Takeno mode has a harmonic insta-
bility (a pair of real eigenvaluess ,s−1 close to 1) that in-
creases with the breather frequency. When a cubic term in
the potentialV is introducedsK3Þ0d, the situation is more
complex. The Sievers-Takeno mode shows again a harmonic
instability [see Fig. 5(a)], but it also shows oscillatory insta-
bilities. As Fig. 5(b) shows for the Page mode, these oscilla-

tory instabilities increase withuK3u. Although most of them
are size dependent effects due to the discretization of con-
tinuous spectrum,25 for the infinite system some of them
might remain out of the unit circle and in this case SAB
would be unstable. We shall not examine this problem here
and leave it for future works.

III. LARGE AMPLITUDE BREATHERS WITH AN
ENERGY THRESHOLD

In this section we study breathers in the parameter region
B,0. Using the recurrence relation(8), one can show that
SAB with frequencies slightly above the phonon band do not
exist for B,0 (see Refs. 12 and 13). However, large ampli-
tude breathers do exist in this parameter region.11 More pre-
cisely, for V strictly convex(K4.0, uK3u,Î3K4) andB,0
sÎ3K4/2, uK3ud, breathers whose amplitudes do not tend to
zero aswb→2+ have been numerically obtained.11,21,27As a
consequence there is an energy threshold for breathers
creation in these FPU systems. The criterion
Î3K4/2, uK3u,Î3K4 for the existence of an energy thresh-
old originates from Ref. 21, and follows by combining ana-
lytical results in Ref. 13(nonexistence of small amplitude
breathers) and Ref. 11(existence of large amplitude breath-
ers).

The existence of an energy threshold for breather creation
has been formally analyzed by Flach, Kladko, and MacKay18

for general Hamiltonian systems, in a different case when
small amplitude breathers bifurcate at an edge of the phonon
spectrum. An energy threshold exists above a critical lattice
dimensiond (typically d=2) which depends on the nonlinear

FIG. 3. Comparison between an exact bond-centered mode
(circles) and the analytical approximation(14) (dashed line) for m
=1.76. The value ofm corresponds to a breather frequencyvb

=2.4 relatively far from the phonon band. The cubic coefficient of
the potentialV is K3=−0.3 sB=2.64d.

FIG. 4. Maximum amplitudes, supuunu, of the Sievers-Takeno
mode versus frequency for an even potential. The continuous line is
the maxima given by Eq.(17), while the dashed line corresponds to
the Sievers-Takeno approximation. Squares correspond to the nu-
merically computed solution.

FIG. 5. (a) Harmonic instability of the Sievers-Takeno mode for
K3=−0.3; (b) Oscillatory instabilities of the Page mode versusK3

for a lattice with 52 sites(full circles) and a lattice with 100 sites
(pluses). The frequency iswb=2.1.
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terms of the Hamiltonian. This analysis has been extended to
a class of nonanalytic Hamiltonian systems in Ref. 27. The
existence of excitation thresholds has been rigorously ana-
lyzed by Weinstein19 for thed-dimensional discrete nonlinear
Schrödinger equation, using variational methods(see also
Ref. 20 for formal variational arguments in the one-
dimensional case).

In Fig. 6 we compare a SAB and a LAB with the same
frequencywb=2.01. As it is shown in Fig. 7(a) the energy of
a LAB (dashed line) does not go to zero when approaching
the phonon band edge. It lies always above a certain positive
lower bound. In the case of SAB(continuous lines) the
breather energy can be lowered to arbitrarily small values.

The dependence of the energy threshold on the asymme-
try parameterK3 is also shown in Fig. 7(b), where we have
fixed K4=1. One observes that the energy threshold goes to 0
asB→0− (for K3→−Î3/2<−0,86). Moreover, LAB fami-
lies also exist for nonconvex potentialssK3,−Î3<−1,73d,
and their energy threshold increases withuK3u. This shows
that the criterionÎ3K4/2, uK3u,Î3K4 for the existence of
an energy threshold is not optimal. We conjecturate that an
energy threshold appears under the more general condition
K4.0, Î3K4/2, uK3u sB,0d in the one-dimensional FPU
system.

