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Breather statics and dynamics in Klein-Gordon chains with a bend
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In this paper, we examine a nonlinear model with an impurity emulating a bend. We justify the geometric
interpretation of the model and connect it with earlier work on models including geometric effects. We focus
on both the bifurcation and stability analysis of the modes that emerge as a function of the strength of the bend
angle, but we also examine dynamical effects including the scattering of mobile localized (dateste
breathersoff of such a geometric structure. The potential outcomes of such numerical experiinehiging
transmission, trapping within the bend as well as reflegtare highlighted and qualitatively explained. Such
models are of interest both theoretically in understanding the interplay of breathers with curvature, but also
practically in simple models of photonic crystals or of bent chains of DNA.
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I. INTRODUCTION In the present work, motivated by these studies we exam-
o ) ine the nonlinear Klein-Gordon variant of a model intro-
_In the last decade, intrinsic localized mod@sMs), or  quced recently in the context of the discrete nonlinear
discrete breathers as they are also termed, have becomesghmdinger equatiotDNLS) in Ref. [8]. This is a proto-
topic of intense theoretical and experimgntal investigati.on'typica| model emulating the geometry of a lattice bend, by
see, e.g., Ref1] for a number of recent reviews on the topic. the inclusion in the vicinity of the bend of next-nearest
Per their inherent ability to bottleneck and potentially trans-neighbor interaction due to the proximity of these neighbors
port the energy in a coherent fashion, such exponentially, this context(see, e.g., Fig. 11
localized in space and periodic in time entities have come to \yie will examine this bend in the framework of a soft and
be of interest in a variety of contexts. These range fromy hard Klein-Gordon interaction potential, namely the Morse
nonlinear optics and arrays of waveguidtd to Bose-  and the hardp* potentials, respectively. Apart from the in-
Einstein condensates inside optical lattice potenf@lsand  perent interest of the interaction, at the static as well as dy-
from prototypical models of nonlinear sprinf§ to Joseph-  pnamjcal level, of discrete breathers with the “geometric im-
son junctiong5] and dynamical models of the DNA double rity” induced by the bend, the model may be relevant to a
strand[6]. number of applications. In particular, the DNLS serves as the
One of the playgrounds that have most recently beernyelope wave equaticat the discrete levifor Maxwell’'s
added to this long list of ILM applications consists of non- equation, hence, for the photonic applications, it may be of

linear photonic crystal waveguides and circyif3. In con-  more interest to identify the properties of the corresponding
nection to this context, an issue that becomes very relevant

(see, e.g., the models developed in R&f) is the interplay

of nonlinearity and geometry as, typically in photonic crystal
waveguide arrays, two-dimensional or quasi-one-
dimensional settings with bends,8] become relevant.

We should note here that the interplay of nonlinearity and
geometry has been increasingly appreciated in the ILM lit-
erature. From the long range interactions on a fixed curved
substrate[9] to lattice-substrate feedback mod¢l€] and
from lattice junctions with different mass¢$l] to semicir-
cular, polymerlike chain§12] and geometrically motivated,
bent models of DNA13-16, the geometry can significantly
affect the statiqinducing, e.g., multistabilityand dynamic
(causing, e.g., a variety of outcomes in the ILM interaction
with curvaturg properties of the relevant lattice model.

FIG. 1. Schematic presentation of a bend in connection with the
discrete equatioi2). The parametet stands for the bend-induced
interaction between the next-nearest neighliorsthe vicinity of
*Electronic address: jcuevas@us.es the beng, whereasC represents the nearest neighbor interaction in
"Electronic address: kevrekid@math.umass.edu the rectilinear chain.
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FIG. 3. Bifurcation diagram for the solutions with a Morse on-
site potential. The energy of the breathers is plotted as a function of
0.5 I the bending parameter=y/C. The coupling constant i€=0.13
(top) or C=0.26(bottom). The numbers indicate the site where the
solutions are centered; an integer number corresponds to a site-
0 centered solution, whereas a half-integer number corresponds to a
bond-centered solution. Stable solutigfe an infinite systemare
represented by full lines whereas unstable solutions are represented
by dashed lines.

