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Abstract In this survey we present an exposition of the development during the last decade of metric fixed
point theory on hyperconvex metric spaces. Therefore we mainly cover results where the conditions on the
mappings are metric. We will recall results about proximinal nonexpansive retractions and their impact into
the theory of best approximation and best proximity pairs. A central role in this survey will be also played
by some recent developments on R-trees. Finally, some considerations and new results on the extension of
compact mappings will be shown.

Mathematics Subject Classification 47H10 · 47H09 · 47H04 · 54E40

1 Introduction

In the monograph Handbook of Metric Fixed Point Theory edited by Kirk and Sims, and published in 2001 by
Kluwer Academic Publishers, we can find the chapter Introduction to hyperconvex spaces [21] by Espínola
and Khamsi. This survey was mainly devoted to the study of metric hyperconvexity and its impact on metric
fixed point theory which began in late seventies of the twentieth century [60,64]. It is already a decade after
the Handbook on Metric Fixed Point Theory appeared, and many new facts on hyperconvex metric spaces and
fixed points have been stated in these past 10 years. In this survey we will address some of these facts with
a special attention to those involving metric conditions on the mappings. Therefore, it is not our intention to
recall in detail basic and fundamental facts on hyperconvex metric spaces, which were already very generously
explained along the first five sections of [21], but rather to present an update of some of the topics covered by
the other last six sections of [21].
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The study of fixed point theory for nonexpansive mappings on hyperconvex spaces was initiated, indepen-
dently, by Sine [60] and Soardi [60], and very fundamental properties about hyperconvex spaces as well as the
structure of the fixed point set of nonexpansive mappings were shown by Baillon in [9]. After the fundamental
work of Sine on hyperconvexity and fixed points, which may be compiled in the series of works [35,50,60–63],
many authors continued stating new facts during the past decade of the twentieth century. The aforementioned
chapter [21] in the Handbook of Metric Fixed Point Theory was devoted to collect many of those results. Since
then new interesting facts have been obtained about fixed points and best approximation theory in hyperconvex
metric spaces. These studies have been especially fruitful when focusing on R-trees. The connection between
R-tress and hyperconvexity became evident for most fixed point theorists after the work [40] from 1998 by
Kirk; however, it was needed to wait for some time until fixed point results on R-trees began to be studied [22]
in a more systematic way. This explains why one of the most fruitful topics in the field nowadays, which is
fixed point results on R-trees, was not covered in [21].

Interestingly enough, there has been a whole burst in the attention that the mathematical community has
paid on metric spaces and analysis on metric spaces in the past 20 years. There are many metric structures
which have called the attention of a large number of mathematicians from different branches. These structures
include fractal metric spaces, metric spaces of bounded curvature, hyperbolic geodesic spaces, sub-Riemann-
ian spaces, doubling metric spaces, metric spaces with the Poincaré inequality,… All of them have shown to be
good structures to develop analysis from different perspectives. Hyperconvex spaces may also be considered
within this class of intriguing metric structures which allow us to obtain results which one would only expect
to be possible under certain linear structures. For references on the study of analysis on metric spaces or
nonsmooth analysis the interested reader may check [3,30,31].

In this survey we start fixing some notation and giving some basic facts on hyperconvex spaces to make the
exposition more self-contained. This will be covered in Sects. 2 and 3. In Sect. 4 we deal with nonexpansive
proximinal retracts, best approximation, and best proximity pairs. In [21] a lot of attention was given to the
study of nonexpansive proximinal retracts. By then the problem of characterizing such subsets of hyperconvex
spaces was still open. In Sect. 4 we find the solution to this problem and its relation to the problem of best
approximation and best proximity pairs. Some other related results are also addressed in this section. Section 5
will be devoted to recent progress on R-trees and metric fixed point theory. The very peculiar structure of
these spaces has provided a very suitable scenario to develop beautiful and deep fixed point results for single
and multivalued mappings. We will walk the history of this topic and show some of the most surprising and
far-reaching results on R-trees. One of the most remarkable features of these results is that they do not require
the set to be bounded to guarantee existence of fixed points. We will show how dealing with multivalued
mappings is especially fruitful on R-trees. In our last section, Sect. 6, we consider some recent advances on
the theory of extension of Hölder maps and relate them to extensions of uniformly continuous mappings under
ℵ0-hyperconvex conditions. In this section we include some new results on compact extensions of compact
mappings.

2 Notation and basic definitions

Metric spaces will be denoted as (M, d), or just M for simplicity, where M is the space and d stands for the
distance on M . Main elements for us in a metric space will be closed balls which will be denoted by B(x, r)
meaning the closed ball of center x and radius r ≥ 0. The following notation is also typical when dealing with
metric spaces and will be used along all this survey.