Figure 8 shows the energy of a LAB(upper line) and its
amplitude(lower line) versus frequency, close to the phonon
band edge[the upper line is a close-up of Fig. 7(a) nearvb
=2]. The reason for the nonmonotonous behavior of energy
is that there are two competing tendencies: on the one hand
amplitudes are decreasing with frequency and going to a
nonzero lower bound, but on the other hand the width of the
breather is increasing and more and more particles begin to
oscillate asvb decreases.

We have found LAB with the same symmetries as SAB
(Page and Sievers-Takeno modes). LAB have an exponential
decay forvb.2. As Fig. 9 shows, we have been able to fit
the LAB profiles to the following expression in the case of
the Page mode:

unstd < asvbdssvbdunucossvbtd, s18d

where

FIG. 6. Comparison between a small amplitude breather(full
circles) for B.0 and a large amplitude breather(squares) for B,0
with the same frequencywb=2.01. Parameters: SABK3=−0.3,
K4=1 sB=2.64d; LAB K3=−1, K4=1 sB=−1d.

FIG. 7. (a) Breather energy versus frequency close to the pho-
non band edge(we fix K4=1). The dashed line shows the existence
of a threshold in energy for a LAB withK3=−1 (B,0). The con-
tinuous lines(K3=−0.6 andK3=0 from top to bottom) show that for
B.0 SAB of arbitrary low energy exist.(b) Dependence of the
LAB energy threshold on the asymmetry parameterK3.

FIG. 8. LAB energy(upper line) and amplitude(lower line) vs
frequency close to the phonon band edge(we fix K3=−1, K4=1).

FIG. 9. Logarithms of the Page mode profiles forK3=−1, K4

=1 andwb=3 (circles), wb=2.1 (squares), wb=2.05 (triangles) and
wb=2 (pluses). The dashed line is the logarithm of Eq.(18) after
fitting the parametera. Note that Eq.(18) does not work in the limit
vb=2.
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ssvbd = 1 −
vb

2

2
+

vb

2
svb

2 − 4d1/2 P s− 1,0d, s19d

andasvbd is a fitting parameter. A similar expression corre-
sponds to the Sievers-Takeno mode.

We have computed the decay rateussvbdu as follows. The
FPU system(1) can be formulated as a mapping

S yn

yn+1
D = FSyn−1

yn
D , s20d

where the map

FSyn−1

yn
D = 1 yn

d2

dt2
sV8d−1synd + 2yn − yn−12 s21d

acts in a space of smooth time-periodic functions with fre-
quencyvb.2. The linearized operator

DFs0dSyn−1

yn
D = 1 yn

S d2

dt2
+ 2Dyn − yn−12 s22d

has a purely hyperbolic spectrum andssvbd, ssvbd−1 are the
closest eigenvalues to −1[with ss2d=−1].

We have observed that LAB remain localized forvb=2
(see plus signs in Fig. 9) and thus approximation(18) does
not work in this limit.

The stability properties of LAB are the same as SAB with
non-even potentials, i.e., both modes show oscillatory insta-
bilities and also a harmonic instability in the case of the
Sievers-Takeno mode. As we mention in Sec. II, most of the
oscillatory instabilities are size dependent effects due to the
discretization of continuous spectrum.25 However, a band
analysis11 suggests that, at least for some parameter values
(close tovb=3, K3=−1, K4=1), some eigenvalues remain
out of the unit circle for the infinite system and LAB are
unstable. We have studied the evolution of Floquet eigenval-
ues of the Page mode forvb=3, K3=−1 andK4=1 when the
system size becomes larger. In Fig. 10 one can see that one
pair of eigenvalues seems to converge to values out of the
unit circle for large system sizes, as stated in Ref. 11.

IV. DARK BREATHERS

Using the recurrence relation(8), it has been shown that
for B,0 and m,0 small enough(vb lies in the phonon
band) there exist small amplitude heteroclinic solutions of
(6) connecting two nonlinear normal modesyn

± at infinity,
i.e., limn→±`ynstd−yn

±std=0 (see Refs. 12 and 13).
We now briefly describe the nonlinear normal modesyn

±.
These solutions are spatially periodicfyn+2

± std=yn
±stdg, have 0

time-average(the mean interaction force is 0), and neighbors
oscillate out of phasefyn+1

± std=yn
±st+Tb/2dg. Moreover, solu-

tions yn
± are equal up to a half-period phase shiftfyn

+std
=yn

−st+Tb/2dg. Note that the corresponding displacement pat-
terns xn are in general different from the zone-boundary
modesxnstd=s−1dn fstd (also called binary oscillations). In-
deed, in this latter case the time average of relative displace-
mentsun is 0, whereas interaction forces have 0 time average
in our case. However, both types of solutions coincide for
even potentialsV.