-0.5¢
earlier study of Ref[19], where the helicoidal geometry was
1 , ) , , , argued to induce a non-nearest neighbor interaction across
-15 -10 -5 0 5 10 15 the double strand. Notice, also, that we follow a slightly
(c) different path than Re{8], by examining not only static but

) ) _also dynamic properties of the model and, in particular, the
FIG. 2. (3 Linear mode spectrum with respect to the bending hhtential outcomes of the breather-bend interaction.
fﬂ?ﬂgﬁ?f% gef?;zi%u?g')ngr iogzt?g;n%a'z(g’cs) P’\;gigeﬂ?;t ~ In the following section, we will present the model equa-
the localization of the impurity modes is non-neg.lig.ible only for tion of interest, while in _Sec. I“.’ we will st_udy Its "Wear
high values ofe. modes. In Sec. IV, we WI|.| examine _the static properties of
the two models, by examining the bifurcations of breathing

Klein-Gordon model. Furthermore, this may also serve as &odes as a function of the “bend parametgrin Sec. V, the
simple dynamical model for understanding the interaction ofcorresponding dynamics properties of the breather-bend in-
a denaturation bubble in DN6,17] with the local helical teraction will be presented. Finally, in Sec. VI, we summa-
geometry of the double strand. This is similar in spirit to therize our findings and present our conclusions.
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FIG. 4. Spatial profiles of the breathers centered=a0 (a), n=0.5(b), n=1 (c), andn=1.5(d) for «=0.0005. The results correspond to
a chain of oscillators with an on-site Morse potential with parametgrs0.8 andC=0.26.

Il. THE MODEL chain. For a derivation of the discrete model in the first set-
ting and an explanation of the dependence of the interaction
Toefficient on the geometry of the configuration and the in-
ternodal distance, see, e.g., REE8]. In this context, it is
1 C y natural to assume that .the effect of the be_(dde to 'the
H=> <EU” +V(u,) + E(u”” — Uy’ + E(u“” - Un—1)25n,o), geometric proximity of sitesi=1 andn=-1) will be to in-
n duce the NNN coupling between theef. Ref.[18]).
(1) V(u) is the on-site potential which is chosen to be of the
(softy Morse type V(u) =[exp(-u)—1]/2, or of the(hard) ¢*
thus the bending point is located at the partioke0 and  type, V(u)=x2/2+x%/4; C is a coupling constant between
implies, as is graphically indicated in Fig. 1, a geometricallynearest neighboré\N) whose interaction will be harmonic
induced coupling of next-nearest neighb@¥\N) adjacent  (i.e., connected by linear springgor the purposes of the
to the bend site. present work.
We should clarify here the nature of the configuration and From the Hamiltoniar{1), the following dynamical equa-
of the dynamics. The displacements represent an “exter- tions can be obtained:
nal” field such as, e.g., the electric field in an array of optical
waveguides or the stretching of a base pair in a DNA chain ~ Un+ V' (Uy) + C(Ups3 + Up-1 = 2Up) + A (Uy = Up-2) 11
[6]. The chain of Fig. 1 should be considered as being geo- + (Uy = Ups2) 8, 1] = 0. (2)
metrically fixed on the plane of the paper. The dynamics of '
the displacements is transverse, i.e., perpendicular to th& natural bifurcation/continuation parameter that we will use
plane of the bent chain. In such a setting the coefficient ofor the purposes of our study is= y/C. The relevant ratio is
the interaction between adjacent sites is determined by the natural measure of the relative strength of the different
(fixed) geometric proximity of the nodes constituting the neighbor interactiongthe bend-based NNN one and the uni-

