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In this paper, we examine a nonlinear model with an impurity emulating a bend. We justify the geometric
interpretation of the model and connect it with earlier work on models including geometric effects. We focus
on both the bifurcation and stability analysis of the modes that emerge as a function of the strength of the bend
angle, but we also examine dynamical effects including the scattering of mobile localized modes(discrete
breathers) off of such a geometric structure. The potential outcomes of such numerical experiments(including
transmission, trapping within the bend as well as reflection) are highlighted and qualitatively explained. Such
models are of interest both theoretically in understanding the interplay of breathers with curvature, but also
practically in simple models of photonic crystals or of bent chains of DNA.
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I. INTRODUCTION

In the last decade, intrinsic localized modes(ILMs), or
discrete breathers as they are also termed, have become a
topic of intense theoretical and experimental investigation;
see, e.g., Ref.[1] for a number of recent reviews on the topic.
Per their inherent ability to bottleneck and potentially trans-
port the energy in a coherent fashion, such exponentially
localized in space and periodic in time entities have come to
be of interest in a variety of contexts. These range from
nonlinear optics and arrays of waveguides[2] to Bose-
Einstein condensates inside optical lattice potentials[3] and
from prototypical models of nonlinear springs[4] to Joseph-
son junctions[5] and dynamical models of the DNA double
strand[6].

One of the playgrounds that have most recently been
added to this long list of ILM applications consists of non-
linear photonic crystal waveguides and circuits[7]. In con-
nection to this context, an issue that becomes very relevant
(see, e.g., the models developed in Ref.[7]) is the interplay
of nonlinearity and geometry as, typically in photonic crystal
waveguide arrays, two-dimensional or quasi-one-
dimensional settings with bends[7,8] become relevant.

We should note here that the interplay of nonlinearity and
geometry has been increasingly appreciated in the ILM lit-
erature. From the long range interactions on a fixed curved
substrate[9] to lattice-substrate feedback models[10] and
from lattice junctions with different masses[11] to semicir-
cular, polymerlike chains[12] and geometrically motivated,
bent models of DNA[13–16], the geometry can significantly
affect the static(inducing, e.g., multistability) and dynamic
(causing, e.g., a variety of outcomes in the ILM interaction
with curvature) properties of the relevant lattice model.

In the present work, motivated by these studies we exam-
ine the nonlinear Klein-Gordon variant of a model intro-
duced recently in the context of the discrete nonlinear
Schrödinger equation(DNLS) in Ref. [8]. This is a proto-
typical model emulating the geometry of a lattice bend, by
the inclusion in the vicinity of the bend of next-nearest
neighbor interaction due to the proximity of these neighbors
in this context(see, e.g., Fig. 1).

We will examine this bend in the framework of a soft and
a hard Klein-Gordon interaction potential, namely the Morse
and the hardf4 potentials, respectively. Apart from the in-
herent interest of the interaction, at the static as well as dy-
namical level, of discrete breathers with the “geometric im-
purity” induced by the bend, the model may be relevant to a
number of applications. In particular, the DNLS serves as the
envelope wave equation(at the discrete level) for Maxwell’s
equation, hence, for the photonic applications, it may be of
more interest to identify the properties of the corresponding
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FIG. 1. Schematic presentation of a bend in connection with the
discrete equation(2). The parameterg stands for the bend-induced
interaction between the next-nearest neighbors(in the vicinity of
the bend), whereasC represents the nearest neighbor interaction in
the rectilinear chain.
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Klein-Gordon model. Furthermore, this may also serve as a
simple dynamical model for understanding the interaction of
a denaturation bubble in DNA[6,17] with the local helical
geometry of the double strand. This is similar in spirit to the

earlier study of Ref.[19], where the helicoidal geometry was
argued to induce a non-nearest neighbor interaction across
the double strand. Notice, also, that we follow a slightly
different path than Ref.[8], by examining not only static but
also dynamic properties of the model and, in particular, the
potential outcomes of the breather-bend interaction.