To obtain an approximate expression of the heteroclinic
solutions, we can rewrite the recurrence relation(9) in the
following form:

rn+1 + rn−1 − 2rn

− m
= − rn − Brn

3 + h.o.t., s23d

using the variable changejn=Î−m rn. Equation(23) can be
approximated by the differential equation,

v9 = − v − Bv3, s24d

with rn=vsnÎmd. Consequently, the system(6) has a family
of small amplitude solutions which can be approximated by

ynstd . s− 1dnÎm

B
tanhSnÎ− m

Î2
Dcossvbtd. s25d

This type of solutions are called dark breathers28 or antisym-
metric kinks.29 Typically the term breathers refers to bright
breathers, that is a few excited units in a lattice. Here we
have the opposite kind of localization: most oscillators are
excited except one or a few of them.

Expression(25) approximates exact site-centered solu-
tions of (6) satisfying y−nstd=ynst+Tb/2d. Under our ap-
proximation one hasynst+Tb/2d<−ynstd, and in fact the ex-
act solutions satisfyynst+Tb/2d=−ynstd+Osumud (uniformly
in nPZ) asm→0+.

Equation(6) has also exact bond-centered dark breather
solutions satisfyingynstd=y−n+1std. We shall approximate
them by

ynstd . s− 1dnÎm

B
tanhS s− n + 1/2dÎ− m

Î2
Dcossvbtd.

s26d

Note that expressions(25) and (26) also approximateun
sinceun=yn+Osyn

2d.
For computing dark breathers numerically we consider a

lattice with an odd number of sites(51 lattice sites). We first
choose an even potentialsK3=0d with K4,0 (so thatB,0).
We solve Eq.(15) in Fourier space by the Newton method,

FIG. 10. Floquet eigenvalues of the Page mode forvb=3, K3

=−1 andK4=1, depending on system size. The eigenvalue of larg-
est modulus and its inverse seem to converge to values out of the
unit circle for large system sizes.
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fixing the time average ofu0 to 0 and using(25) as an initial
condition. Dark breathers are computed for non-even poten-
tials by continuation with respect toK3, starting fromK3
=0 (during the continuation the time average ofyn remains
very small, due to the constraint onu0).

Figure 11 shows the excellent agreement between an ex-
act site-centered solution obtained numerically(circles) and
the approximation(25) (dashed line), for an even potential
with K4=−1 sB=−3d and a frequencyvb=1.9. For non-even
potentials(full circles) the agreement is not so good. The
reason is clearly that the approximation ofun by yn with Eq.
(25) has the symmetry propertyunst+Tb/2d=−unstd which is
not true any more whenK3Þ0.

Similar results are obtained for bond-centered solutions
(see Fig. 12).

For a fixed potential we can continue numerically these
solutions decreasingvb. As Fig. 13 shows, then the oscilla-
tion amplitudes increase and for even potentials expression
(25) continues matching very well the relative displacements
un (circles), even far from the top of the phonon band. For
non-even potentials(squares) the agreement is also excellent
close enough to the edge of the phonon band. For lower
frequencies we observe discrepancies becoming larger.

We have also performed a Floquet analysis to investigate
the linear stability of this family of solutions when we de-
crease the frequency.

On the one hand, the site-centered mode is stable close to
the edge of the phonon band for even potentials as Fig. 14(a)
shows. However, a cascade of harmonic instabilities appears
for low enough frequencies(larger amplitudes). These insta-
bilities are visible in Fig. 14(a) at vb<1.43. Before the ap-
pearance of the harmonic instabilities one observes an insta-
bility bubble at vb<1.53. Nevertheless, its magnitude
decreases as the system size increases and thus it should not
be relevant for the infinite system.

On the other hand, the bond-centered mode shows a har-
monic instability [see Fig. 15(a)] that increases when the
frequency decreases. One also observes another cascade of
harmonic instabilities atvb<1.43.

FIG. 11. Small amplitude site-centered dark breathers for a fre-
quencyvb=1.9. The circles represent an exact solution computed
numerically with an even potential(K4=−1), while the full circles
were obtained adding to the previous potential a cubic term with a
coefficient K3=0.6. These solutions have the symmetryu−nstd
=unst+Tb/2d. The dashed lines are the tanh function of approxima-
tion (25) for both cases.