In accordance with the above description, the Hamiltonia
of the Klein-Gordon chains of interest will be given by
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FIG. 5. Evolution with respect to the coupling constant of the Floquet multiplier argundegidt) and the modulus of the Floquet
multipliers (right) for a one-site(top) and a two-sitgbottom) breather with Morse on-site potential with frequengy=0.8. The one-site
breather is stable fo€ e (0,0.1297 and for C € (0.2382,0.4 it recovers its stability except for size-dependent instability bubbles via
oscillatory and subharmonic bifurcations. The 2-site breather is stabl@ ¢d0.1300,0.2381L

formly distributed NN ong This ratio can also be interpreted  The linear modes can be obtained from the linearized
geometrically(in the spirit of Fig. 3. In particular, it can be form (around the uniform state,=0) of the dynamical equa-
related to the wedge angleb through the relationa tions (2):

=1/(2[1-cog¢)]). For the NNN approximation to be real-

istic, ¢ must be larger than 60°, hence, equivalently; 1. . 2
Notice that while the geometric interpretation of the moment ~ Un ™ @t * C(2Un = Un-1 = Uner) + A (Un = Un-2) 811
prompts us to typically examine the regimewé (0, 1], it is +(Up— Ups2) 8 -11 =0, 3
of inherent mathematical interest to examine broader param-

eter ranges, and therefore some of our results below will be . 2 . .
; X with w{=1. The linear modes can be calculated using the
presented for values af outside this range.

lattice Green'’s functiorj21,22. The frequency of the local-
ized linear modegalso referred to asnpurity modegis thus

IIl. LINEAR MODES given by
Some of the properties of discrete breathers are related to ) , Ca+1? , (2y+C)?
the existence or nonexistence of linear localized modes. Ojmp = W+ =wyt ) (4)

[0}
These modes appear as the bend is introduced by modifying 2 2y

the coupling, which is effectively equivalent to the introduc-
tion of an inhomogeneity in the curvature at the bottom ofand the inhomogeneity parameter is related to the frequency
the intersite potentigl20]. of the impurity modes through the relation
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1.5 ' ' : anticontinuous limit[23]. Furthermore, since the bending
acts as an inhomogeneity, the system has lost its integer shift
invariance and the properties of the breathers critically de-
pend on the site where their center is locatatly=0). This
1t ] fact leads to the existence of saddle-node bifurcations
through which some of the solutions can disappear. Similar
c bifurcations have been previously observed in bent chains of
oscillators[13,14. This has also been the main focus, for
DNLS-type settings, of Ref8].

These bifurcations need a relatively high value of the cou-
pling (sufficient cross talk between the neighboring gites
be observed. Otherwise, breather solutions will exist for very
large intervals ofy in every site of the lattice. Hence we
L - : : restrict ourselves t&C’'s of the order of(typically) 0.1 to

render these bifurcations tractable.

We now proceed to examine the bifurcation diagrdass
a function ofa) for both soft and hard on-site potentials and
a harmonic intersite potential.

0.5

= N

(@)

A. Morse potential

G5y Figure 3 shows the bifurcation diagrams for the case of a

Morse on-site potential and coupling@=0.13 andC=0.26
! ] and frequency»,=0.8, and Fig. 4 shows the spatial profile of
the solutions corresponding to a number of branchesxfor
=0.0005.
-0.5¢ 1 For C=0.13, the branch corresponding to the breathers
centered an=0 merges with the breathers originally cen-
tered atn=0.5 ata=0.001 15. The branches centerednat
- ] =1.5 andn=2 disappear through a saddle-node bifurcation at
: 5 ; : a=0.00057. This phenomenon is also observed for the
Re(\) branches centered at=2.5 andn=3 at «~0.006 74. For
a<0 the annihilations are observed between different
branches of solutions. In particular, the branches centered at
FIG. 6. (a) Spatial profiles of the breathers centereshat for ~N=0-5 andn=1 annihilate ata~-0.000 49 and the ones
@=-0.003 and the same characteristics to those of Figure)4. Centered ah=2andn=2.5 cease to exist through the saddle-
shows the spatial profile of unstable solutiah) represents the Node bifurcation occurring at~-0.001 20. It should, how-

Floguet multipliers corresponding to this state. The instabilities tha€Ver, be noted that some branclisse, e.g., the branch cen-
can be appreciated nedr 7 are due to the collision of extended tered an=1 for «>0 or the one centeren=-1.5 fora<0)