In the following section, we will present the model equa-
tion of interest, while in Sec. III, we will study its linear
modes. In Sec. IV, we will examine the static properties of
the two models, by examining the bifurcations of breathing
modes as a function of the “bend parameter”g. In Sec. V, the
corresponding dynamics properties of the breather-bend in-
teraction will be presented. Finally, in Sec. VI, we summa-
rize our findings and present our conclusions.

FIG. 2. (a) Linear mode spectrum with respect to the bending
parametera=g /C for a coupling constantC=0.20.(b,c) Profile of
the impurity mode fora.0 (b) or a,0 (c) and uau=2.5. Note that
the localization of the impurity modes is non-negligible only for
high values ofa.

FIG. 3. Bifurcation diagram for the solutions with a Morse on-
site potential. The energy of the breathers is plotted as a function of
the bending parametera=g /C. The coupling constant isC=0.13
(top) or C=0.26 (bottom). The numbers indicate the site where the
solutions are centered; an integer number corresponds to a site-
centered solution, whereas a half-integer number corresponds to a
bond-centered solution. Stable solutions(for an infinite system) are
represented by full lines whereas unstable solutions are represented
by dashed lines.
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II. THE MODEL

In accordance with the above description, the Hamiltonian
of the Klein-Gordon chains of interest will be given by

H = o
n
S1

2
u̇n + Vsund +

C

2
sun+1 − und2 +

g

2
sun+1 − un−1d2dn,0D ,

s1d

thus the bending point is located at the particlen=0 and
implies, as is graphically indicated in Fig. 1, a geometrically
induced coupling of next-nearest neighbors(NNN) adjacent
to the bend site.

We should clarify here the nature of the configuration and
of the dynamics. The displacementsun represent an “exter-
nal” field such as, e.g., the electric field in an array of optical
waveguides or the stretching of a base pair in a DNA chain
[6]. The chain of Fig. 1 should be considered as being geo-
metrically fixedon the plane of the paper. The dynamics of
the displacements is transverse, i.e., perpendicular to the
plane of the bent chain. In such a setting the coefficient of
the interaction between adjacent sites is determined by the
(fixed) geometric proximity of the nodes constituting the

chain. For a derivation of the discrete model in the first set-
ting and an explanation of the dependence of the interaction
coefficient on the geometry of the configuration and the in-
ternodal distance, see, e.g., Ref.[18]. In this context, it is
natural to assume that the effect of the bend(due to the
geometric proximity of sitesn=1 andn=−1) will be to in-
duce the NNN coupling between them(cf. Ref. [18]).

Vsud is the on-site potential which is chosen to be of the
(soft) Morse type,Vsud=fexps−ud−1g2/2, or of the(hard) f4

type, Vsud=x2/2+x4/4; C is a coupling constant between
nearest neighbors(NN) whose interaction will be harmonic
(i.e., connected by linear springs) for the purposes of the
present work.

From the Hamiltonian(1), the following dynamical equa-
tions can be obtained:

ün + V8sund + Csun+1 + un−1 − 2und + gfsun − un−2ddn,1

+ sun − un+2ddn,−1g = 0. s2d

A natural bifurcation/continuation parameter that we will use
for the purposes of our study isa;g /C. The relevant ratio is
a natural measure of the relative strength of the different
neighbor interactions(the bend-based NNN one and the uni-

FIG. 4. Spatial profiles of the breathers centered atn=0 (a), n=0.5 (b), n=1 (c), andn=1.5 (d) for a=0.0005. The results correspond to
a chain of oscillators with an on-site Morse potential with parametersvb=0.8 andC=0.26.
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formly distributed NN one). This ratio can also be interpreted
geometrically(in the spirit of Fig. 1). In particular, it can be
related to the wedge anglef through the relationa
=1/(2f1−cossfdg). For the NNN approximation to be real-
istic, f must be larger than 60°, hence, equivalently,a,1.
Notice that while the geometric interpretation of the moment
prompts us to typically examine the regime ofaP s0,1g, it is
of inherent mathematical interest to examine broader param-
eter ranges, and therefore some of our results below will be
presented for values ofa outside this range.

