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We demonstrate that time-periodic modulation of the nonlinearity coefficient in the discrete nonlinear
Schrödinger equation strongly facilitates creation of traveling solitons in the lattice. We predict this possibility
in a semiqualitative form analytically, and test it in direct numerical simulations. Systematic computations
reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation,
and on the initial thrust which sets the soliton in motion. These regimes include irregular motion of the soliton,
regular motion of a decaying one, and regular motion of a stable soliton. The motion may occur in both the
straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long
simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving indefi-
nitely long without any visible loss. Velocities of moving stable solitons are in good agreement with the
analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton
through the periodic lattice. The generic dynamical regimes are mapped in the model’s parameter space.
Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different
outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model
can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice.
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I. INTRODUCTION

The discrete nonlinear Schrödinger �DNLS� equation is a
well-known model of nonlinear lattice dynamics, which al-
lows to study many generic features of nonintegrable dynam-
ics �1�. This equation also finds direct applications to arrays
of nonlinear optical waveguides �as it was predicted long ago
�2� and demonstrated in detail more recently, see Refs. �3�
and references therein�, and to arrays of droplets in Bose-
Einstein condensates �BECs� trapped in a very deep optical
lattice �4�.

In all these contexts, discrete solitons are fundamental
dynamical excitations supported by the DNLS equation. The
dynamics of standing solitons, pinned by the underlying
lattice, is understood quite well, in terms of both numerical
simulations and analytical approximations, the most general
one being based on the variational method �5�. However,
moving discrete solitons pose a much more complex issue
�6,7�. While, strictly speaking, exact solutions for moving
solitons should not exist because of the radiation loss, direct
simulations indicate that a soliton may move freely if its
“mass” �quadratic norm� does not exceed a certain critical
value �7�. In the quasicontinuum approximation, the source
of the braking force acting on the moving soliton is the
effective Peierls-Nabarro �PN� potential induced by the
lattice �8�.

In the case of the DNLS equation describing an array of
nearly isolated droplets of a BEC in a deep optical lattice, an
interesting possibility is to apply the ac Feshbach-resonance
management �FRM� to it, as it was recently proposed in Ref.
�9�. FRM may be induced by an external ac magnetic field,
which periodically �in time� changes the sign of the nonlin-

earity by dint of the Feshbach resonance affecting collisions
between atoms �for a one-dimensional BEC without the
optical lattice, the concept of FRM was elaborated in
Ref. �10��.

In this work, our aim is to demonstrate that the FRM,
applied to the DNLS model, can strongly facilitate the mo-
tion of discrete solitons, which is a notable dynamical effect
in the discrete systems �Ref. �9� was only dealing with stand-
ing ones�. The corresponding DNLS equation is

iu̇n + un+1 + un−1 − 2un + g�t��un�2un = 0, �1�

where un�t� are the BEC wave functions at the lattice sites,
and the real time-dependent nonlinear coefficient, propor-
tional to the scattering length of the interatomic collisions
�with the sign minus�, is

g�t� = gdc + gac sin��t� . �2�

Note that gdc can be always chosen positive, because Eq. �1�
with gdc�0 can be transformed into that with gdc�0 by
means of the so-called staggering transformation

un�t� � �− 1�ne−4itũn�t� . �3�

The subsequent presentation is structured as follows: In
Sec. II, using a Gaussian approximation for the soliton, we
present an analytical estimate of the effective PN potential
for the moving discrete soliton. The estimate suggests that
the ac modulation of g�t� may indeed help to suppress the PN
potential, and thus facilitate free motion of discrete solitons.
In Sec. III, we display results of systematic simulations,
summarized in the form of diagrams in the parameter plane
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�� ,gac�. The diagrams feature several generic dynamical re-
gimes, including a large area of stable progressive motion.
Collisions between solitons moving in opposite directions
are briefly considered too, with a conclusion that they
bounce from each other, sometimes featuring mass transfer
between the solitons. Diverse dynamical regimes predicted
in this work suggest straightforward possibilities for new ex-
periments in BECs trapped in deep optical lattices, as dis-
cussed in the concluding Sec. IV which summarizes the find-
ings reported in this paper.

