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By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we

demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due

to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance: a non-

monotonic behavior as noise is increased and breather generation under subthreshold conditions. The

corresponding peak is associated with a matching between the external driving frequency and the breather

frequency at the average energy given by ambient temperature.
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Intrinsic localized modes, often referred to as discrete
breathers, have been the focus of a number of theoretical
studies (for a recent review see, e.g., [1]). One of the main
reasons for the intense interest in these modes is the fact
that they provide a natural setup for energy localization, a
paradigm of interest to many areas of physics as well as
chemistry and biology. Such discrete breathers have been
rigorously proven to exist as time-periodic localized ex-
citations in nonlinear Hamiltonian lattices [2]. Ever since,
they have been experimentally observed in a wide variety
of different media, ranging from optical waveguides and
photorefractive crystals to micromechanical cantilever ar-
rays and Josephson junctions, as well as in Bose-Einstein
condensates and layered antiferromagnets [1,3].

In this Letter, having in mind realistic physical systems,
we will focus on the nucleation of such breathers in a
prototypical model system in which friction and ambient
noise are also present. This will lead us to the consideration
of stochastic resonance (SR), the counterintuitive phe-
nomenon by which an appropriate dose of noise, instead
of degradation, produces an enhancement of sensitivity of
a nonlinear system to external forcing [4]. In spatially
extended systems, SR has been shown for bistable [5] or
excitable media [6], usually associated with pattern for-
mation [7]; see, e.g., the review of [4].

Our prototypical nonlinear model will consist of a
quartic potential (the so-called hard �4 lattice [8]) with
the following equation of motion for each oscillator xn
(n ¼ 1; . . . ; N) with mass m:

m €xn ¼ �U0ðxnÞ þ kðxnþ1 þ xn�1 � 2xnÞ
� � _xn þ �n þ FnðtÞ; (1)

where the overdot and the prime denote the time and space
derivative, respectively; k is the coupling parameter be-
tween oscillators; � is the damping constant; FnðtÞ denotes
external driving; and �n is a Gaussian white noise with zero
mean and autocorrelation h�nðtÞ�mðt0Þi ¼ 2D�nm�ðt� t0Þ.
The noise strength parameter D obeys the fluctuation-
dissipation relation kBT ¼ D=�, where kB is the

Boltzmann constant and T the ambient temperature.
Thus, D is an indicator of the level of noise associated
with thermal fluctuations.
The on-site potential is given byUðxÞ ¼ ax2=2þ bx4=4

with a, b > 0. Because of the monostable character of this
potential, the noiseless lattice has a single stable steady
state, allowing us to focus on the behavior of homoclinic
orbits, rather than kinklike heretoclinic orbits, like in the
bistable �4 case (a < 0). This is one way in which our
work differs from the standard bistable models of SR, or
the interesting recent work of [9], which considers noise-
induced transitions between steady states in very short
Fermi-Pasta-Ulam type, boundary-driven chains.
Moreover, this model possesses a phonon band which
can be easily determined upon linearization of (1) as

!ph 2 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ð0Þ=mp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½U00ð0Þ þ 4k�=mp Þ [1]. Thus, by excit-

ing breathers with a frequency larger than the maximum

frequency of the phonon spectrum, !max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ 4kÞ=mp

,
these localized modes are guaranteed not to interact with
the phonons, avoiding effects like radiation resonances
which slowly dissipate away the energy of discrete breath-
ers [10].
Indeed, the associated Hamiltonian system of this hard

model [i.e., Eq. (1) without damping and noise] exhibits
exponentially localized in space and periodic in time high
(i.e., higher than !max) frequency excitations. An example
is the dynamically stable Sievers-Takeno (ST) [11] site-
centered mode. As shown in Fig. 1, this mode is staggered;
i.e., the neighboring sites oscillate out of phase. Hence,
these breathers will necessitate that we impose staggered
periodic driving in order to sustain them in the presence of
dissipation. For this reason, we shall consider the following
ac driving force:

FnðtÞ ¼ ð�1ÞnF0 sinð�tÞ: (2)

Its effect on a deterministic Fermi-Pasta-Ulam lattice has
been studied in Ref. [12].
Equation (1) is supplemented with (periodic) boundary

conditions x0 ¼ xN and xNþ1 ¼ x1. Generally, �
4 models

have been commonly used to describe a wide range of
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phenomena from elementary particle collisions and cos-
mological domain walls [13] to droplet nucleation and
phase transitions [14], constituting a prototypical nonlinear
model in statistical field theory [15].