III. LINEAR MODES

Some of the properties of discrete breathers are related to
the existence or nonexistence of linear localized modes.
These modes appear as the bend is introduced by modifying
the coupling, which is effectively equivalent to the introduc-
tion of an inhomogeneity in the curvature at the bottom of
the intersite potential[20].

The linear modes can be obtained from the linearized
form (around the uniform stateun=0) of the dynamical equa-
tions (2):

ün + vo
2un + Cs2un − un−1 − un+1d + gfsun − un−2ddn,1

+ sun − un+2ddn,−1g = 0, s3d

with vo
2=1. The linear modes can be calculated using the

lattice Green’s function[21,22]. The frequency of the local-
ized linear modes(also referred to asimpurity modes) is thus
given by

vimp
2 = vo

2 +
Cs2a + 1d2

2a
= vo

2 +
s2g + Cd2

2g
, s4d

and the inhomogeneity parameter is related to the frequency
of the impurity modes through the relation

FIG. 5. Evolution with respect to the coupling constant of the Floquet multiplier argumentsu (left) and the modulus of the Floquet
multipliers (right) for a one-site(top) and a two-site(bottom) breather with Morse on-site potential with frequencyvb=0.8. The one-site
breather is stable forCP s0,0.1297d and for CP s0.2382,0.4d it recovers its stability except for size-dependent instability bubbles via
oscillatory and subharmonic bifurcations. The 2-site breather is stable forCP s0.1300,0.2381d.
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a =
vimp

2 − vo
2 − 2C ± Îsvimp

2 − vo
2dsvimp

2 − vo
2 − 4Cd

4C
, s5d

where the plus sign corresponds tovimp
2 .vo

2+4C and the
minus sign tovimp,vo.

Figure 2 shows the frequencies of the linear modes as a
function of a=g /C and the profile of the impurity modes. It
can be observed that, forg.0, the impurity mode is above
the phonon band and, in consequence, has a zigzag vibra-
tional pattern(i.e., a staggered mode). If g,0, the mode is
below the band and its sites oscillate in phase[20]. It is
worth remarking that the impurity modes are antisymmetric
modes whose central lattice site is at rest.

IV. STATIC RESULTS: STATIONARY BREATHERS AND
THEIR BIFURCATIONS

Discrete breathers can be calculated using well-known
techniques based on the concept of continuation from the

anticontinuous limit[23]. Furthermore, since the bending
acts as an inhomogeneity, the system has lost its integer shift
invariance and the properties of the breathers critically de-
pend on the site where their center is located(at g=0). This
fact leads to the existence of saddle-node bifurcations
through which some of the solutions can disappear. Similar
bifurcations have been previously observed in bent chains of
oscillators [13,14]. This has also been the main focus, for
DNLS-type settings, of Ref.[8].

These bifurcations need a relatively high value of the cou-
pling (sufficient cross talk between the neighboring sites) to
be observed. Otherwise, breather solutions will exist for very
large intervals ofg in every site of the lattice. Hence we
restrict ourselves toC’s of the order of(typically) 0.1 to
render these bifurcations tractable.

We now proceed to examine the bifurcation diagrams(as
a function ofa) for both soft and hard on-site potentials and
a harmonic intersite potential.

A. Morse potential

Figure 3 shows the bifurcation diagrams for the case of a
Morse on-site potential and couplingsC=0.13 andC=0.26
and frequencyvb=0.8, and Fig. 4 shows the spatial profile of
the solutions corresponding to a number of branches fora
=0.0005.