II. ANALYTICAL APPROXIMATION

The continuum limit suggests the following ansatz for a
moving soliton �11�,

uans�n,t� = A exp�− a�n − ��t��2 + i��t� + �i/2��̇n

− �i/4� � ��̇�t��2dt	 , �4�

where A, a, ��t�, and � are, respectively, the amplitude,
squared inverse width, center position, and phase of the soli-

ton. Accordingly, �̇ is the soliton’s velocity, �̇ /2 simulta-
neously being the wave number of the wave field carrying
the moving soliton. For the soliton in the continuum NLS
equation, the variational approximation yields the following
relations:

�̇ = 3a, A2 = 4
2a/g , �5�

if g=const�0. In Eqs. �5�, a is regarded as an arbitrary
positive constant �intrinsic parameter of the soliton family�.

The only approximation which can produce a tractable
result assumes a quasicontinuum ansatz for the soliton in the
discrete system. Following this approach, we use the Hamil-
tonian corresponding to the DNLS equation �1�:

H = �
n=−�

+� �2�un�2 − �un
*un+1 + unun+1

* � −
g

2
�un�4	 , �6�

the asterisk standing for the complex conjugation, and sub-
stituting into it the ansatz �4�. This way, the potential of the
soliton-lattice interaction is obtained in the form of a Fourier

series, H�� , �̇�=�m=0
� Hm��̇�cos�2�m��. In the case of a broad

soliton, for which the ansatz �4� is relevant �or, in a more
general case, just to have the approximation in a tractable
form�, we keep only the lowest harmonic �m=1� in this ex-
pression, which is nothing else but the PN potential UPN.
After some straightforward algebra �using the Poisson sum-
mation formula�, we thus find

UPN��, �̇� =
1

2

�

a
A2 exp�−

�2

4a
	�4
2 exp�−

�2

4a
	

	�1 + e−a/2 cos��̇/2�� − gA2
�

a
cos�2��� .

�7�

A noteworthy feature in this estimate, in comparison with

known perturbative results for static solitons �8�, is
the dependence on the potential’s amplitude on the soliton’s

velocity, �̇.
If the relation between a and A2 for the soliton in the

continuum NLS equation, as given by Eq. �5��for constant
g�, is substituted in Eq. �7�, the coefficient in front of
cos�2���, i.e., the amplitude of the PN potential, never van-
ishes. However, it may vanish if the underlying pulse �4� is
considered not as a soliton, but just as a pulse with indepen-
dent amplitude and inverse-width parameters A2 and a; then,
the condition of the vanishing of the PN potential determines

a discrete spectrum of the velocities �̇, in the form

1 + exp�− a/2�cos��̇/2� = �gA2/4�
�/�2a� exp��2/�4a�� ,

�8�

provided that gA2 is small enough to make the right-hand
side of Eq. �8� smaller than 2 �this caveat is essential, as the
factor exp��2 / �4a�� may be exponentially large�.

In this work, however, our objective is not to verify this
possibility, but rather to consider the case when the nonlinear
coefficient g is a function of time, as defined in Eq. �2�. Note

FIG. 1. Position of the center of mass X as a function of time for
a typical example of a dynamical regime in which �a� the soliton
remains pinned �gac=0.03, �=1, and q=0.5� and �b� the soliton
develops an irregular motion �gac=0.065, �=1, and q=0.5�.
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that, for a broad soliton �small a�, the PN potential barrier is
exponentially small, hence the soliton’s kinetic energy may
be much larger than the potential. This implies that the ve-
locity of the soliton moving through the potential �7� with
the period L=1 contains a constant �dc� part and a small ac

correction to it, with the frequency 2��̇0 /L�2��̇0 �12�,

�̇�t� � �̇0 + �̇1 cos�2��̇0t�, �̇1
2 
 �̇0

2. �9�

Then, substituting the expression �9� into the condition �8�,
which provides for the suppression of the PN potential, one
can expand its left-hand side,

1 + exp�− a/2�cos��̇/2� � 1 + exp�− a/2��cos��̇0/2�

− ��̇1/2�sin��̇0/2�cos�2��̇0t�� .

