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In this paper we study the existence and linear stability of bright and dark breathers in one-dimensional FPU
lattices. On the one hand, we test the range of validity of a recent breathers existencigGprianhes, C. R.
Acad. Sci., Ser. I: Math332 581(2001)] using numerical computations. Approximate analytical expressions
for small amplitude bright and dark breathers are found to fit very well exact numerical solutions even far from
the top of the phonon band. On the other hand, we study numerically large amplitude breathers nonpredicted
in the above cited reference. In particular, for a class of asymmetric FPU potentials we find an energy threshold
for the existence of exact discrete breathers, which is a relatively unexplored phenomenon in one-dimensional
lattices. Bright and dark breathers superposed on a uniformly stressed static configuration are also investigated.
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I. INTRODUCTION AND MODEL above the phonon band has been established Wtsatisfies
(respectively, violatesa local hardening conditiok. The
Discrete breathers, also called intrinsic localized modesproof is based on a center manifold technique, which shows
are classical exact spatially localized time-periodic solutiongnore generally that all small amplitude time-periodic solu-
which can be sustained by many nonlinear lattige®e Refs. tions of the FPU systerfincluding breathensare determined
1 and 2 for a review In 1994 MacKay and Aubry rigor- by a two-dimensional map, provided their frequency lies
ously proved their existence in Hamiltonian lattices with an-near the phonon band edge. The discrete center manifold
harmonic on-site potentials and weak coupling. Breathers amnethod has been put in a general framewdand applied to
obtained by continuation from the uncoupled case in whictother systems, namely diatomic FPU chéfndar from the
trivial breathers existe.g., breathers with only one oscillator uncoupled regimeand spin lattice$®
excited, the others being at rgstVith the same technique, The aim of this work is to test numerically the range of
the existence of breathers was also proved for diatomiwalidity of the center manifold methé#land to explore new
Fermi-Pasta-UlangFPU) chains? In this model, two differ-  phenomena, far from the small amplitude regime.
ent masses alternate on the chain and are nonlinearly coupled The one-dimensional FPU system is given by the follow-
to their nearest neighbors via an interaction potetialhis  ing equations:
result is valid for a large mass ratio, since light magsext-
nearest neighboysare weakly coupled due to the presence of
a heavy mass in between.
Unfortunately this method is not applicable to homoge-

neous FPU lattices, which do not possess an uncoupled limifherex. represents mass displacements from their equilib-
in which trivial breathers exist. For some years the ogly eXTium positions andv is a smooth interaction potential satis-
|s_tence result concgrned the pamcul_ar poten_t\zé(lx):x m fying V'(0)=0, V'(0)=1. In Ref. 12, the existence of small
with m= 2.5 FPU lattices seemed elusive to a rigorous math'amplitude breather{SAB) with frequenciesw, slightly

ematic.al trleoatment in spite of numerous approxir‘?}étend above the phonon bar(d, > 2) is obtained foi8 >0, where
numerical1? studies, which have indicated the existence of

discrete breathers in these systems.

Nevertheless, recent papers have presented rigorous exis- B= %V(“)(O) - (V9(0))?, (2)
tence proofs for discrete breathers in infinite FPU lattices. On
the one hand, Aubnet all* have proved the existence of
breathers with frequencies above the phonon spectrum, whed their nonexistence is proved 8r< 0 (see Refs. 16 and
Vis a Stricﬂy convex po|yn0mia| of degree 4. These resu|tsl7 for related results on the modulational |nStab|l|ty of non-
are obtained via a variational method and apply in fact tdinear normal modes and the tangent bifurcation of standing
higher dimensional generalizations of FPU lattices. Withoutvaves, respectively
additional assumptions ovi these results give only a partial ~ The parameteB can be interpreted as a hardening coef-
information on breathers amplitudes. Under the additionaficient, since breathers with amplitude~0 have frequency
condition thatV is even, Aubryet al. prove the existence of @,=2+(B/8)A% Note thatB is slightly different from the
breathers of arbitrarily small amplitudes in one-dimensionaklassical hardening coefficient of an anharmonic potefial
FPU lattices. is hard if EV(4)(O)—(V<3)(O))2>0 and soft for %VW(O)

On the other hand, the existen@espectively, nonexist- —(V®(0))2<0].
ence of small amplitude breathers with frequencies slightly  In this paper we consider anharmonic potentials

.).(n = V’(Xn+1 - Xn) - V’(Xn - Xn—l)r neZ, (1)
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V(u) = U_2 + &Us + &u“ (3) Pnsy+ 20, + by =—p b, +B bﬁ +h.o.t (8)

23 4 where u=wi-4<1 and the coefficienB is given in (2).