For C=0.13, the branch corresponding to the breathers
centered atn=0 merges with the breathers originally cen-
tered atn=0.5 ata<0.001 15. The branches centered atn
=1.5 andn=2 disappear through a saddle-node bifurcation at
a<0.000 57. This phenomenon is also observed for the
branches centered atn=2.5 andn=3 at a<0.006 74. For
a,0 the annihilations are observed between different
branches of solutions. In particular, the branches centered at
n=0.5 andn=1 annihilate ata<−0.000 49 and the ones
centered atn=2 andn=2.5 cease to exist through the saddle-
node bifurcation occurring ata<−0.001 20. It should, how-
ever, be noted that some branches(see, e.g., the branch cen-
tered atn=1 for a.0 or the one centeredn=−1.5 fora,0)
never annihilate. It is also interesting to note that all of these
branches of solutions are unstable, as both site-centered and
bond-centered breathers are unstable in the straight chain(for
this value of the NN coupling). However, the branch result-
ing when the centered atn=0 andn=0.5 merge is stable.

The branch centered atn=1.5 becomes stable fora
&0.002. This change of stability has its origin in a pair of
Floquet multipliers that collide in the unit circle atl=1.
Notice that this behavior, unlike the typical branches dis-
cussed above, does not involve a saddle-node bifurcation(or
for that matter an exchange of stability with another static
breather branch).

For C=0.26 the saddle-node bifurcations occur between
different solutions from the case considered above. For
a.0, the branches centered atn=0.5 andn=1 collide and
disappear ata<0.000 72; the branches centered atn=2 and
n=2.5 cease to exist ata<0.001 06 while the ones centered
at n=3 and n=3.5 terminate ata<0.003 42. The branch
centered atn=0 merges with the branch centered atn=0.5
for a,0 and in particular fora<−0.001 87.

FIG. 6. (a) Spatial profiles of the breathers centered atn=1 for
a=−0.003 and the same characteristics to those of Figure 4.(a)
shows the spatial profile of unstable solution;(b) represents the
Floquet multipliers corresponding to this state. The instabilities that
can be appreciated nearu=p are due to the collision of extended
eigenmodes and disappear in the case of an infinite lattice.
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In addition, the branches centered atn=1.5 andn=2 an-
nihilate ata<−0.002 04 and the ones centered atn=2.5 and
n=3 collide ata<−0.001 57. It is interesting to observe that
similarly to what was found in Ref.[8], in a different setting,
there is an asymmetric mode that persists fora,0, whose
energy is lower than the symmetric bend mode. Hence, for
a,0 in this case, we observe a symmetry breaking effect
that leads to an asymmetric ground state of the system. No-
tice that similar asymmetric modes can be found(and iden-
tified to be potentially stable) in continuum models with lo-
calized impurities; see, e.g., Ref.[24].

It should be noted here that for this larger value of the
coupling, the branches corresponding to site-centered solu-
tions are stable for an infinite lattice, whereas the bond-
centered solutions are unstable for the rectilinear chain. This
stability is inherited by the branches of the bent chain. Mo-
tivated by the change of stability at the “unbent” limitsg
=0d, occurring as a function ofC (e.g., notice above the
different stability of this limit forC=0.13 andC=0.26), we
briefly study the stability of the rectilinear chain limit, as a
function of C. To illustrate the stability of the one-site and
two-site modes in the rectilinear chain(discussed in part in
Ref. [16]), we examine their Floquet multipliers, both by
means of the argument angles as well as giving their absolute
values in Fig. 5. Notice, in particular, for the one-site modes
that there are two inversions of stability, namely one atC
<0.1297 and another forC<0.2382. ForC.0.2382, the
one-site modes are stable but with interspersed size-
dependent windows of instability(see, e.g., Refs.[25–27]).

Finally, let us mention that the branch that originates by
the merging of then=0 and n=0.5 branches is unstable.
Figure 6 shows an example of the spatial profile and the
Floquet eigenvalues of an unstable state fora,0, namely a

breather(originally) centered aroundn=1. Notice however
that the instability in this case is a result of the finite size of
the lattice.

B. f4 potential

The most significant difference of thef4 case with respect
to the Morse one is that in the former(i.e., for a hard poten-
tial), the breathers bifurcate from the top of the continuous
spectrum and as a result the corresponding spatial profiles
are staggered[1]. Hence, in this case the main solutions of
interest are one-site or two-site breathers with the adjacent
sites oscillating in antiphase.