Im(A)

(b)

eigenmodes and disappear in the case of an infinite lattice. never annihilate. It is also interesting to note that all of these
branches of solutions are unstable, as both site-centered and
0l - 02— 2C+ (0l - 0 (0l — w2 4C) bond-centered breathers are unstable in the straight deain
a= 4C . (5 this value of the NN coupling However, the branch result-
ing when the centered at=0 andn=0.5 merge is stable.
where the plus sign corresponds dﬁnp> w2+4C and the The branch centered ai=1.5 becomes stable fow
minus sign towimp < @, =0.002. This change of stability has its origin in a pair of

Figure 2 shows the frequencies of the linear modes as Bloquet multipliers that collide in the unit circle at=1.
function of a=7/C and the profile of the impurity modes. It Notice that this behavior, unlike the typical branches dis-
can be observed that, for>0, the impurity mode is above cussed above, does not involve a saddle-node bifurcéion
the phonon band and, in consequence, has a zigzag vibrfor that matter an exchange of stability with another static
tional pattern(i.e., a staggered mogldf y<<0, the mode is breather brancdh

below the band and its sites oscillate in phd2@]. It is For C=0.26 the saddle-node bifurcations occur between
worth remarking that the impurity modes are antisymmetricdifferent solutions from the case considered above. For
modes whose central lattice site is at rest. a>0, the branches centeredrat 0.5 andn=1 collide and

disappear atv=0.000 72; the branches centerechat?2 and
n=2.5 cease to exist at~=0.001 06 while the ones centered
at n=3 andn=3.5 terminate atx~0.003 42. The branch

Discrete breathers can be calculated using well-knowrtcentered an=0 merges with the branch centerednat0.5
techniques based on the concept of continuation from théor «<0 and in particular forx~-0.001 87.

IV. STATIC RESULTS: STATIONARY BREATHERS AND
THEIR BIFURCATIONS
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¢4 Potential. C=0.09 breather(originally) centered arounch=1. Notice however
. . . . . ; . that the instability in this case is a result of the finite size of
the lattice.

0.5 T

0af "~ ~al 1 B. ¢* potential

S The most significant difference of thg' case with respect
S. | to the Morse one is that in the formere., for a hard poten-
B R 25 | tial), the breathers bifurcate from the top of the continuous
\1’5’ spectrum and as a result the corresponding spatial profiles
are staggeregil]. Hence, in this case the main solutions of
interest are one-site or two-site breathers with the adjacent
sites oscillating in antiphase.

The hard¢* potential has been considered with a cou-
pling constantC=0.09 and solutions with frequencw,
=1.2. For these parameter valugmtice thatC is compa-

Ol e w6 w4 0z 0 o0z o4 06 08 rable to the values used in Fig),3he saddle-node bifurca-
o tions of interest occur at considerably larger valuegdbr
the present model in comparison to the Morse case; see, e.g.,

Fig. 7. In particular, the branch of the on-site breathers cen-

Eg:]edr;::al' Zraemeer;ziy %thTehzrﬁﬁmg?rs'sinﬂgig t?lseii::nv\cltr:gpeot];??ered atn=0 merges with the intersite branch centereadh at
gp L =0.5 ate=0.516. Similarly, the on-site solutions centered at

solutions are centered; the half-integer numbers actually correspond” _ . ' . .
to two-site breathers, but the notation has been kept in consonan =2 andn=3 collide (and disappeamwith the corresponding

with Fig. 3. Stable solutions are represented by full lines Whereaén'frsne ones centgred ael.5 andn_:2.5_ ata~0.258 and
unstable solutions are represented by dashed lines. a=~0.590, respectively. However, in this case, the branch