For the sake of a dimensionless description, we can scale

all lengths and times by the characteristic length � ¼
ða=bÞ1=2 and time � ¼ ðm=aÞ1=2, i.e. ~xn ¼ xn=�, ~t ¼ t=�,

which implies ~k ¼ k=a, ~� ¼ �=ðamÞ1=2, ~D ¼
bD=ða5mÞ1=2, and ~F0 ¼ F0ðb=a3Þ1=2. In the following we
will omit the tilde symbols for simplicity. The dimension-
less form of the equations of motion (1) then reads

€xn ¼ �xn � x3n þ kðxnþ1 þ xn�1 � 2xnÞ
� � _xn þ �n þ ð�1ÞnF0 sinð�tÞ: (3)

Let us discuss, for the moment, the deterministic behav-
ior of (3) (i.e., without noise,D ¼ 0). As mentioned above,
the staggering factor ð�1Þn in (2) is important in order to
sustain the breathers in the presence of dissipation. When
that factor is absent, the ST breather shown in Fig. 1 is
always observed to die out, regardless of the driving
strength. However, in addition to this staggering factor,
the driving amplitude F0 must be large enough so that the
energy supplied by the driving force is able to compensate
for the energy which has been dissipated by the friction
force. Breathers in the dissipative deterministic lattice can
be calculated using a method similar to that developed in
[16]. An analysis of those breathers shows that, for k ¼ 1
and � ¼ 0:1 and a breather frequency of ! ¼ � ¼ 3,
there is a threshold at Fth ¼ 0:6092. When the driving
amplitude is below this threshold (subthreshold ampli-
tude), the dissipation gradually drains away the system’s
energy, and breather modes cannot be supported. In the
following, unless explicitly stated, we will assume k ¼ 1,

� ¼ 0:1, and � ¼ 3, which implies !max ¼
ffiffiffi
5

p
<�.

Having summarized the results of the deterministic case,
let us now turn to the analysis of the effect of thermal
fluctuations and how theymodify this picture. Starting with
the suprathreshold case (F0 > Fth), we would expect that
the addition of noise provokes the spontaneous formation
of breathers with the frequency dictated by the external
driving, even if the system starts from a uniform configu-
ration. This is indeed what is observed, as shown in Fig. 2,
where a typical realization of the oscillators’ trajectories
has been plotted. The frequencies and amplitudes of the
observed noise-induced breathers are very similar to the
deterministic ST breather depicted in Fig. 1. The ST
breather has the smallest size and the lowest energy of all
possible collective modes at the frequency of the driver,
thus being the most probable breather to be induced by
noise. However, unlike the deterministic case, the breathers
are not permanent, and the same random force which has
generated them is able to destroy them after a while.
In the subthreshold case the driving force is not able by

itself to sustain the breathers. Remarkably, however, the
simulations show that these breathers are still produced in
the system by the concerted action of noise and the driving
force. This is shown in Fig. 3. The bottom panel shows a
comparison of one of these noise-induced breathers with
the deterministic stable breather obtained with a supra-
threshold driving force. This effect resembles one of the
main features of the earliest manifestations of SR: the
noise-induced hopping events of a Brownian particle in a
bistable potential subject to a externally applied force
which taken alone is not sufficient to produce the hopping
events [4]. Noise appears then as beneficial, enabling sys-
tem transitions between the uniform background state and
the coherent, localized breather patterns. On the other