(at least one of the coefficienks;, K, is nonzerg. One has  Higher order terms ar®(|b,|((|by-1| +|bn|)2+|w])?) [note
B= 3K4 4K2 and thus the parameteB is positive if that the right-hand side aBB) can be computed at an arbi-
K| < \3K4/2 In the case&K;=0 we have an even potential trary ordef. Consequently, the problem of finding small am-
and the sign oB coincides with the sign of the quartic co- plitude time-periodic solutions gb) reduces to the problem
efficientK,. (8), which can be viewed as a two-dimensional map

In Section 1l we compute numerically SAB and find that (by,bn-1) — (b1, bp)-
they are very well fitted by leading order analytical expres- For B>0 fixed andu >0 sufficiently small, the recur-
sions deduced from Ref. 12. In Section lll we consider arence relation(8) has homoclinic solutions to 0 satisfying
class of potentials for which numerical computations yieldlim,_,...b,=0 [a proof has been given in Refs. 12 and 13,
large amplitude breathed.AB) with frequencies near the using the invariancen——-n of (8)]. More precisely, there
top of the phonon band. In this case there is an energgxist homoclinic solutions to O denoted abﬁ,ttbn, having
threshold for the existence of exact discrete breathers. Theifferent symmetried?, ;=-b?, b2 =b?.
existence of an energy threshold for breather creation in Beyond this particular result one can expect the existence
higher-dimensional lattices is well know&°but only a few  of infinitely many homoclinic solutions to (hot necessarily
one-dimensional examples have been given where such symmetrig. Indeed, forB>0 the intersections of the stable
threshold existd!120-21 Section Il explores in more details and unstable manifolds df,=0 are generically transverse,
the example of Ref. 21. Section IV deals with dark breatherswhich yields the existence of “homoclinic tangled.”
i.e., spatially modulated standing waves whose amplitude is A formal way to understand why homoclinic orbits exist
constant at infinity and vanishes at the center of the chains the following. Settingé,=(-1)"b, yields the recurrence
Leading order analytical expressions for small amplituderelation
dark breathergwith frequencies inside the phonon bauiid
the numerically computed dark breathers very well in the bni1 a1~ 26,= néy—BE +hott. 9)
case of even potentials. In Sec. V we analyze bright and da
breathers superposed on uniformly stretched or compress
static states. In each section the linear stability of the abov

régdnce 0<u<1, Eg.(9) can be approximated by an inte-
egrable differential equation

mentioned solutions is numerically investigated. "= v -1 (10)
Il. SMALL AMPLITUDE BREATHERS with
A. Summary of the theory
Y [
We consider time-periodic solutions @) having a given &= \/; v(nVw). (11)

frequencyw,. We introduce the interaction force
) 3 Equation (10) has the homoclinic solutionsv(x)
Yn=V'(Uy) = U, + Kgus + K,us, (4) =+\2/coshix+c).
where Using the above analysis, it has been proved thaBfsi0
andwp—2> 0 sufficiently small, there exist SAB solutions of
Un = Xn = Xp-1- (5 (6) given by Eq.(7) and homoclinic solutions of8) (see
The time-average of,, is independent of [integrate(1)],  R€fs: 12 and 18 SAB have the form
and is fixed to 0 in Ref. 12, as it is the case for all spatiall _ n
localized solutions. Then, proble(t) leads to P g = (=%, cosh +hot, (12
@2 where &,=(-1)"b, satisfies the recurrence relatigd) and
—2(V’)‘1(yn) =Yo1— 20+ Vo1, NeZ. (6) |&|—0 asn— . The above homocllnlc solutionts}, b?
dt correspond via Eq(7) to SAB yn, yn having different sym-
The main results of Ref. 12 can be formulated as followsmetriesy?,_,(t) =yX(t+T,/2), y?,=y2, where T,=27/ w, is
For w,= 2 (maximal phonon frequengyall small amplitude the breather periogsee Ref. 13, pp. 58 and pNote that
solutionsy, (even int) have the form Yn(t+T,/2) # =y,(t) in general due to higher order terms in
12) (however the egality holds ¥/ is ever). Homoclinic
Yn(D) = bn COSwp ) + (1, Dy, bp, ), ) (SO|l)Jti(0nS B!, of (8) si?npl))/l correspond ttyin(tr)+Tb/ 2).
where ¢ is a smooth time-periodic function with frequency  The exact solutionyﬁ, yﬁ can be approximated at leading
wp and  SUP[0 2n/uy)| @(t, Br-1, by, @p)|[=O(([by-a| +[by[)  order using(10) and(11) with v(x)=v2/coshx. This yields
X (|bp-| + ]| +|wp—2]?)). This result can be seen as an exact

version of the rotating-wave approximation mettfod, the 2(t) = (= 1)" |21 cos wyt (13)
small amplitude limit. Note thatr can be computed at an Yl = B Cosf(n\u;)’

arbitrary order(see Ref. 13, p. 91 Moreover,b, satisfies the

second order nonlinear recurrence relation and by symmetry we construct the second approximation
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2u COS wpt
YAl = ()" = —
B cos(|n+1/2 - 1/2)vV )

Under these approximations one lyae+T,/2) ~-y\(t) and
yé(t)_zyg(t). In fact, the exact solutions satisfy(t+T,/2)

=—y () +O0(|u|) andyg(t)=y3(1)+O(|u|*? asu—0".