The hardf4 potential has been considered with a cou-
pling constantC=0.09 and solutions with frequencyvb
=1.2. For these parameter values(notice thatC is compa-
rable to the values used in Fig. 3), the saddle-node bifurca-
tions of interest occur at considerably larger values ofa for
the present model in comparison to the Morse case; see, e.g.,
Fig. 7. In particular, the branch of the on-site breathers cen-
tered atn=0 merges with the intersite branch centered atn
=0.5 ata<0.516. Similarly, the on-site solutions centered at
n=2 andn=3 collide(and disappear) with the corresponding
intersite ones centered atn=1.5 andn=2.5 ata<0.258 and
a<0.590, respectively. However, in this case, the branch
centered atn=1 becomes the asymmetric, lowest energy,
stable ground state that persists for any value ofa. Fora,0,
the on-site breathers centered atn=1 annihilate with the in-
tersite ones centered atn=0.5 ata<−0.255. Notice that here
also on-site solutions are stable, while intersite ones are un-
stable forg=0, but the branch emerging from then=0 and
n=0.5 is unstable.

Some of the breather solutions fora=0.1 are shown in
Fig. 8 and the profile of the ground state fora.0 together
with its Floquet eigenvalues in Fig. 9.

C. Instabilities: Switching and breather mobility

As explained above, the ground state is not always the
breather centered atn=0. In particular, for a Morse potential,
C=0.26,vb=0.8 anduau large enough, the ground state for
a,0 is the breather centered atn=1 (at least in the infinite
domain limit, since in the finite domain case, it may be un-
stable as shown in Fig. 6). On the other hand, fora.0 the
ground state is still the breather atn=0. Thus, if an unstable
solution (say, then=0 centered fora,0 or then=1.5 for
a.0) is perturbed, it is likely toswitch to the ground state,
in a similar fashion to the phenomenon observed in Ref.
[13]. However, as Fig. 10 shows, this may not always be the
case. In particular, the breather oscillates between the sites
n=0 and n=3.5 (i.e., in the vicinity of the stable ground
state) for a,0, while for a.0, it is set in motion. A pos-
sible explanation relies on the fact that the eigenmode lead-
ing to the instability is actually a pinning mode, which is
responsible for breather mobility(see also Sec. V). Hence a
perturbation with the appropriate sign(i.e., causing the
breather to move away from the ground state ofn=0 rather
than toward it) along this eigendirection can lead to breather
motion.

FIG. 7. Bifurcation diagram for the solutions with af4 on-site
potential. The energy of the breathers is plotted as a function of the
bending parametera=g /C. The numbers indicate the site where the
solutions are centered; the half-integer numbers actually correspond
to two-site breathers, but the notation has been kept in consonance
with Fig. 3. Stable solutions are represented by full lines whereas
unstable solutions are represented by dashed lines.
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For af4 potential,C=0.09,vb=1.2, anduau large enough,
the ground state fora.0 is the breather centered atn=1,
while for a,0, it is not well defined.

Figure 11 shows the evolution of a two-site breather cen-
tered atn=2 with a=0.5. It is observed that the breather can
switch to the one-site breather centered atn=1, i.e., the
ground state. In this case, no moving localized excitations
arise, but rather the previously suggested switch occurs. This
may be attributed to the fact that for the hardf4 potential,
there do not exist pinning modes that could potentially lead
to breather mobility(see also Ref.[28]).

V. DYNAMIC RESULTS: MOVING BREATHERS AND
BREATHER-BEND INTERACTIONS

In this section we examine how the local geometry of the
bend can influence the motion of a breather in its vicinity. In
particular, the moving breathers are launched towards the
bend vertex following the marginal mode method[28]. The
latter consists of adding to the velocities of the static breather
a perturbation of magnitudel, collinear to the direction of a
specific linear localized mode, namely the eigenmode corre-

sponding to translation. Then, the kinetic(translational) en-
ergy of the breather can be defined asK=l2/2. As Ref.[15]
shows, the moving breather can be described as a quasipar-
ticle of mass m* defined through the relationK=l2/2
=m*v2/2, with v being the translational velocity of the
breather. The mass is a measure of the inertia of the breather
to external forces.