FIG. 2 (color online). Time evolution of the oscillator posi-
tions unðtÞ :¼ xnðtÞ þ 10n for a system subject to a suprathres-
hold driving with F0 ¼ 1 and � ¼ 3, and noise strength
D ¼ 0:1 starting from a uniform initial condition xnð0Þ ¼ 0.
Breathers are observed to form and vanish spontaneously. The
bottom panel shows a magnification of the time evolution of an
oscillator which becomes the center of a high-frequency
breather.
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FIG. 1 (color online). Spatial profile of a staggered high-
frequency (! ¼ 3) Hamiltonian breather generated using meth-
ods based on the anticontinuous limit [21]. The line is a guide to
the eye.
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hand, we would expect that if the thermal fluctuations are
very large, they will destroy any degree of order in the
system, producing the nonmonotonic behavior character-
istic of the SR phenomenon. This scenario should offer a
generic mechanism for the formation of breatherlike ex-
citations in realistic nonlinear lattices where fluctuations
are present.

In order to quantify these effects, we have computed
numerically the Fourier coefficient of an arbitrary oscilla-
tor at the frequency of the external driver,

q ¼ 2

T

Z 2�=�

0
dte�i�thx1ðtÞi1; (4)

where the notation h. . .i indicates an average over noise
realizations and the subindex 1 indicates the long time
limit of the noise average, i.e., its value after waiting a long
enough time for the transients to die out. Every time the
oscillator x1 is part of a breather, or a collective attempt to
form a breather mode at the frequency of the driver, will
result in a larger coefficient q. The choice of the oscillator
in (4) is irrelevant because of the periodic boundary con-
ditions. The simulations were performed with N ¼ 40 and
N ¼ 60 oscillators, the larger value carried out in order to
check that the results did not depend on the system size.

We present in Fig. 4 the values of the amplitude jqj2 as a
function of the noise strength D for a suprathreshold and
subthreshold driving. The nonmonotonic behavior with
noise, a recognized signature of the SR phenomenon, is
very clear in both the suprathreshold and subthreshold
situations. Nevertheless, let us note that a nonmonotonic
behavior is also obtained when we inhibit breather forma-
tion by canceling the interaction between the oscillators.
The dotted line in Fig. 4 shows this feature for a system

with k ¼ 0. This is a well-known phenomenon for any
single-oscillator system subject to a nonlinear monostable
potential, both in the underdamped [17] or overdamped
[18] regime. In the former, the peak is produced by a
matching between the driving frequency and the intrinsic
frequency associated with the most probable excitation
energy, which is a monotonic function of the noise strength
[17]. In fact, a simple classical mechanics analysis of the
undriven Hamiltonian system (�, D, F0 ¼ 0) with k ¼ 0
shows that a periodic solution with frequency ! ¼ 3 cor-
responds to an energy per particle value of E=N ¼ 36.
Under thermal equilibrium (F0 ¼ 0), we need to raise the
temperature to a value such that the noise strength is D ¼
1:67 in order to obtain an average energy per particle of the
same value. It can be seen in Fig. 4 that this value ofD is in
good agreement with the position of the maximum. A
similar argument also holds when we switch on the inter-
action between the oscillators, though now collective ex-
citations associated with lower energies are allowed,
resulting in larger amplitudes with a peak at a lower value
of D. The total energy associated with the breather pre-
sented in Fig. 1 is E ¼ 30. If we consider that roughly only
l ¼ 5 oscillators are needed to form the ST breather, an
average energy per particle of E=N ¼ 6 would be neces-
sary in order to optimize breather formation. This value is
obtained at thermal equilibrium when D ¼ 0:7, which is a
reasonable estimation of the peak position observed in
Fig. 4. A better estimation, namely, a peak at D ¼ 0:47,
is obtained if we choose l ¼ 7 oscillators. The appropriate
value of l is determined by the correlation length, as
discussed below.
For an arbitrarily small driving amplitude F0, linear

response theory [19,20] predicts

hx1ðtÞi1 ¼
Z 1

0
ds�ðsÞfðt� sÞ; (5)
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FIG. 4 (color online). The Fourier amplitude jqj2, defined in
Eq. (4), as a function of the noise strength D for a suprathreshold
driving F0 ¼ 1:5 (solid line), a subthreshold driving F0 ¼ 0:6
(dashed line), and a system with F0 ¼ 0:6 but without interac-
tion between the oscillators, i.e. k ¼ 0 (dotted line).