Notice that approximatiol3) can also be derived using
multiscale expansion'$. Moreover, these expressions also

approximateu, sinceu,=y,+O(y?).

(14)

¥n(0)
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These calculations show that the maximum amplitade
~\2ulB of the SAB isO(|w,— 2|2 asw,— 2*. More pre-

cisely, breathers with amplitud&=0 have frequencyw,

~2+(B/8)AZ

Although SAB decay exponentially alg|— +, their
width is O(|wp,— 2| and diverges aw;,— 2*. As a conse-
quence, iB>0 breathers exist for any small value of energy

in the FPU systengl).

B. Numerical continuation

check the range of validity of approximatio(i3) and(14).
We have fixedK,=1 in Eq.(3) and thus the paramet& is

positive if |K| <Kj=13/2=0.86.

path continuation with the Newton meth&twith this tech-

n

10 20 30 40

FIG. 1. Comparison between an exact site-centered mode

(circles and the approximatiofil3) (dashed lingfor w,=2.01(u

~0.04). The cubic coefficient of the potential iK3;=-0.3 (B
=2.64), but similar results are obtained for any other fixed value of
Kz with |[K3| <K3 (B>0) and x>0 small enough.

cubic coefficient, K;=-0.6 (B=1.56 and K;=-0.3 (B
=2.64 from top to bottom, respectively. The maximum am-
plitude of the forces is an approximately linear function of

We have computed these solutions numerically in order ta+"'> up to u=0.6. The continuous lines represent the

maxima given by approximatiofl3). This approximation is
not satisfactory for very small values Bfsince higher order

terms in(8) cannot be neglected wh&i— 0. More precisely,

We have performed our computations using a numericaihe smallerB is, the smalleru must be chosen i113) in
scheme based on the concept of anticontinuous limit an@rder to have a good approximation.

The maximum amplitude of the relative displacements

. s . . . H H H H 12
nigue it is more convenient to use the difference d|splaceSUdUn\ is also an approximately linear function pf/? (see

ments variables,. Indeed, with these new variables the dy- squares in Fig. 2 This was expected for small sinceu,
:yn+O(yﬁ), but it occurs far from the phonon band, at least

until values ofu~2.25. In fact, we have checked that, sur-
prisingly, expressiongl3) and(14) fit very well the profile

namical equations become

U+ 2V (Uy) = C[V' (Upsp) + V' (Up-1)] =0,

the system(15) as a Klein—Gordon system, with an on-site
potentialV and an anticontinuous limit &=0. Note thatu,
is one-to-one related to the forcgs at small amplitudes,

because/’ is locally invertible sincev’(0) # 0.

We use periodic boundary conditions, y,(t) =un(t). The

nev,

(15)

of the relative displacements, even far from the phonon

) ) ~ band as Fig. 3 shows. Note that the vibration amplitudes of
whereC=1 for our system, but it makes possible to considefthe preather in Fig. 3 are quite large.

In Fig. 4 we have plotted again the maximum amplitude
of the relative displacementsquarey but now for an even
potential(K;=0) and larger frequencies, in order to compare

approximation(14) with an approximation derived by Siev-

ers and Takeno in the large amplitude regfimighe Sievers-

periodicity is.considered for an even.number of site_s in ordemrakeno approximation is obtained using the rotating wave
that the maximum frequency of the linear phonons is exactlpproximation(only the first Fourier component of solutions
2 as in the infinite latticéthis frequency corresponds to the js taken into accouitand Green’s function techniques. For

phonon with wave numbetr).

We have obtained breathers with symmetrigg(t)
=u_,(t) (site-centered mode and u,(t)=u_,_1(t+T,/2)
(bond-centered mogleNote that the coordinates transforma-
tion (5) produces an exchange of the symmetry properties
between both modes, i.e., in the difference displacements
variables the site-centered mode is the Page hadd the
bond-centered mode is the Sievers-Takeno nfode.

Figure 1 shows the excellent agreement between the ap-
proximation (13) (dashed ling and an exact site-centered
mode obtained numerically(circles for w,=2.01 (u

~0.09.