FIG. 12. Small amplitude bond-centered dark breather for an
even potential withK4=−1 and a frequencyvb=1.99. The circles
represent an exact solution computed numerically, having the sym-
metryunstd=u−n+1std. The dashed line corresponds to the analytical
approximation(26).

FIG. 13. Maximum amplitudes, supuunu, of the site-centered
dark breather versus −m1/2 for K3=0 (circles) andK3=0.6(squares).
In both casesK4=−1. The dashed line is the maxima given by Eq.
(25). In the non-even case approximation(25) does not provide a
good fitting far from the phonon band edge.

FIG. 14. Evolution of the Floquet eigenvalue moduli versus fre-
quency for the site-centered dark breather.(a) Even potential(K3

=0); (b) non-even potential(K3=−0.6). In both casesK4=−1.
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Non-even potentials induce oscillatory instabilities for
low enough frequencies(larger amplitudes), both for the site-
centered and the bond-centered modes. Figure 14(b) and
15(b) show that this occurs for frequencies lower than 1.85,
for K3=−0.6 andK4=−1. Numerically we have not found
these oscillatory instabilities near the phonon band edge, but
we do not exclude that they might exist and be harder to
detect.

The harmonic instability before mentioned for the bond-
centered mode is also present for non-even potentials, but is
not visible in Fig. 15(b) due to oscillatory instabilities. Note
that frequency scales in Figs. 15(a) and 15(b) are different.
For this reason in Fig. 15(b) we do not see either the cascade
of harmonic instabilities aroundvb<1.43. We have checked
that they are also present with non-even potentials.

V. BRIGHT AND DARK BREATHERS WITH UNIFORM
STRESS

Breathers considered in Sec. III forB,0 can be numeri-
cally continued at fixed frequency up to valuesB.0, bring-
ing about a new type of solutions which satisfy limn→±` un
=c, wherec is a nonzero constant. As Fig. 16 shows, these
new type of solutions can coexist with SAB for the same
values of the parameters and can be seen as time-periodic
oscillations around static solutions of(1) given by xn=cn.
The lattice is uniformly stretched at infinity forc.0, and
uniformly compressed forc,0. Such breather solutions with
a constant static strainc,0 have been also observed by
Sandusky and Page in the caseB,0 (see Ref. 26, p. 876).

This section provides analytical and numerical results
concerning breather solutions with a constant static strain.
The case of dark breathers with uniform stress is also exam-
ined.

In the sequel we assumeV9scd.0. We make the change
of variablexnstd=cn+ x̃nstÎV9scdd wherex̃n!1 and introduce
the modified potential

Ṽsud = sVsc + ud − V8scdud/V9scd. s27d

Equation(1) leads to

d2

dt2
x̃n = Ṽ8sx̃n+1 − x̃nd − Ṽ8sx̃n − x̃n−1d, n P Z, s28d

with Ṽ8s0d=0 and Ṽ9s0d=1. One can see that Eq.(28) is

exactly Eq. (1) where V has been changed toṼ. Conse-
quently, the results of the above sections(both analytical and
numerical) readily apply to Eq.(28).

Returning to the original variables, the following analyti-
cal results for the FPU system(1) follow from the analysis of
Sec. II A. Let us fixcPR and define

Bscd = 1
2V9scdVs4dscd − sVs3dscdd2. s29d

If Bscd.0 and vb−2ÎV9scd.0 is sufficiently small, the
FPU system has a family of exact solutions which can be
approximated by

unstd . c + s− 1dnÎ 2m

Bscd
cossvbtd

coshsnÎm/V9scdd
, s30d

where m=vb
2−4 V9scd, 0,m!1. These solutions are time

periodic(with frequencyvb) and their oscillating part is spa-
tially localized. As n→ ±` they converge towards a uni-
formly stressed static state(stretched or compressed depend-
ing on c). Note that their lower frequency lies inside the
phonon band ifV9scd,1, and above forV9scd.1. The exact
solutions approximated by(30) are site-centered, i.e., they
satisfy unstd=u−nstd. There exists also exact bond-centered
solutions satisfyingunstd=u−n−1st+p /vbd. In the sequel we
shall denote these solutions as breathers with uniform stress.