Another useful concept for our study is the breather en-
ergy center, which is a measure of the position of the local-
ized structure. It is defined through the relationX
=sonnend /E, i.e., as the center of mass with respect toen, the
energy density at thenth site.E=onen is the total energy of
the breather[16].

The local “coupling inhomogeneity” induced by the bend
should result in features similar to those observed in Ref.
[20]. In particular, for a soft potential, ifa.0, the bending
should act, in principle(see also below), as a potential bar-
rier, i.e., the breather can cross the vertex as long as its
translational energy is above a threshold value. If this condi-
tion is satisfied, the breather decelerates when crossing the
bend, but eventually recovers its initial velocity. If, on the
other hand,a,0, then the corresponding behavior is more
complex: for small values ofuau, the bend acts as a potential

FIG. 8. Spatial profiles of the breathers centered atn=0 (a), n=0.5 (b), n=1 (c) andn=1.5 (d) for a=0.1. The results correspond to a
chain of oscillators with an on-sitef4 potential with breather frequencyvb=1.2 and coupling constantC=0.09.
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well, accelerating a moving breather approaching it. How-
ever, for larger values of the parameter, trapping and even
reflection become possible. For a hard potential, such asf4,
the behaviors fora.0 anda,0 are reversed[29].

We will focus on thea.0 case and consider, as before, a
chain of oscillators with(1) the Morse on-site potential, as
well as one with(2) the f4 on-site and intersite potential.
Thus, for the case of the Morse(soft) potential, the bending
will act as a potential barrier, while for thef4 (hard) poten-
tial, the well/trapping/reflection regimes will be examined.

A. Morse chain: Bend-induced potential barrier

As mentioned earlier, for a soft on-site potential and
a.0, the bending acts as a potential barrier, i.e., if the trans-
lational energy of the breatherK is above a threshold value
Uc, the breather crosses the bending. Otherwise, the breather
is reflected. Figure 12 shows the time evolution of a reflected
(top panel), a refracted(middle panel), and that of a trapped

FIG. 9. (a) Spatial profiles of the breathers centered atn=1 for
a=0.5 and the same characteristics to those of Fig. 8. This solution
corresponds to the stable ground state.(b) represents the Floquet
eigenvalues of this solution.

FIG. 10. Time evolution of an unstable breather slightly per-
turbed fora.0 (a) anda,0 (b).

FIG. 11. Time evolution of an unstable breather slightly per-
turbed fora.0.
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FIG. 12. Evolution of the energy center(left) and the moving breather(right) for a Morse on-site potential with parametersvb=0.8 and
C=0.13. Figures(a) and(b) correspond to a reflection(a=0.008 andK=0.00174), (c) and(d) to a refraction(a=0.008 andK=0.001 80) and
(e) and (f) to a refraction through the siten=−1 and a reflection atn=1 leading to a trapping(a=0.008 andK=0.003 92).
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breather(bottom panel). In the top panel(for K,Uc), the
breather is immediately reflected from the potential barrier,
emerging with(approximately) the same speed, but propa-
gating in the opposite direction. In the middle panel of the
figure, it can be observed that forK.Uc the breather decel-
erates when it approaches then=−1 site, and accelerates
when it crosses this point until it reaches the bend vertex
(n=0 site); it decelerates again when approaching then=1
site, accelerating when it crosses this point.