FIG. 3 (color online). Same as in Fig. 2 but for a subthreshold
amplitude F0 ¼ 0:6 and noise strength D ¼ 0:3. The bottom
panel shows a magnification of part of the trajectory xnðtÞ of one
oscillator (boxed in the upper panel), as well as the time
evolution of the center oscillator of a deterministic (D ¼ 0)
and dissipative breather (� ¼ 0:1) with suprathreshold F0 ¼ 1
and same driving frequency (dashed red line).
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where fðtÞ ¼ F0 sinð�tÞ and �ðtÞ is the response function.
This function can be expressed in terms of equilibrium
time correlation functions,

�ðtÞ ¼ � �

D

d

dt
hx1ðtÞMð0Þieq; (6)

where h. . .ieq denotes equilibrium averages in the absence

of driving and MðtÞ ¼ P
N
n¼1ð�1ÞnxnðtÞ is part of the per-

turbing Hamiltonian �MfðtÞ associated with the external
driving. The calculation of the Fourier coefficient of (5),
together with the definitions �r ¼

R1
0 �ðtÞ cosð�tÞ and

�i ¼
R1
0 �ðtÞ sinð�tÞ, yields the following spectral ampli-

fication 	 ¼ jqj2=F2
0:

	 ¼ ½�ð0Þ � �i��2 þ ð�r�Þ2: (7)

Figure 5 shows the linear response results obtained from
simulations at thermal equilibrium. It is seen that a driving
amplitude of F0 ¼ 0:05 is small enough to be within linear
response theory. Because of the presence of noise and
dissipation, the correlation between two separated oscilla-
tors decreases rapidly as their separation is increased. In
fact, Fig. 5 shows that a good approximation is obtained if
the time correlation functions hx1ðtÞxnð0Þieq corresponding
to oscillators separated by more than 2 sites (jn� 1j> 2)
are neglected in Eq. (6). This is consistent with the above
energy matching argument with l ¼ 5, and the dynamical
role of ST breathers, leading to the peak estimation atD ¼
0:7. Larger driving amplitudes are associated with larger
correlation lengths, producing a peak at slightly lower
values of D.

Finally, the calculated correlation functions allow us to
readily compute the system response when the driving
force acting on each oscillator is not staggered but spatially
uniform, i.e., MðtÞ ¼ PN

n¼1 xnðtÞ. The dotted line in Fig. 5

shows that the spectral amplification is very similar to that
when breather formation was strictly forbidden (the case
k ¼ 0 shown in Fig. 4), lacking the stronger peak at lower
noise levels. As expected from the deterministic analysis,
this uniform driving force is very ineffective in boosting
breather formation.
In conclusion, we have demonstrated the spontaneous

formation of breathers in a hard �4 lattice subject to a
staggered driving force. The formation of noise-induced
breathers with the selected driving frequency is optimized
for a given level of fluctuations such that the average
energy per particle matches the intrinsic energy of the
breather mode. We expect these results to be useful for
the generation and manipulation of breathers, and to be
independent of dimension and of the specific nature of the
nonlinearity, provided that the model is monostable.
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FIG. 5 (color online). Spectral amplification 	 ¼ jqj2=F2
0 as a

function of noise. Filled circles depict the linear response results,
computed numerically using Eq. (7), and the solid line the
simulation results for F0 ¼ 0:05. The dashed line corresponds
to F0 ¼ 0:6. Crosses and diamonds correspond to a linear
response calculation neglecting correlations between oscillators
separated by more than 2 and 3 sites, respectively. Filled tri-
angles depict the linear response prediction for a system with a
uniform external driving FnðtÞ ¼ F0 sinð�tÞ (for all n) instead of
(2). The dotted line is a guide to the eye.
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