�10�

Now, inserting the variable g�t� from Eq. �2� into the right-
hand side of Eq. �8�, it is obvious that gdc and gac can be
chosen so as to secure this equation to hold, provided that the

average soliton’s velocity takes the resonant value, �̇0
=� /2�. More generally, due to anharmonic effects, one may
expect the existence of a spectrum of the resonant velocities,

�̇0 = �cres�N
�M� �

M�

2�N
, �11�

with integers M and N.
Actually, an ac drive can support stable progressive mo-

tion of solitons at the resonant velocities �11� �assuming the
spatial period L=1�, even in the presence of dissipation, in a
broad class of systems. This effect was first predicted for
discrete systems �of the Toda-lattice and Frenkel-Kontorova
types� in Ref. �13�, and demonstrated experimentally in an
LC electric transmission line in Ref. �14�. Later, the same
effect was predicted �15� and demonstrated experimentally
�16� in continuous long Josephson junctions with a spatially
periodic inhomogeneity. However, a qualitative difference of
the present prediction is that it applies to nontopological soli-
tons, while all the previously known examples involved
kinks, i.e., discrete of continuum solitons whose topological
charge directly couples to the driving field �this is why the
above approximation, even if it is a crude one, is relevant, as
the relation �11�, established for the ac-driven kinks, cannot
be immediately applied to nontopological solitons�. The only
example similar to what is suggested here in the context of
nontopological solitons that we are aware of, was reported in
Ref. �17� �the model involved spatially uniform dissipation
and an ac drive localized in space�. Note also that the mecha-
nism of the ac-driven motion considered here is different
from that in ratchet systems �see, e.g., Ref. �18� and refer-

FIG. 2. An example of asymmetric splitting of the soliton, for
gac=0.196, �=0.5, and q=0.5. Panel �a� shows the position of two
local density maxima corresponding to the secondary solitons
�splinters�, and panel �b� shows the global evolution of the lattice
field.

FIG. 3. A generic example of the progressive motion of a de-
caying soliton in the straight direction, for gac=0.206, �=0.5, and
q=0.5.
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ences therein�, as the DNLS equation does not break the
mirror symmetry, n�−n.

III. NUMERICAL RESULTS

We now proceed to direct simulations of the system dis-
cussing some of the relevant theoretical predictions in light
of the numerical results. We integrate Eq. �1� with an initial
configuration in the form of a standing-soliton solution for
gac=0. This solution has the form of un�t�=vn exp�i�t�, with
the real field vn obeying the equation

�vn = vn+1 + vn−1 − 2vn + gdcvn
3. �12�

Equation �12� was solved by means of well-known methods
�starting from the anticontinuum limit�. Then, to set the soli-
ton in motion, it was given a lattice momentum q, so that the
initial condition was

un�0� = vn exp�inq/2� . �13�

Equation �13� implies that the soliton will move to the right
if q�0.

The results will be displayed for gdc=1, �=1, and three
different values of the initial thrust, q=0.25, q=0.5, and q
=1, as these cases were found to represent a generic situation
in the plane of the ac-drive’s parameters �� ,gac�. Simulations
were run in the time interval 0� t�100	 �2� /�� or longer,
by means of the fourth-order Runge-Kutta algorithm, with
the time step �t=0.002. In most cases, the lattice with 251
sites was used. Edge absorbers were installed by adding the

loss term iun, with =1, to Eq. �1� at the 10 sites adjacent
to each edge. Besides that, in some cases extremely long
simulations were performed in a larger lattice with periodic
boundary conditions, to verify if the stable motion of the
soliton could last for very long times, and also to examine
collisions between the solitons, see below.