Let M be a metric space, x ∈ M and A and B subsets of M ; then

rx (A) = sup{d(x, y) : y ∈ A},
r(A) = inf{rx (A) : x ∈ M},
R(A) = inf{rx (A) : x ∈ A},

diam(A) = sup{d(x, y) : x, y ∈ A},
dist(x, A) = inf{d(x, y) : y ∈ A},
dist(A, B) = inf{d(x, y) : x ∈ A, y ∈ B},

C(A) = {x ∈ M : rx (A) = r(A)},
CA(A) = {x ∈ A : rx (A) = R(A)},
cov(A) =

⋂
{B : B is a closed ball containing A},
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where r(A) is the radius of A relative to M, diam(A) is the diameter of A, R(A) is the Chebyshev radius of
A, and cov(A) is the admissible cover of A.

Hyperconvex metric spaces were introduced by Aronszajn and Panitchpakdi to extend Hahn–Banach’s
theorem from the real line to more general spaces, see [8,21,36]. As a result they determined metric conditions
guaranteeing such an extension and named spaces satisfying these conditions hyperconvex metric spaces.

Definition 2.1 A metric space M is said to be hyperconvex if given any family {xα} of points of M and any
family {rα} of real numbers satisfying

d(xα, xβ) ≤ rα + rβ

then
⋂

α

B(xα, rα) �= ∅.

A subset of a metric space with this property will be called sometimes as a hyperconvex set.

The name of hyperconvexity comes from the fact that when the ball intersecting condition holds for each
pair of balls then the metric space is said to be (metrically) convex. In the literature they are also known as
injective metric spaces and Banach spaces which are hyperconvex are generically denotes as P1 spaces [48,51].
The study of normed spaces satisfying this property and other related ones was very important during the mid
twentieth century, and the interested reader may check [48] in this regard. For more on the injective nature of
hyperconvex metric spaces see [8,36] or [21, Section 4].

A fundamental fact of hyperconvex spaces is given by the next proposition which proof can be found in
[8,21], see also [36, Proposition 4.4].

Proposition 2.2 If M is a hyperconvex metric space then it is complete.

Next we summarize some metric properties of hyperconvex spaces which have played a major role in the
structure of hyperconvex spaces and have been extensively applied in metric fixed point theory; for proofs
consult [21, Lemma 3.3] or [36, Lemma 4.1].

Lemma 2.3 Let A be a bounded subset of a hyperconvex metric space M. Then

1. cov(A) = ∩{B(x, rx (A)) : x ∈ M}.
2. rx (cov(A)) = rx (A), for any x ∈ M.
3. r(cov(A)) = r(A).
4. r(A) = 1

2 diam(A).
5. diam(cov(A)) = diam(A).
6. If A = cov(A) then r(A) = R(A).

A very important property in hyperconvexity with immediate impact in fixed point and approximation
theory (see [21,46]) is that of being nonexpansive retracts.

Definition 2.4 Let (M, d1) and (N , d2) be two metric spaces. A map T : M → N is said to be nonexpansive
if

d2(T x, T y) ≤ d1(x, y)

for all x, y ∈ M .

Definition 2.5 A subset A of a metric space M is said to be a nonexpansive retract (of M) if there exists a
nonexpansive retraction from M onto A, that is, a nonexpansive mapping R : M → A such that Rx = x for
each x ∈ A.

Hyperconvex metric spaces are nonexpansive retracts of any metric space where are isometrically embed-
ded [21, Section 4]. Even more, this property characterizes hyperconvex subsets of a hyperconvex metric
space.

Lemma 2.6 Let M be a hyperconvex metric space and A ⊆ M. Then A is hyperconvex (as a metric space
with the induced metric) if and only if A is a nonexpansive retract of M.
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A step forward in this property is to require the set to be a proximinal nonexpansive retract.

Definition 2.7 Let M be a metric space and A ⊆ M nonempty. The metric projection onto A is then defined
by

PA(x) = B(x, dist(x, A)) ∩ A.

If PA(x) is nonempty for each x ∈ M , then A is said to be a proximinal subset of M . If A is proximinal and
PA is nonexpansive or admits a nonexpansive selection, then A is said to be a proximinal nonexpansive retract
of M .

Proximinal nonexpansive retracts are relevant in the theory of fixed point and best approximation points.
To study the nature of such sets for a hyperconvex space is a much more complicated task than that of char-
acterizing nonexpansive retracts. Still some classes of proximinal nonexpansive retracts have been identified.
Among them we find the classes of admissible and externally hyperconvex subsets.

Definition 2.8 Let M be a metric space. A ⊆ M is said to be an admissible subset of M if A = cov(A). The
collection of all admissible subsets of M is then denoted by A(M).