centered an=1 becomes the asymmetric, lowest energy,

In addition, the branches centerednat1.5 andn=2 an-  stable ground state that persists for any value.dfor <0,
nihilate ata=-0.002 04 and the ones centerechat2.5 and the on-site breathers centerednatl annihilate with the in-
n=3 collide ata=-0.001 57. It is interesting to observe that tersite ones centered @t 0.5 ata=-0.255. Notice that here
similarly to what was found in Ref8], in a different setting, also on-site solutions are stable, while intersite ones are un-
there is an asymmetric mode that persists der 0, whose stable fory=0, but the branch emerging from tine=0 and
energy is lower than the symmetric bend mode. Hence, fon=0.5 is unstable.
<0 in this case, we observe a symmetry breaking effect Some of the breather solutions far=0.1 are shown in
that leads to an asymmetric ground state of the system. Nd=ig. 8 and the profile of the ground state fer0 together
tice that similar asymmetric modes can be fogadd iden-  with its Floquet eigenvalues in Fig. 9.
tified to be potentially stab)en continuum models with lo-
calized impurities; see, e.g., RéR4].

It should be noted here that for this larger value of the
coupling, the branches corresponding to site-centered solu- As explained above, the ground state is not always the
tions are stable for an infinite lattice, whereas the bondbreather centered at=0. In particular, for a Morse potential,
centered solutions are unstable for the rectilinear chain. Thi€=0.26, »,=0.8 and|«| large enough, the ground state for
stability is inherited by the branches of the bent chain. Mo-a <0 is the breather centered @t 1 (at least in the infinite
tivated by the change of stability at the “unbent” lintiy ~ domain limit, since in the finite domain case, it may be un-
=0), occurring as a function o€ (e.g., notice above the stable as shown in Fig.)60n the other hand, fo>0 the
different stability of this limit forC=0.13 andC=0.26, we  ground state is still the breatherm@t0. Thus, if an unstable
briefly study the stability of the rectilinear chain limit, as a solution (say, then=0 centered fore<0 or then=1.5 for
function of C. To illustrate the stability of the one-site and «>0) is perturbed, it is likely taswitchto the ground state,
two-site modes in the rectilinear chaidiscussed in part in in a similar fashion to the phenomenon observed in Ref.
Ref. [16]), we examine their Floquet multipliers, both by [13]. However, as Fig. 10 shows, this may not always be the
means of the argument angles as well as giving their absolutgase. In particular, the breather oscillates between the sites
values in Fig. 5. Notice, in particular, for the one-site modesn=0 andn=3.5 (i.e., in the vicinity of the stable ground
that there are two inversions of stability, namely oneCat statg for «<<0, while for >0, it is set in motion. A pos-
~0.1297 and another fo€~0.2382. ForC>0.2382, the sible explanation relies on the fact that the eigenmode lead-
one-site modes are stable but with interspersed sizéng to the instability is actually a pinning mode, which is
dependent windows of instabilitisee, e.g., Ref§25-27). responsible for breather mobilifgee also Sec.  Hence a

Finally, let us mention that the branch that originates byperturbation with the appropriate sigfi.e., causing the
the merging of then=0 andn=0.5 branches is unstable. breather to move away from the ground statene rather
Figure 6 shows an example of the spatial profile and théhan toward if along this eigendirection can lead to breather
Floquet eigenvalues of an unstable statedst0, namely a  motion.

0.15

FIG. 7. Bifurcation diagram for the solutions with¢t on-site

C. Instabilities: Switching and breather mobility
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FIG. 8. Spatial profiles of the breathers centered=® (a), n=0.5(b), n=1 (c) andn=1.5(d) for «=0.1. The results correspond to a
chain of oscillators with an on-sité* potential with breather frequenay,=1.2 and coupling consta@=0.09.