If gac=0, the soliton pushed as per Eq. �13� with q�0.7
does not start progressive motion. Instead, it remains pinned
to the lattice, with its center oscillating around an equilib-
rium position. This observation may be explained by the fact
that the kinetic energy given to the soliton is smaller than the
height of the PN potential barrier.

Several distinct types of dynamics were observed with
gac�0, depending on the driving frequency � and the thrust
parameter q. First, the soliton may remain pinned, as shown
in Fig. 1�a�. In this case, the simulations �run in the interval
0� t�300�2� /��� demonstrate that the soliton stays pinned
within a few sites from its initial position. The central coor-
dinate, the evolution of which is displayed in Fig. 1 and other
figures, is defined as

X =

�
n

n�un�2

�
n

�un�2
. �14�

The next generic regime is that of irregular motion, as
shown in Fig. 1�b�. A characteristic feature of this regime is

FIG. 4. The same as in Fig. 4, in the case of motion in the
reverse direction, for gac=0.170, �=1, and q=0.5. FIG. 5. A generic example of the motion of a stable �nondecay-

ing� soliton in the straight direction, for gac=0.132, �=1, and
q=0.5.
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that the soliton randomly changes the direction of motion
several times, and the velocity remains very small in com-
parison with regimes of “true motion,” see below.

Under the action of a strong drive, the soliton can some-
times split into two secondary ones moving in opposite di-
rections, see Fig. 2. As can be observed, the splitting is
strongly asymmetric, and the heavier secondary soliton
�splinter� may move both forward and backward, relative to
the initial push. We notice that splitting of a quiescent soliton
�without any initial thrust applied to it� into two symmetric
splinters, moving in opposite directions with equal velocities,
was reported, in the same model based on Eq. �1�, in Ref.
�9�. The initial push applied to the soliton is a natural cause
for the symmetry breaking observed here in the case of the
splitting.

In the case of a moderately strong drive, the splitting does
not occur �see Fig. 9 below�. Instead, two distinct generic
regimes of regular motion of the soliton were observed. In
one case, shown in Figs. 3 and 4, the moving soliton is not
really stable, as it gradually decays into radiation. The most
interesting case is that of persistent motion of a stable soli-
ton, without any observable decay �after an initial transient
stage of the evolution�. Examples of the latter are displayed
in Figs. 5 and 6. To distinguish between the two different
regimes of motion, we have adopted a criterion that the mov-
ing soliton is stable if it keeps more than 70% of its norm,
��un�2, in the core. It was found that the criterion in this form
makes it possible to accurately identify truly stable regimes,

if the simulation is extended for a much longer time �see
below�. Typical examples displayed in Figs. 3–6 demonstrate
that free motion of the soliton is possible in both the straight
and reverse directions, relative to the initial thrust.

As stable motion of solitons in nonintegrable discrete
models is an issue of theoretical and experimental interest,
we have further investigated this case, replacing the finite
lattice with edge absorbers by a ring-shaped one, with peri-
odic boundary conditions. This setting opens a way to study
indefinitely long motion of the soliton. The result, illustrated
by examples shown in Fig. 7, is that the moving solitons
which were identified as stable by the above criterion, re-
main stable indeed �preserving their shape� as long as the
simulations could be run. In this case, it is pertinent to com-
pare the average velocity c̄ of the persistent motion with the
prediction given by Eq. �11�. The result is c̄1�0.246 and
c̄2�0.155 in the cases shown in Figs. 7�a� and 7�b�, respec-
tively. Comparison with the analytical formula �11� �with
�=1, which is the driving frequency in the examples shown
in Fig. 7� demonstrates that c̄2 and c̄1 fit well to the predicted
values in the cases of the, respectively, fundamental and
second-order resonance,

c̄2/�cres�1
�1� � 0.974, c̄1/�cres�3

�2� � 1.029. �15�

Relatively small discrepancies between the predicted and ob-
served values in Eq. �15� can be accounted for by the fact

FIG. 6. The same as in Fig. 6, but in the case of the motion of
a stable soliton in the reverse direction, for gac=0.122, �=1, and
q=0.5.