We have continued the SAB obtained numerically for

2 T T T T I/I i
'y
15 Yy 5
rd / [a]
] Y
E || A r<Lh
g LA B
05 | b
o 1 1 1 1 1
0 025 05 075 1 1.25

uiIE

FIG. 2. Force(dashed lingand relative displacementsquares

B>0 asw, goes away from the p_honon band. In Fig. 2 wemaxima versusu’2. The continuous line corresponds to the
have plotted the maximum amplitude of the forces|gdp maxima given by approximatiofl3). Parameters from top to bot-

(dashed lines versus u*? for two different values of the
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FIG. 3. Comparison between an exact bond-centered mode @ v T T T T T
(circles and the analytical approximatiaii4) (dashed lingfor w % 101 k '-g. b) |
=1.76. The value ofu corresponds to a breather frequeneoy £ e .l.
=2.4 relatively far from the phonon band. The cubic coefficient of 2 -I ;:ﬁi.. . J
(e Poterta 19 (s=-0.9 (622,64 EIRT & iimg T

£ i L ]
the Sievers-Takeno mode aKgd=1 (B=3) it predicts % % izzf.ﬂ
= 8
2[5 = S 099 o8 -
SUdUn| =~ 5\’\,\,%_ 3 (16) g _::.u 1 1 1 1
This amplitude-frequency relation corresponds to the dashed -09 -06 -03 0
line in Fig. 4. On the other hand, from E(L4) it follows Ka

(continuous ling: FIG. 5. (a) Harmonic instability of the Sievers-Takeno mode for

2(W§— 4) K3=-0.3; (b) Oscillatory instabilities of the Page mode verdus
suguy| ~ 3 (17)  for a lattice with 52 sitegfull circles) and a lattice with 100 sites
(pluses. The frequency isv,=2.1.
Clearly we see that approximatigh6) fits better very local-
ized solutions with large amplitudes, whereas approximatiofiory instabilities increase withs|. Although most of them
(17) works better up to moderate amplitudes,~2.4 inthis  are size dependent effects due to the discretization of con-
Case. In this sense both apprOXimationS can be ConSiderGQnuous Spectrurﬁ? for the infinite System some of them
complementary. might remain out of the unit circle and in this case SAB
In addition we have performed a Floquet analysis in ordefyould be unstable. We shall not examine this problem here
to Study the linear Stab|l|ty of the SAB‘ In the Symmetric and leave it for future works.
potential case the result is well knowrthe Page mode is
stable while the Sievers-Takeno mode has a harmonic insta-
bility (a pair of real eigenvalues,o™* close to J that in-
creases with the breather frequency. When a cubic term in
the potentialV is introduced(K;# 0), the situation is more In this section we study breathers in the parameter region
complex. The Sievers-Takeno mode shows again a harmong< 0. Using the recurrence relatiq8), one can show that
instability [see Fig. §3)], but it also shows oscillatory insta- SAB with frequencies slightly above the phonon band do not
bilities. As Fig. &b) shows for the Page mode, these oscilla-exist forB< 0 (see Refs. 12 and 1L3However, large ampli-
tude breathers do exist in this parameter Ecjfd\vllore pre-
cisely, forV strictly convex(K;>0, |K3| <3K4) andB<0
(V3K4/2<|Kg|), breathers whose amplitudes do not tend to
zero asw,— 2+ have been numerically obtainét?2’As a
consequence there is an energy threshold for breathers
creation in these FPU systems. The criterion
V3K,/2<|K4| < 3K, for the existence of an energy thresh-
old originates from Ref. 21, and follows by combining ana-
lytical results in Ref. 13nonexistence of small amplitude
breathersand Ref. 11(existence of large amplitude breath-
ers.

The existence of an energy threshold for breather creation
FIG. 4. Maximum amplitudes, siip|, of the Sievers-Takeno has been formally analyzed by Flach, Kladko, and MacRay
mode versus frequency for an even potential. The continuous line r general Hamiltonian systems, in a different case when
the maxima given by Eq17), while the dashed line corresponds to Small amplitude breathers bifurcate at an edge of the phonon
the Sievers-Takeno approximation. Squares correspond to the ngpectrum. An energy threshold exists above a critical lattice

merically computed solution. dimensiond (typically d=2) which depends on the nonlinear

Ill. LARGE AMPLITUDE BREATHERS WITH AN
ENERGY THRESHOLD

Maximum amplitudes
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FIG. 6. Comparison between a small amplitude breathdr
circley for B>0 and a large amplitude breathsguaresfor B<0
with the same frequencyv,=2.01. Parameters: SAK;=-0.3,
Ky=1(B=2.64; LAB K3=-1,K,=1 (B=-1). The dependence of the energy threshold on the asymme-

try parametelK; is also shown in Fig. (b), where we have
terms of the Hamiltonian. This analysis has been extended tiixed K,=1. One observes that the energy threshold goes to 0
a class of nonanalytic Hamiltonian systems in Ref. 27. TheasB— 0~ (for K;— —\3/2~-0,86). Moreover, LAB fami-
existence of excitation thresholds has been rigorously andies also exist for nonconvex potentie(ls3<—\s’§%—1,73,
lyzed by Weinsteit? for thed-dimensional discrete nonlinear and their energy threshold increases wih|. This shows
Schrédinger equation, using variational meth@dse also that the criterion\s“3_K4/2<|K3|< V3K, for the existence of
Ref. 20 for formal variational arguments in the one-an energy threshold is not optimal. We conjecturate that an
dimensional case energy threshold appears under the more general condition