Admissible subsets of hyperconvex spaces enjoy of a very large number of properties. These properties were
very relevant when studying approximation problems and fixed point results; see for instance [21,33,46,61,62]
among others. Obviously, the class of admissible sets is closed under arbitrary intersections.

Definition 2.9 A subset E of a metric space M is said to be externally hyperconvex (relative to M) if given
any family {xα} of points in M and any family {rα} of positive real numbers satisfying

d(xα, xβ) ≤ rα + rβ and dist(xα, E) ≤ rα;
it follows that

⋂

α

B(xα; rα) ∩ E �= ∅.

The class of externally hyperconvex sets relative to M will be denoted as E(M).

Externally hyperconvex subsets were first introduced in [8] and used for first time in fixed point theory in
[37] by Khamsi, Kirk and Martínez-Yáñez. It was proved in [37] that a nonexpansive multivalued mapping with
externally hyperconvex values admits nonexpansive selections. This result was then applied to obtain existence
of fixed points for multivalued mappings (see also [21, Section 9]). The next result, which is immediate to
prove, relates admissible and externally hyperconvex sets.

Lemma 2.10 Let M be a hyperconvex space; then any admissible subset of M is also an externally hyper-
convex subset of M.

It is easy to find examples that show that the converse to this lemma is not true. A proof for the next theorem
can be found in [21, p. 426].

Theorem 2.11 Let E be a nonempty externally hyperconvex subset of a metric space M. Then E is a proximinal
nonexpansive retract of M.

3 Further properties and basic fixed point results in hyperconvex spaces

In this section we present a brief description of some of the most fundamental fixed point theorems for single
and multivalued nonexpansive mappings; some other properties of hyperconvex metric spaces will also be
recalled. A more detailed exposition of these results can be found in [21] (see also [36, Chapter 4]). The first
versions of Kirk’s fixed point theorem for hyperconvex spaces were independently obtained by Sine [60] and
Soardi [64]. These results can be summarized in the next one.
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Theorem 3.1 Let M be a nonempty bounded hyperconvex metric space and T : M → M a nonexpansive
mapping. Then T has a fixed point. Moreover, the set of fixed points of T , that is,

Fix(T ) = {x ∈ M : T x = x}
is a hyperconvex subset of M.

A more general and very celebrated version of this result on ε-fixed points was later proved by Sine [63]
or [36, Section 4.6].

Definition 3.2 Given T : M → M we say that x ∈ M is an ε-fixed point of T if d(x, T x) ≤ ε. The set of
ε-fixed points is denoted by Fixε(T ).

Theorem 3.3 Let M be a bounded hyperconvex metric space and T : M → M a nonexpansive mapping.
Then, for ε ≥ 0, Fixε(T ) is nonempty and hyperconvex.

The next theorem was proved by Baillon [9] and gives an extended version of Theorem 3.1.

Theorem 3.4 Let M be a bounded hyperconvex metric space. Any commuting family of nonexpansive map-
pings {Ti }i∈I , with Ti : M → M, has a common fixed point. Moreover, the common fixed point set is hyper-
convex.

Baillon proved also in [9] the next very important property on hyperconvex sets.

Theorem 3.5 Let {Hα}α∈A be decreasing (with respect to the set inclusion) family of nonempty and bounded
hyperconvex sets; then

⋂

α∈A
Hα �= ∅ and hyperconvex.

To obtain a counterpart of the fixed point theorem for nonexpansive mappings for multivalued nonexpan-
sive mappings, we need first to introduce the Pompeiu–Hausdorff distance (for more on this see [36, p. 24],
[26, p. 19] or [3, p. 72]).

Definition 3.6 Let M be a metric space and let M denote the family of all nonempty bounded closed subsets
of M . For A ∈ M and ε > 0 define the ε-neighborhood of A to be the set

Nε(A) = {ε > 0 : dist(x, A) < ε}.
Now for A, B ∈ M set

H(A, B) = inf{ε > 0 : A ⊆ Nε(B) and B ⊆ Nε(A)}.
Then (M, H) is a metric space and H is called the Pompeiu–Hausdorff distance on M.

A nonexpansive multivalued mapping is then defined as follows:

Definition 3.7 Let M be a metric space and T : M → 2M a multivalued mapping with closed values. T is
said to be nonexpansive if

H(T x, T y) ≤ d(x, y).

The question now is under which conditions a multivalued nonexpansive mapping has fixed points. The
study of this problem was initiated by Nadler in [55] for Banach spaces (see also [26, Chapter 15]). It turned
out that hyperconvex spaces were very adequate to deal with multivalued mappings. More general versions of
the next result can be found in [37] (see also [62] or [21]).