FIG. 7. Indefinitely long motion of stable solitons in a ring
lattice composed of 601 sites. The gray-scale plots show the spa-
tiotemporal distribution of the density, �un�t��2. The examples of
the straight �a� and inverse �b� motion pertain, respectively, to
gac=0.132, �=1, q=0.5, and gac=0.122, �=1, q=0.5.
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that the effective perturbations are not really weak in these
cases.

The soliton adjusting itself to the stable-motion mode
typically sheds off about 20% of its initial norm. This con-
spicuous amount of radiation does not essentially affect the
established regime. In the cases shown in Figs. 3–6 the emit-
ted radiation is partly suppressed by the edge absorbers.

However, even in the case displayed in Fig. 7, when all the
radiation stays in the lattice subject to the periodic boundary
conditions, its presence does not give rise to any appreciable
perturbation in the long-time motion of the soliton. In fact,
this observation is an additional essential evidence of the
robustness of the moving soliton in the corresponding re-
gime.

FIG. 8. �Color online� Maps in the left column show areas in the parameter plane �� ,gac� which give rise to the following dynamical
regimes. The rows from top to bottom correspond to values 0.25, 0.5, and 1 of the initial-push parameter q. White areas: the soliton remains
pinned; cyan: irregular motion; green: splitting; magenta: regular motion with decay; black: stable motion �without decay�. The maps in the
right column additionally show the difference between the forward �alias straight, marked by magenta� and backward �alias reverse, marked
by black� directions of the regular motion, relative to the direction singled out by the initial push. Regular-motion regimes for both decaying
and stable solitons are included here.
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For the fixed values of gdc=1 in Eq. �2� and �=1 in Eq.
�13�, and several values of the initial thrust in Eq. �13�,
q=0.25, 0.5, and 1, we have collected results of systematic
simulations, varying the drive’s parameters, gac and �, by
small steps in broad ranges spanning the two-parameter
space. The results are summarized in Fig. 8, in the form of
maps in the �� ,gac� plane, where we outline regions giving
rise to each of the qualitatively different dynamical regimes
described above. This map is the key finding of the present
work, detailing the various possibilities arising as a result of
the application of the FRM to the lattice soliton.

Some general features can be deduced from the examina-
tion of the maps in Fig. 8. The increase of the initial thrust q
significantly affects the map, although chiefly quantitatively,
rather than qualitatively. At all values of q, the irregular mo-
tion is, generally, changed by stable progressive motion
�straight or reverse� with the increase of the drive’s ampli-
tude, and/or decrease of its frequency, which seems quite
natural. Further increase of the drive’s strength, which im-
plies the applications of a strong perturbation to the system,
may be expected to lead to an instability, which indeed hap-
pens, in the form of onset of the gradual decay of the moving
solitons. Finally, strong instability sets in, manifesting itself
in the splitting of the soliton. It also seems natural that the
soliton is more prone to splitting if the driving frequency is
low, as internal strain in the pulse, which eventually leads to
its splitting, has more time to accumulate if the drive oscil-
lates slowly.

Transition to the reverse motion tends to happen parallel
to the transition from the stable moving soliton to the decay-
ing one. For this reason, in most cases �but not always�
backward-moving solitons are decaying ones. Finally, it
should be noted that the increase of the initial thrust leads to
overall stabilization of the soliton �somewhat counter-
intuitively�, making the decay and splitting zones smaller.