In Fig. 6 we compare a SAB and a LAB with the samek,>0, \53—K4/2<|K3| (B<0) in the one-dimensional FPU
frequencyw,=2.01. As it is shown in Fig. () the energy of system.

a LAB (dashed lingdoes not go to zero when approaching  Figure 8 shows the energy of a LA@ipper ling and its

the phonon band edge. It lies always above a certain positivgmplitude(lower line) versus frequency, close to the phonon

lower bound. In the case of SABcontinuous linesthe  pand edgdthe upper line is a close-up of Fig(af nearw,

breather energy can be lowered to arbitrarily small values. =2]. The reason for the nonmonotonous behavior of energy
is that there are two competing tendencies: on the one hand

FIG. 8. LAB energy(upper ling and amplitudglower line) vs
frequency close to the phonon band edge fix Ky3=-1, K,=1).

25 amplitudes are decreasing with frequency and going to a
5 nonzero lower bound, but on the other hand the width of the
breather is increasing and more and more particles begin to
5 15 oscillate asw, decreases.
s We have found LAB with the same symmetries as SAB
weo (Page and Sievers-Takeno modésAB have an exponential
05 decay forwp,>2. As Fig. 9 shows, we have been able to fit
’ the LAB profiles to the following expression in the case of
0 the Page mode:
Un(t) = alwp) o(wp)"cog wpt), (19
lﬂ T T T T T where
. 2f T b) - 0% - . -
Ny B + 4
g 175 Tu, I SE e ey, T Yt
S is| “u. | Wl YO
£ 125 a i (Ol *a, Seeg
2 15 | ) ]
E ot LN e
u% 20 ‘Q\ .
0'75 [ 1 L 1 1 1 ﬂ- '25 [~ \b\ -1
2 18 16 -1.4 12 - 30 , , ' ,
Ka 0 5 10 15 20

FIG. 7. (a) Breather energy versus frequency close to the pho-
non band edgéwe fix K,=1). The dashed line shows the existence  FIG. 9. Logarithms of the Page mode profiles f05=-1, K,
of a threshold in energy for a LAB witK;=-1 (B<<0). The con- =1 andw,=3 (circles, w,=2.1 (squarey w,=2.05(triangleg and
tinuous linegK3=-0.6 andK3=0 from top to bottormshow that for ~ w,=2 (pluse3. The dashed line is the logarithm of E{.8) after
B>0 SAB of arbitrary low energy existb) Dependence of the fitting the parametes. Note that Eq(18) does not work in the limit
LAB energy threshold on the asymmetry paraméter wp=2.
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§ 1.06 | . ' - IV. DARK BREATHERS

= L

g 104 ®e - . Using the recurrence relatigi), it has been shown that

o 102} PR L .:." ': ° for B<O and IL.L<0 small enpugr(wb lies in .the phqnon

B b ee ! 3!"."* 00 0- bang there exist small amplitude heteroclinic solutions of

g 098 b g '. o oo %o ° (6) connecting two nonlinear normal modg$ at infinity,

5 . ® et 00 ® i.e., lim,_...y,(H)—ys(t)=0 (see Refs. 12 and 13

3 0%r oo’ i We now briefly describe the nonlinear normal moggs

2oomfp o . 7 These solutions are spatially periodi¢, ,(t) =y (t)], have 0
10 100 500 time-averagéthe mean interaction force i9,Gand neighbors

Lattios size oscillate out of phaspy~,,(t) =y (t+Ty/2)]. Moreover, solu-

: + ; .
FIG. 10. Floquet eigenvalues of the Page modedgr 3, K3 tlor_]S y, are equal up to a haIf—penoQ ph.ase Smﬁ;(t)
=-1 andK,=1, depending on system size. The eigenvalue of Iarg-:y”(HTb/Z)]'. Note that the_ corresponding displacement pat-
est modulus and its inverse seem to converge to values out of tH€NS X, are in general different from the zone-boundary
unit circle for large system sizes. modesx,(t)=(-1)" f(t) (also called binary oscillationsin-
deed, in this latter case the time average of relative displace-
2 mentsu,, is 0, whereas interaction forces have 0 time average
olwpy) =1 _% %(w§_4)1/2 e (-1,0), (199  in our case. However, both types of solutions coincide for
even potentialy/.
To obtain an approximate expression of the heteroclinic
solutions, we can rewrite the recurrence relati@nin the
following form:

and a(wp) is a fitting parameter. A similar expression corre-
sponds to the Sievers-Takeno mode.
We have computed the decay rat€wy)| as follows. The