For a¢* potential,C=0.09,w,=1.2, and a| large enough, sponding to translation. Then, the kineftcanslationgl en-
the ground state forr>0 is the breather centered mt1, ergy of the breather can be definedkas\?/2. As Ref.[15]
while for <0, it is not well defined. shows, the moving breather can be described as a quasipar-
Figure 11 shows the evolution of a two-site breather centicle of massm’ defined through the relatiorK=\?/2
tered an=2 with @=0.5. It is observed that the breather can=mv*/2, with v being the translational velocity of the
switch to the one-site breather centerednatl, i.e., the breather. The mass is a measure of the inertia of the breather
ground state. In this case, no moving localized excitationd® €xternal forces. _
arise, but rather the previously suggested switch occurs. This Another useful concept for our study is the breather en-
may be attributed to the fact that for the hapdl potential, ~ €r9y center, which is a measure of the position of the local-
there do not exist pinning modes that could potentially Iead_zed structure. It is defined through the relatiox
to breather mobility(see also Ref28]). =(Z.ne)/E, e, as the cepter of mass with respecgiathe
energy density at thath site.E=2,e, is the total energy of
the breathef16].
V. DYNAMIC RESULTS: MOVING BREATHERS AND The local “coupling inhomogeneity” induced by the bend
BREATHER-BEND INTERACTIONS should result in features similar to those observed in Ref.
[20]. In particular, for a soft potential, i&>0, the bending
In this section we examine how the local geometry of theshould act, in principlgsee also beloyy as a potential bar-
bend can influence the motion of a breather in its vicinity. Inrier, i.e., the breather can cross the vertex as long as its
particular, the moving breathers are launched towards th&anslational energy is above a threshold value. If this condi-
bend vertex following the marginal mode methi@8]. The tion is satisfied, the breather decelerates when crossing the
latter consists of adding to the velocities of the static breathelbend, but eventually recovers its initial velocity. If, on the
a perturbation of magnitude, collinear to the direction of a other hand,a <0, then the corresponding behavior is more
specific linear localized mode, namely the eigenmode corresomplex: for small values di|, the bend acts as a potential
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FIG. 9. (a) Spatial profiles of the breathers centerechatl for
a=0.5 and the same characteristics to those of Fig. 8. This solution FIG. 10. Time evolution of an unstable breather slightly per-
corresponds to the stable ground stat®. represents the Floquet turbed fora>0 (a) anda<0 (b).
eigenvalues of this solution.

well, accelerating a moving breather approaching it. How- o* Potential. C=0.26.0=0.5
ever, for larger values of the parameter, trapping and even - . - .
reflection become possible. For a hard potential, suct*as
the behaviors forr>>0 anda <0 are reversegl9]. 8
We will focus on thea> 0 case and consider, as before, a 6
chain of oscillators with(1) the Morse on-site potential, as 2 4
well as one with(2) the ¢* on-site and intersite potential. o |
Thus, for the case of the Morgeoft) potential, the bending & 2 i
will act as a potential barrier, while for thé* (hard) poten- g 0
tial, the well/trapping/reflection regimes will be examined. :Q; -2
O -4
A. Morse chain: Bend-induced potential barrier -6
As mentioned earlier, for a soft on-site potential and X
a>0, the bending acts as a potential barrier, i.e., if the trans- 10

lational energy of the breathé¢ is above a threshold value 0 20 4 60 80 100

U,, the breather crosses the bending. Otherwise, the breather Periods

is reflected. Figure 12 shows the time evolution of areflected FiG. 11. Time evolution of an unstable breather slightly per-
(top pane), a refractedmiddle pane), and that of a trapped turbed fora> 0.
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FIG. 12. Evolution of the energy centdeft) and the moving breathéright) for a Morse on-site potential with parametesg=0.8 and
C=0.13. Figurega) and(b) correspond to a reflectiqiax=0.008 andK=0.00174, (c) and(d) to a refraction«=0.008 ancK=0.001 80 and
(e) and(f) to a refraction through the site=—1 and a reflection at=1 leading to a trappingae=0.008 andK=0.003 93.
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x10°

0 0.005 0.01 0.015 0.02 . . . . .
o FIG. 14. Potential barrier experienced by the moving breather in

the chain with a Morse on-site potential, when it reaches the bend-
ing point. Parameters of the breather asg=0.8, C=0.13, andy