Finally, using the large lattice with the periodic boundary
conditions, we also simulated collisions between solitons
originally moving with opposite velocities. Initial pulses
were generated by applying the thrust ±q to two quiescent
solitons. A systematic study of collisions is very difficult in
the present model, cf. Ref. �7�. Nevertheless, we were able to
identify two different types of the interaction, typical ex-
amples of which are shown in Fig. 9. In the case of Fig. 9�a�,
the solitons bounce back from each other elastically. After-
wards, one of the solitons spontaneously reverses its direc-
tion of motion, due to its interaction with the underlying
lattice. Eventually, we observe a pair of weakly interacting
solitons traveling for long times in the same direction.

In another case, Fig. 9�b�, the solitons also bounce after
the first collision; however, in this case the collision is in-
elastic, resulting in transfer of mass �norm� from one soliton
to the other. Repeated collisions lead to additional transfer,
and eventually the weak soliton almost disappears. It is rel-
evant to note that, in contrast to what is known about colli-
sions between moving solitons in the ordinary DNLS equa-
tion �the one with constant coefficients� �7�, we have never
observed merger of colliding solitons into a standing one.

IV. CONCLUSIONS

In this work, we have investigated moving nontopological
solitons in the DNLS equation with a periodically time-

modulated nonlinear coefficient. An approximate analytical
consideration predicts that the ac nonlinearity management
may support stable traveling solitons in the lattice. System-
atic simulations reveal several generic dynamical regimes,
depending on parameters of the time modulation, and the
size of the initial thrust which sets the soliton in motion.
Besides the possibility that the soliton remains pinned, or is
split by a very strong drive, the basic dynamical regimes
feature irregular motion, regular motion of a decaying soli-
ton, and regular motion of a stable one. In the latter case,
extremely long simulations in the lattice with periodic
boundary conditions demonstrate that the soliton keeps mov-
ing indefinitely long without any tangible loss. Velocities of
the moving stable solitons are found to be in good agreement
with the analytical prediction through a resonance condition,
a noteworthy fact being that the spectrum of the resonant
velocities for the nontopological solitons is the same as for
topological ones �kinks�, although the dynamical mecha-
nisms supporting the progressive motion in the two cases are
quite different. All the generic dynamical regimes were
mapped in the model’s parameter space. Collisions between
stable moving solitons were briefly investigated too, with a
conclusion that two different outcomes are possible, elastic
bounce, and bounce with mass transfer between the solitons.

The model can be implemented in a quasi-one-
dimensional �“cigar-shaped”� Bose-Einstein condensate seg-

FIG. 9. Two typical examples of different outcomes of collisions
between solitons with equal masses moving in opposite directions
in the lattice with periodic boundary conditions. The parameters are
gac=0.132, �=1, q=0.5 �a� and gac=0.122, �=1, q=0.5 �b�. Note
that the collision is multiple in panel �b�.
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mented by a strong optical lattice, the nonlinearity modula-
tion induced by the Feshbach resonance in the ac regime. In
this case, a realization is possible with �103 atoms trapped
in each of a few filled local potential wells. The setting may
be essentially the same as in the recent experimental work
which has resulted in the creation of one-dimensional gap
solitons �19� and observation of the nonlinear self-trapping
�20� in the repulsive condensate �without the Feshbach man-
agement�. The fact that the repulsive condensate �87Rb� was
used in the experiments is not an obstacle, in view of the
applicability of the staggering transformation of Eq. �3�.
Then, the moving soliton can be understood, physically, as a
coherently self-translating wave that macroscopically tunnels
between wells. In this respect, experimental observation of
such a soliton would be a very interesting physical result.

In a more general setting, it would be interesting to ex-
amine similar dynamical scenarios for the effect of FRM on
dark solitons, and, especially, to understand how this phe-
nomenology is modified in higher dimensions. Such studies
are currently in progress and will be reported in future pub-
lications.
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