) it p =2
FPU system(1) can be formulated as a mapping Pn+l fn 17 2Pn _ po- Bp§+ hot.. 23)
Yn =F Yn-1 20 # —
B ' (20 using the variable changg=v-u p,. Equation(23) can be
Yn+1 Yn . . . !
approximated by the differential equation,
where the map 3
v"'=-v-Bv°, (24)
i (Yn—1> . Yn o1 v\;ith panu(n\s’l;?).dConslequentIy,h'Fhre] systE(ﬁ) has a.familyé )
v d_tz(vf)—l(yn“zyn_yn_l of small amplitude solutions wi |cian e approximated by
0 = (- 0"y Lran] 2 Jcotap). (25
acts in a space of smooth time-periodic functions with fre- Yl = gan 2 codwpl). (29

quencywy,>2. The linearized operator
This type of solutions are called dark breatB&m antisym-

Yn metric kinks?® Typically the term breathers refers to bright
D|:(o)<y”‘1> = 2 (22 breathers, that is a few excited units in a lattice. Here we
n (@ + 2>Yn—Yn—1 have the opposite kind of localization: most oscillators are
excited except one or a few of them.
has a purely hyperbolic spectrum atl), o(w,)™* are the Expression(25) approximates exact site-centered solu-
closest eigenvalues to {Wwith o(2)=-1]. tions of (6) satisfying y_,(t)=y,(t+T,/2). Under our ap-

We have observed that LAB remain localized fog=2  proximation one hag(t+T,/2)~-y,(t), and in fact the ex-
(see plus signs in Fig.)%nd thus approximatiotil8) does act solutions satisfy,(t+T,/2)==y,(t)+O(|x|) (uniformly
not work in this limit. inneZ)asu—0".

The stability properties of LAB are the same as SAB with  Equation(6) has also exact bond-centered dark breather
non-even potentials, i.e., both modes show oscillatory instasolutions satisfyingy,(t) =y_.1(t). We shall approximate
bilities and also a harmonic instability in the case of thethem by
Sievers-Takeno mode. As we mention in Sec. Il, most of the —
o.scillat_ory.instabilities. are size dependent effects due to the yo(D) = (- 1) ﬁtanf(%)cos(wbt).
discretization of continuous spectrifHowever, a band B V2
analysis! suggests that, at least for some parameter values (26)
(close tow,=3, K3=-1, K,=1), some eigenvalues remain
out of the unit circle for the infinite system and LAB are Note that expression&25) and (26) also approximateu,
unstable. We have studied the evolution of Floguet eigenvalsinceun=yn+0(yﬁ).
ues of the Page mode fa;,=3, K3=-1 andK,=1 when the For computing dark breathers numerically we consider a
system size becomes larger. In Fig. 10 one can see that otedtice with an odd number of sité51 lattice sites We first
pair of eigenvalues seems to converge to values out of thehoose an even potentidd;=0) with K, <0 (so thatB<0).
unit circle for large system sizes, as stated in Ref. 11. We solve Eq(15) in Fourier space by the Newton method,
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FIG. 11. Small amplitude site-centered dark breathers for a fre- FIG. 13. Maximum amplitudes, sim,|, of the site-centered
quencyw,=1.9. The circles represent an exact solution computediark breather versusu?/2 for K3=0 (circles andK;=0.6 (squares
numerically with an even potentigk,=—-1), while the full circles  In both case«,=-1. The dashed line is the maxima given by Eq.
were obtained adding to the previous potential a cubic term with €25). In the non-even case approximati(26) does not provide a
coefficient K3=0.6. These solutions have the symmetry,(t) good fitting far from the phonon band edge.
=un(t+Ty/2). The dashed lines are the tanh function of approxima-
tion (25) for both cases. We have also performed a Floquet analysis to investigate

the linear stability of this family of solutions when we de-
fixing the time average ai, to 0 and using25) as an initial ~ crease the frequency.
condition. Dark breathers are computed for non-even poten- On the one hand, the site-centered mode is stable close to
tials by continuation with respect tK5, starting fromKj, the edge of the phonon band for even potentials as Fig) 14
=0 (during the continuation the time averageyafremains shows. However, a cascade of harmonic instabilities appears
very small, due to the constraint ag). for low enough frequenciegarger amplitudes These insta-

Figure 11 shows the excellent agreement between an exilities are visible in Fig. 1¢a) at w,~ 1.43. Before the ap-
act site-centered solution obtained numericadlycles and  pearance of the harmonic instabilities one observes an insta-
the approximation25) (dashed ling for an even potential bility bubble at w,=~1.53. Nevertheless, its magnitude
with K;=-1 (B=-3) and a frequencw,=1.9. For non-even decreases as the system size increases and thus it should not
potentials(full circles) the agreement is not so good. The be relevant for the infinite system.