F_lG' 13. Dgpeqdence of the cr_itical enerk%yon a for a Morse =0.08. The thick line corresponds to the fit to E§) and the slim
on-site potential with parametess=0.8 andC=0.13. Note that for line to Eq.(6) for K=0.0018. The oscillations of the last curve are

sufficiently largea, the curve separates_in ‘W‘? pa_rts correspondingdue to the nonuniformity of the translational velocity of the
t0 Uc. andU,- (see also the relevant discussion in the text breather. Parameters of the fitting to &) are a=0.001 768,b

breather(bottom panel In the top paneffor K<U,), the = =2-7068, and=0.087 54.

breather is immediately reflected from the potential barrier,

emerging with(approximately the same speed, but propa- X. If the mass of the breather is constant, the barrier calcu-

gating in the opposite direction. In the middle panel of thelated forK <U, and K> U, should coincide, except for the

figure, it can be observed that f&r> U, the breather decel- oscillations that appear in the second case with respect to the

erates when it approaches the--1 site, and accelerates first one. The origin of these oscillations relies on the non-

when it crosses this point until it reaches the bend vertexiniformity of the instantaneous translational velocity of the

(n=0 site); it decelerates again when approaching ti¥l  preather due to the discreteness of the system. Thus, to ob-

site, accelerating when it crosses this point. tain the actual shape of the barrier, the turning point ap-
Figure 13 shows the critical energy, necessary to cross proach should be used.

the bend. An important point to indicate is the existence o However, this method can only be applied in our case for

two distinct values of the critical energ¥.., which corre- X< -1 (and hence by symmetry fot> 1) as fork < U, the

;pond, re_spectively, to the kinetic energy thre_shold for. CrOSSpreather cannot cross over to the region<A<1. In grder

ing the siten=2x1. WhenU_<Uy, holds, for intermediate 1, yercome this drawback, we have approximated the po-

vaIL_Je§ Of.U‘$K<U+’ the '055 of energy _due to phonon tential barrier created by a single inhomogeneity with a
radiation in the breather-bend interaction disallows the MOV5aussian shapeJ(X)=a ex ~b(X—X,)2], whereX, is the
0. 1 0

ing breather from crossing the bend. Hence, if the two
thresholds are different, the breather can be trapped oscill leed not be the inhomogeneity poifi8,26,30. In our bend

ing between then=-1 andn=1 sites; an example is shown : : L
) ) ; setting, there are two points where the equation is inhomo-
in the bottom panel of Fig. 12. As is naturally expected, the 9 P g

energy loss decreases wharis small(i.e., as we approach geneous with respect to the rest of the chain. He_nce, it is
the rectilinear, integer-shift invariant ché,frandUc ~U,. is natural't'o approximate thle actuall barrler with the linear su-
practically fulfilled in this parameter range, e.g., 19+ 0.01 perposition of two Gaussian barriers, i.e.,

in Fig. 13.

The potential barried =U(X) can be calculated using the
procedure described in Réfl5]: if K<U,, the value oK is
fixed andX, is the point where the breather is reflectadn- X1 = £ (1+9), (7)
ing poind, thenK=U(X,).

If, on the other handK > U,, the barrier can be calculated With & being the difference between the turning pointat

oint where the maximum of the barrier is locatgudhich

U(X) = a exd~ b(X = X_)?] + ex{~ b(X = X;)],

through the formula ~U, and the “impurity site”; e.g., for a breather launched
)\ from the left of the bendingg=X(U,)+1. Thus, Eq(7) be-
U(X):K[1—<0—> ] (6) comes
Uo

— 2 2
whereu, is the initial translational velocity of the breather ~Y(X) =28 exp(= bX)exp - b(1 + §)%JcostizbX(1 + §)].
andv(X) is its (numerically computedvelocity at the point (8)
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FIG. 15. Evolution of the energy centéeft) and the moving breathgright) for ¢* on-site and interaction potentials with parameters
wp=3 andC=0.5352.(a) and(b) correspond to a refractiofw=0.2), (c) and(d) to a trapping(«=0.5), and(e) and(f) to a reflection(«

=4),

Figure 14 shows the barrier calculated using E§sand

ports the assumption of E7).