Figure 13 shows the critical energyUc necessary to cross
the bend. An important point to indicate is the existence of
two distinct values of the critical energyUc±, which corre-
spond, respectively, to the kinetic energy threshold for cross-
ing the siten= ±1. WhenUc−,Uc+ holds, for intermediate
values of U−øK,U+, the loss of energy due to phonon
radiation in the breather-bend interaction disallows the mov-
ing breather from crossing the bend. Hence, if the two
thresholds are different, the breather can be trapped oscillat-
ing between then=−1 andn=1 sites; an example is shown
in the bottom panel of Fig. 12. As is naturally expected, the
energy loss decreases whena is small (i.e., as we approach
the rectilinear, integer-shift invariant chain), andUc−=Uc+ is
practically fulfilled in this parameter range, e.g., fora,0.01
in Fig. 13.

The potential barrierU=UsXd can be calculated using the
procedure described in Ref.[15]: if K,Uc, the value ofK is
fixed andXo is the point where the breather is reflected(turn-
ing point), thenK=UsXod.

If, on the other hand,K.Uc, the barrier can be calculated
through the formula

UsXd = KF1 −SvsXd
vo

D2G , s6d

wherevo is the initial translational velocity of the breather
andvsXd is its (numerically computed) velocity at the point

X. If the mass of the breather is constant, the barrier calcu-
lated forK,Uc andK.Uc should coincide, except for the
oscillations that appear in the second case with respect to the
first one. The origin of these oscillations relies on the non-
uniformity of the instantaneous translational velocity of the
breather due to the discreteness of the system. Thus, to ob-
tain the actual shape of the barrier, the turning point ap-
proach should be used.

However, this method can only be applied in our case for
X,−1 (and hence by symmetry forX.1) as forK,Uc, the
breather cannot cross over to the region −1,X,1. In order
to overcome this drawback, we have approximated the po-
tential barrier created by a single inhomogeneity with a
Gaussian shape:UsXd=a expf−bsX−Xod2g, whereXo is the
point where the maximum of the barrier is located(which
need not be the inhomogeneity point) [8,26,30]. In our bend
setting, there are two points where the equation is inhomo-
geneous with respect to the rest of the chain. Hence, it is
natural to approximate the actual barrier with the linear su-
perposition of two Gaussian barriers, i.e.,

UsXd = a expf− bsX − X−1d2g + expf− bsX − X1d2g,

x±1 = ± s1 + dd, s7d

with d being the difference between the turning point atK
<Uc and the “impurity site”; e.g., for a breather launched
from the left of the bending,d=XsUcd+1. Thus, Eq.(7) be-
comes

UsXd = 2a exps− bX2dexpf− bs1 + dd2gcoshf2bXs1 + ddg.

s8d

FIG. 13. Dependence of the critical energyUc on a for a Morse
on-site potential with parametersvb=0.8 andC=0.13. Note that for
sufficiently largea, the curve separates in two parts corresponding
to Uc+ andUc− (see also the relevant discussion in the text).

FIG. 14. Potential barrier experienced by the moving breather in
the chain with a Morse on-site potential, when it reaches the bend-
ing point. Parameters of the breather arevb=0.8, C=0.13, andg
=0.08. The thick line corresponds to the fit to Eq.(8) and the slim
line to Eq.(6) for K=0.0018. The oscillations of the last curve are
due to the nonuniformity of the translational velocity of the
breather. Parameters of the fitting to Eq.(8) are a=0.001 768,b
=2.7068, andd=0.087 54.
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Figure 14 shows the barrier calculated using Eqs.(6) and
(8). Parametersa, b, andd are chosen through the Gaussian
fit of the barrier points foruXu.1. Comparing the fitted pro-
file of Eq. (8) with the one obtained for a supercritical case
of K.Uc indicates very good agreement, which in turn sup-
ports the assumption of Eq.(7).

Notice, however, that the such a restricted one-degree-of-
freedom picture cannot capture phenomena such as emission
of radiative small amplitude waves during the crossing of the
bend, and consequently cannot display a phenomenology as
rich as the original problem(e.g., it cannot exhibit the
trapping-type phenomena discussed above).