reason is clearly that the approximationupfby y, with Eq. On the other hand, the bond-centered mode shows a har-
(25) has the symmetry property,(t+T,/2) =-u,(t) which is  monic instability [see Fig. 168)] that increases when the
not true any more wheK;# 0. frequency decreases. One also observes another cascade of
Similar results are obtained for bond-centered solutiondiarmonic instabilities at,=~ 1.43.
(see Fig. 12
For a fixed potential we can continue numerically these § 18 T T T T
solutions decreasingy,. As Fig. 13 shows, then the oscilla- g 1.6 : i ]
tion amplitudes increase and for even potentials expression 3 14 a) Even potential |
(25) continues matching very well the relative displacements % 12 ]
u, (circles, even far from the top of the phonon band. For g 1
non-even potentialssquaresthe agreement is also excellent % 0.8 b~ i
close enough to the edge of the phonon band. For lower = o6 b .
frequencies we observe discrepancies becoming larger. 3 o4 b ; ; . .
2 8
16 17 18 19 2
T T T T T w,
0.12 )
p P
0.06 ?? ? g ]
;II';? ?-' § b i
i ‘ g ) Non-even potential |
w0 0 RA g
-0.06 } L e J
é ’ g etssen s ]
-0.12 oo06¢ P06 o i
1 1 1 1 1 ° <
2 10 0 10 20 % J
n = 1 1 1 1 1

0.4
17 175 18 18 19 195 2
FIG. 12. Small amplitude bond-centered dark breather for an W,

even potential withK,=-1 and a frequencw,=1.99. The circles

represent an exact solution computed numerically, having the sym- FIG. 14. Evolution of the Floquet eigenvalue moduli versus fre-
metry u,(t) =u_,+1(t). The dashed line corresponds to the analyticalquency for the site-centered dark breatt{ay. Even potentialKz
approximation(26). =0); (b) non-even potentialk;=-0.6). In both case&,=-1.

014301-7



SANCHEZ-REY, JAMES, CUEVAS, AND ARCHILLA PHYSICAL REVIEW B70, 014301(2004)

g 18 T T T T 0.6 T T T T T
T 16
g 1’4 a) Even potential 04 | -
o 102 5 0.2
X g il
81 [ —— 1 |
"u'-o 08 b > o0F 5-..| T e ]
5 06 . ) {10
ko) : '0.2 ™~ e -1
g 0.4 A N 1 1
16 17 18 19 2 .04 1 1 1 L L
W, 8 20 10 0 10 20 30
slte
[2]
3 FIG. 16. Comparison between a SA8ull circles) and a
% breather with a uniform stregsontinuous ling for the same values
2 of the parameterK;=-0.6,K;=1, w,=2.01.
g
g In the sequel we assumé&(c) >0. We make the change
5 of variablex,(t)=cn+X,(tyV"(c)) wherex,<1 and introduce
3 the modified potential
s
0 1 1 1 1 1 —
17 175 18 18 19 195 2 V(u) =(V(c+u)-V'(c)u)/V'(c). (27)
w,

Equation(1) leads to
FIG. 15. Evolution of the Floquet eigenvalue moduli versus fre- 2
quency for the bond-centred dark breath@y. Even potentiakK; % =V (Rr =%) =V (K =% ne’ 28
=0); (b) Non-even potentialK;=-0.6). In both casex,=-1. dez™" (e =) % =), <7, (28

Non-even potentials induce oscillatory instabilities forWith V'(0)=0 andV’(0)=1. One can see that E@S) is

low enough frequenciegarger amplitudes both for the site- exactly Eq.(1) where V has been changed td. Conse-
centered and the bond-centered modes. Figui@)land  quently, the results of the above sectigbsth analytical and
15(b) show that this occurs for frequencies lower than 1.85nhumerica) readily apply to Eq(28).
for K;=-0.6 andK,=-1. Numerically we have not found Returning to the original variables, the following analyti-
these oscillatory instabilities near the phonon band edge, bwal results for the FPU syste(t) follow from the analysis of
we do not exclude that they might exist and be harder téSec. Il A. Let us fixce R and define
detect. =Ly @(c) = (VA(c))2

The harmonic instability before mentioned for the bond- B(c) =2V (©V™(e) = (V(0)". (29)
centered mode is also present for non-even potentials, but j§ B(c)>0 and w,—2V"(c)>0 is sufficiently small, the
not visible in Flg l5b) .due'to OSC|”at0ry |nStab|I|t|'eS. Note FPU System has a fam||y of exact solutions which can be
that frequency scales in Figs. (Bp and 13b) are different.  approximated by
For this reason in Fig. 16) we do not see either the cascade

of harmonic instabilities around,~ 1.43. We have checked n | 2u cogwpt)
i i Up(t) =c+ (- 1) , (30
that they are also present with non-even potentials. B(c) coshnyu/V'(c))
V. BRIGHT AND DARK BREATHERS WITH UNIFORM where u=wi-4 V"(c), 0<u<1. These solutions are time
STRESS periodic(with frequencywy,) and their oscillating part is spa-