Notice, however, that the such a restricted one-degree-of-
(8). Parameters, b, and 6 are chosen through the Gaussianfreedom picture cannot capture phenomena such as emission
fit of the barrier points fofX|> 1. Comparing the fitted pro- of radiative small amplitude waves during the crossing of the
file of Eq. (8) with the one obtained for a supercritical case bend, and consequently cannot display a phenomenology as
of K>U, indicates very good agreement, which in turn sup-rich as the original problenie.g., it cannot exhibit the
trapping-type phenomena discussed above
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well defined. In the first case, the amplitude of the vertex
excitation decreases whé increases. Due to this fact, it is
difficult to establish the borderline between those regimes. In
the second case, the breather is trapped if its translational
energy is below a threshold value. However, for energies
above this value, the bend acts as a potential well. Thus, the
trapping takes place without need of energy loss when the
breather crosses the=-1 site, that is, it occurs as long as
the translational energy is below the threshold commented
above. These facts are illustrated in Fig. 16.

VI. CONCLUSIONS

0 200 400 600 800 1000

Periods In this paper, we have introduced a discrete Klein-Gordon

chain model variant, emulating the existence of a geometric
bend at a lattice site.

We have examined the static properties of the localized in
space, time periodic solutions that exist in this setting, start-
ing from the limit where the chain is rectilinear. In the latter
case, from the integer shift invariance and numerous earlier
studies[1], we know that site-centered and bond-centered
solutions will exist and their stability can be established.
Hence, using continuation from the “straight” limit into the
“bent” regime, we are able to trace the branches of corre-
sponding solutions and identify their saddle-node bifurca-
tions leading to the termination of the corresponding
branches. However, we have also identified symmetry break-
ing effects in which one of the asymmetric branches duxs
collide with one of its neighboring counterparts to terminate

0 50 100 150 200 its existence, but rather survives throughout the bend-
Periods parameter strength continuation, and becomes the lowest en-
(b) ergy state of the lattice. Excitation of unstable bend modes in

such cases will lead to trapping aroufice., switching tg
such an asymmetric state, but in the presence of pinning
modes, moving breathers may result. Hence, we conclude
that sufficiently strong bends may favor an asymmetric lo-
calization of energy, with respect to the bend center.

FIG. 16. Evolution of the energy center forf on-site and
interaction potentials with parametapg=3, C=0.5352 and a fixed
value of =0.3. (a) corresponds to a trapping cag€=0.001 25
and(b) to a well regime(K=0.02.

B. ¢* chain: Well/trapping/reflection regimes We have also studied the dynamic properties of the inter-
For the case of a hard potential wit>0 three different ~@ction of such bends with moving localized modes, when the

(1) For small values of, the breather accelerates when Potentials, the bend operates as a potential barrier allowing
reaching the bend points, and eventually emerges from th&ansmission for supercritical and reflection for subcritical
bend recovering a constant velocityut not the same as the values of the localized excitation’s initial speed. However,
initial one due to radiative emissionsThat is, the bending there can also be narrow intervals of trappingt captured

acts as a potential well. by the potential barrier pictuyeOn the other hand, for hard
(2) For larger values ofy, the breather is trapped at the potentials, a more complex and partly initial conditipre.,
n=-1 site. kinetic energy dependent picture emerges. For small bend

(3) For even larger values af, the breather is reflected strengths, the inhomogeneity acts as a potential well, but for
and the particle at the vertex remains excited. This phenomhiigher ones it can lead to trapping and even to reflection.
enon can be also called partial trapping, since a fraction of In this numerical study, we have mainly aimed at present-
the original breather energy remains localized at the bend. ing the relevant phenomenology, classifying it for Klein-

(4) Finally, beyond a third critical point fore, the = Gordon chains with different potentials, and providing a
breather is reflected from the bend, and, in a different fashiogualitative explanation of the relevant findings. It would
to the barrier case, the breather is not refracted for anyaturally be of interest to attempt to obtain more quantita-
velocity. tive, theoretically predicted, estimates for the transitions ob-

It should be noted that the boundaries between partiaterved herein. A variational viewpoint may prove to be use-
trapping to reflection and well to trapping regimes are notful in this context.
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