FIG. 15. Evolution of the energy center(left) and the moving breather(right) for f4 on-site and interaction potentials with parameters
vb=3 andC=0.5352.(a) and (b) correspond to a refractionsa=0.2d, (c) and (d) to a trappingsa=0.5d, and(e) and (f) to a reflectionsa
=4d.
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B. f4 chain: Well/trapping/reflection regimes

For the case of a hard potential witha.0 three different
behaviors can be observed whena increases(see Fig. 15).

(1) For small values ofa, the breather accelerates when
reaching the bend points, and eventually emerges from the
bend recovering a constant velocity(but not the same as the
initial one due to radiative emissions). That is, the bending
acts as a potential well.

(2) For larger values ofa, the breather is trapped at the
n=−1 site.

(3) For even larger values ofa, the breather is reflected
and the particle at the vertex remains excited. This phenom-
enon can be also called partial trapping, since a fraction of
the original breather energy remains localized at the bend.

(4) Finally, beyond a third critical point fora, the
breather is reflected from the bend, and, in a different fashion
to the barrier case, the breather is not refracted for any
velocity.

It should be noted that the boundaries between partial
trapping to reflection and well to trapping regimes are not

well defined. In the first case, the amplitude of the vertex
excitation decreases whenuau increases. Due to this fact, it is
difficult to establish the borderline between those regimes. In
the second case, the breather is trapped if its translational
energy is below a threshold value. However, for energies
above this value, the bend acts as a potential well. Thus, the
trapping takes place without need of energy loss when the
breather crosses then=−1 site, that is, it occurs as long as
the translational energy is below the threshold commented
above. These facts are illustrated in Fig. 16.

VI. CONCLUSIONS

In this paper, we have introduced a discrete Klein-Gordon
chain model variant, emulating the existence of a geometric
bend at a lattice site.

We have examined the static properties of the localized in
space, time periodic solutions that exist in this setting, start-
ing from the limit where the chain is rectilinear. In the latter
case, from the integer shift invariance and numerous earlier
studies[1], we know that site-centered and bond-centered
solutions will exist and their stability can be established.
Hence, using continuation from the “straight” limit into the
“bent” regime, we are able to trace the branches of corre-
sponding solutions and identify their saddle-node bifurca-
tions leading to the termination of the corresponding
branches. However, we have also identified symmetry break-
ing effects in which one of the asymmetric branches doesnot
collide with one of its neighboring counterparts to terminate
its existence, but rather survives throughout the bend-
parameter strength continuation, and becomes the lowest en-
ergy state of the lattice. Excitation of unstable bend modes in
such cases will lead to trapping around(i.e., switching to)
such an asymmetric state, but in the presence of pinning
modes, moving breathers may result. Hence, we conclude
that sufficiently strong bends may favor an asymmetric lo-
calization of energy, with respect to the bend center.

We have also studied the dynamic properties of the inter-
action of such bends with moving localized modes, when the
latter are scattered off of a bend. We have found that for soft
potentials, the bend operates as a potential barrier allowing
transmission for supercritical and reflection for subcritical
values of the localized excitation’s initial speed. However,
there can also be narrow intervals of trapping(not captured
by the potential barrier picture). On the other hand, for hard
potentials, a more complex and partly initial condition(i.e.,
kinetic energy) dependent picture emerges. For small bend
strengths, the inhomogeneity acts as a potential well, but for
higher ones it can lead to trapping and even to reflection.

In this numerical study, we have mainly aimed at present-
ing the relevant phenomenology, classifying it for Klein-
Gordon chains with different potentials, and providing a
qualitative explanation of the relevant findings. It would
naturally be of interest to attempt to obtain more quantita-
tive, theoretically predicted, estimates for the transitions ob-
served herein. A variational viewpoint may prove to be use-
ful in this context.

FIG. 16. Evolution of the energy center for af4 on-site and
interaction potentials with parametersvb=3, C=0.5352 and a fixed
value of a=0.3. (a) corresponds to a trapping casesK=0.001 25d
and (b) to a well regimesK=0.02d.
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