Breathers considered in Sec. Il f8<0 can be numeri- tially localized. Asn— +c they converge towards a uni-
cally continued at fixed frequency up to valugs- 0, bring- ~ formly stressed static statstretched or compressed depend-
ing about a new type of solutions which satisfy lim.. uj, ing on c). Note that their lower frequency lies inside the
=c, wherec is a nonzero constant. As Fig. 16 shows, thesg?honon band it/”(c) <1, and above fo¥"(c) > 1. The exact
new type of solutions can coexist with SAB for the samesolutions approximated bg30) are site-centered, i.e., they
values of the parameters and can be seen as time-periodi@tisfy u,(t)=u_,(t). There exists also exact bond-centered
oscillations around static solutions ¢f) given by x,=cn. solutions satisfyingu,(t) =u_p_1(t+ 7/ wp). In the sequel we
The lattice is uniformly stretched at infinity fa>0, and  shall denote these solutions as breathers with uniform stress.
uniformly compressed far<<0. Such breather solutions with As we previously mentioned, the numerical study of these
a constant static strain<<O have been also observed by solutions is already contained in Sec. Il B, which applies to
Sandusky and Page in the cd3& 0 (see Ref. 26, p. 876 the renormalized displacemerits satisfying (28). For the

This section provides analytical and numerical resultspolynomial potential3), breathers with uniform stress have
concerning breather solutions with a constant static strairthe same stability properties as the SAB corresponding to the
The case of dark breathers with uniform stress is also exanmmodified potentia(27). In particular, oscillatory instabilities
ined. are observed foK;=0 (V is even, since the modified poten-
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tial V is non-even in this case. On the contraryKif#0, On the one hand, we have numerically explored the range
K4>K§/6 then the modified potentiaV is even for of validity of a recent breathergright or dark existence

c=—K4/3K, [and the condition&”(c)> 0, B(c)>0 are real proof? for one-dimensional FPU lattices. Our computations
- 3 4 ’ -

) ; . . o have been carried out with polynomial interaction potentials
ized]. In this case oscillatory instabilities are not observed for .

; e . : of degree 4. FoB>0, we have found that the maximum
the SAB with specific static straia

. . _ amplitude of bright breathers in the relative displacement

plitllj dlz(g)ijt(i)oigdoﬁ; Os’avr\rl:z ?;geuchﬂgeoobstgwaﬁrgT:);rg d (}/ariables is an approximately linear functiono¥? even far
) — ' —_— ) rom the phonon band and, in fact, the approximate expres-

not vanish asv,— 2/V"(c) [with w,>2V"(c)]. This result P ! pproxi xP

, i sion (14) describes very well the profile of the breathers
follows directly from the numerical study of Sec. llI, as well \,hon their amplitudes are large. FBI<0 andK,<0, we
as the stability properties of these solutions. These LAB Withy 4 in the same way that dark breathers can be very well

uniform stress have been previously observed by Sandusky.ccribed by approximate analytical expressions.

and Pagesee Ref. 26, pp. 874-8)dor the interaction po- On the other hand, we have found numerically Box 0

tential (3) with B<0. In their examplesv(c)>1 (sinc€  |rge amplitude bright breathers having frequencies arbitrary

¢<0,K;3<0,K,>0) and thus the lower frequencies of these c|ose to the top of the phonon band, which are out of range

LAB families lie strictly above the phonon band. This phe- uf the |ocal analysi&? This breather family exhibits an en-

nomenon can be observed in Fig. 8 of Ref. 26, which progqgy threshold, which is a rarely observed phenomenon in

vides frequency vs amplitude plots of such solutignste ;e _dimensional lattices.

thatc may not be constant on each curve Moreover, with respect to stability properties we have
If B(c) <0 andw,~2yV"(c) <0 is sufficiently small, the  checked that non-even potentials induce oscillatory instabili-

FPU system has a family of exact solutions which can bgjes in both bright and dark cases. In the case of even poten-

approximated by tials, the Page mode is linearly stable while the Sievers-
N Takeno mode is unstable. We have also found that bond-
U () =c+ (- )" /Ltam< ,#)cos(wbt), centered dark breathers are unstable. The site-center dark
B(c) V2V'(c) breather is unstable for low enough frequencies and linearly

(31) ts)tabolie with an even potential near the edge of the phonon
and.

whereu=wi-4 V'(c) <0, |u| <1. These solutions are time At |ast, we have analyzed small amplitude bright and dark
periodic (with frequencywy) and consists in a dark breather preathers superposed to uniformly stressed static skgtes
superposed with a uniformly stressed static state. Note thaic n. In particular, the lowest frequency of bright breathers
their higher frequency lies above the phonon band fifis inside the phonon band ifQV”(c)<1, and the highest
V'(c)>1. These solutions are site-centréd_(t)=uy(t  frequency of dark breathers is above the phonon band if
+/ wp)], but their bond-centered analogues also exist. They”(c)>1. We have obtained local conditions ®hfor their
have the same stability properties as dark breathers in Segxistence as well as approximate analytical expressions.

IV, for the modified potentia(27).
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