As we previously mentioned, the numerical study of these
solutions is already contained in Sec. II B, which applies to
the renormalized displacementsx̃n satisfying (28). For the
polynomial potential(3), breathers with uniform stress have
the same stability properties as the SAB corresponding to the
modified potential(27). In particular, oscillatory instabilities
are observed forK3=0 (V is even), since the modified poten-

FIG. 15. Evolution of the Floquet eigenvalue moduli versus fre-
quency for the bond-centred dark breather.(a) Even potential(K3

=0); (b) Non-even potential(K3=−0.6). In both casesK4=−1.

FIG. 16. Comparison between a SAB(full circles) and a
breather with a uniform stress(continuous line) for the same values
of the parameters:K3=−0.6,K4=1, wb=2.01.
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tial Ṽ is non-even in this case. On the contrary, ifK3Þ0,

K4.K3
2/6 then the modified potentialṼ is even for

c=−K3/3K4 [and the conditionsV9scd.0, Bscd.0 are real-
ized]. In this case oscillatory instabilities are not observed for
the SAB with specific static strainc.

If Bscd,0 andK4.0, we numerically obtain large am-
plitude solutions of the same type, whose oscillating parts do
not vanish aswb→2ÎV9scd [with wb.2ÎV9scd]. This result
follows directly from the numerical study of Sec. III, as well
as the stability properties of these solutions. These LAB with
uniform stress have been previously observed by Sandusky
and Page(see Ref. 26, pp. 874–876), for the interaction po-
tential (3) with B,0. In their examplesV9scd.1 (since
c,0, K3,0, K4.0) and thus the lower frequencies of these
LAB families lie strictly above the phonon band. This phe-
nomenon can be observed in Fig. 8 of Ref. 26, which pro-
vides frequency vs amplitude plots of such solutions(note
that c may not be constant on each curve).

If Bscd,0 andvb−2ÎV9scd,0 is sufficiently small, the
FPU system has a family of exact solutions which can be
approximated by

unstd . c + s− 1dnÎ m

Bscd
tanhS nÎ− m

Î2V9scd
Dcossvbtd,

s31d

wherem=vb
2−4 V9scd,0, um u !1. These solutions are time

periodic (with frequencyvb) and consists in a dark breather
superposed with a uniformly stressed static state. Note that
their higher frequency lies above the phonon band if
V9scd.1. These solutions are site-centredfu−nstd=unst
+p /vbdg, but their bond-centered analogues also exist. They
have the same stability properties as dark breathers in Sec.
IV, for the modified potential(27).

VI. CONCLUSIONS

In this work we have analyzed both numerically and ana-
lytically a rich variety of nonlinear solutions in FPU lattices.
There are four main results.

On the one hand, we have numerically explored the range
of validity of a recent breathers(bright or dark) existence
proof12 for one-dimensional FPU lattices. Our computations
have been carried out with polynomial interaction potentials
of degree 4. ForB.0, we have found that the maximum
amplitude of bright breathers in the relative displacement
variables is an approximately linear function ofm1/2 even far
from the phonon band and, in fact, the approximate expres-
sion (14) describes very well the profile of the breathers
when their amplitudes are large. ForB,0 andK4,0, we
find in the same way that dark breathers can be very well
described by approximate analytical expressions.

On the other hand, we have found numerically forB,0
large amplitude bright breathers having frequencies arbitrary
close to the top of the phonon band, which are out of range
of the local analysis.12 This breather family exhibits an en-
ergy threshold, which is a rarely observed phenomenon in
one-dimensional lattices.

Moreover, with respect to stability properties we have
checked that non-even potentials induce oscillatory instabili-
ties in both bright and dark cases. In the case of even poten-
tials, the Page mode is linearly stable while the Sievers-
Takeno mode is unstable. We have also found that bond-
centered dark breathers are unstable. The site-center dark
breather is unstable for low enough frequencies and linearly
stable with an even potential near the edge of the phonon
band.

At last, we have analyzed small amplitude bright and dark
breathers superposed to uniformly stressed static statesxn
=c n. In particular, the lowest frequency of bright breathers
is inside the phonon band if 0,V9scd,1, and the highest
frequency of dark breathers is above the phonon band if
V9scd.1. We have obtained local conditions onV for their
existence as well as approximate analytical expressions.
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