Theorem 3.8 Let M be a hyperconvex space and T : M → E(M) a nonexpansive multivalued mapping. Then
there exists a nonexpansive selection f : M → M, that is, a nonexpansive mapping such that f (x) ∈ T x for
all x ∈ M.
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The same result was proved for admissible valued mappings in [62]; it is an open question posed in [62]
whether this theorem remains true if the images are supposed to be hyperconvex instead of admissible sets.

As a corollary of this theorem and Theorem 3.1, we have the fixed point result for nonexpansive multivalued
mappings (for more on this see [21, Section 9]).

Corollary 3.9 Let M be a nonempty bounded hyperconvex space. If T : M → E(M) is a nonexpansive
multivalued map then its set of fixed points is nonempty and hyperconvex.

Classical fixed point topological results as those of Darbo–Sadovski or Schauder theorem have also found
their counterparts in hyperconvex spaces. This survey focuses on metric fixed point theory, so it is not our
goal to cover recent advances on topological fixed point theory for hyperconvex spaces. The reader can find
an exposition of this kind of results in [21, Section 7].

Theorem 3.10 Let M be a compact hyperconvex metric space and T : M → M a continuous mapping. Then
T has a fixed point.

Different interesting papers on extensions of the above result have appeared after the publication of [21];
some of them are [11,14,19,34,46]. Also a number of works have been published about KKM mappings on
hyperconvex spaces after [33] as, for instance, [15].

4 Proximinal nonexpansive retracts and best proximity pairs

One of the subjects that received more attention in Chapter 13 [21] of the Handbook in Metric Fixed Point
Theory was the question of characterizing proximinal nonexpansive retracts of hyperconvex spaces. This ques-
tion was not solved by then, but now we know its solution. This is a kind of result with important connections
to several problems in best approximation results and best proximity pairs. We begin this section describing
the problems of best approximation and best proximity pairs.

We know that fixed point theory is an important tool for solving equations T x = x for mappings T : D → M
where D is a subset of M . However, if T does not have fixed points, then one often tries to find an element x which
is in some sense closest to T x . A classical result in this direction is the very well known Ky Fan best approxima-
tion theorem. Best approximation results for nonself mappings try to find x such that d(x, T x) = dist(T x, D).
Notice that these results need not give optimal solutions to the best approximation problem, that is, those
minimizing d(x, T x). In contrast to this, best proximity pair theorems provide approximate solutions that are
optimal. A few advances have been obtained for hyperconvex spaces about existence of best proximity pairs
in the last ten years [6,20,38,47,52,54]. In this section we collect some of them.

Definition 4.1 Let M be a metric space and let A and B be nonempty subsets of M . Let

A0 = {x ∈ A : d(x, y) = dist(A, B) for some y ∈ B};
B0 = {x ∈ B : d(x, y) = dist(A, B) for some y ∈ A}.

A pair (x, y) ∈ A0 × B0 for which d(x, y) = dist(A, B) is called a best proximity pair for A and B.

The basic questions about the problem of best proximity pairs are

1. When are A and B mutually proximinal in the sense that there exists a best proximity pair (a, b) ∈ A0×B0?
2. Given that A and B are mutually proximinal and given a mapping T : A → 2B , when does the mapping T

have a best proximity pair solution, that is, when does there exist a best proximity pair (x, y) ∈ A0 × B0
such that y ∈ T x?

It was shown in [47] that this problem can be solved if some of sets under consideration are proximinal
nonexpansive retracts. Being proximinal nonexpansive retract is a very unusual property in general spaces but
not in hyperconvex spaces. Theorem 2.11 states that externally hyperconvex sets are proximinal nonexpansive
retracts. The complete characterization of such retracts was given in [20]. To show this characterization we
need to introduce a new class of sets: these sets were first introduced in [23] and received the name of weakly
externally hyperconvex sets.
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Definition 4.2 A subset E of a metric space M is said to be weakly externally hyperconvex (relative to M) if
E is externally hyperconvex relative to E ∪ {z} for each z ∈ M.

More precisely, given any family {xα} of points in M all but at most one of which lies in E, and any family
{rα} of real numbers satisfying

d(xα, xβ) ≤ rα + rβ, with dist(xα, E) ≤ rα if xα /∈ E;
it follows that

⋂

α

B(xα, rα) ∩ E �= ∅.

It directly follows from the definition that weakly externally hyperconvex subsets are proximinal. At this
point it is interesting to note that when the three classes of subsets so far presented are subsets of the same
hyperconvex metric space M , then they are related in the following way: let A be a subset of M ; then

A is admissible (in M) ⇒ A is externally hyperconvex (relative to M)

⇒ A is weakly externally hyperconvex (relative to M)

⇒ A is hyperconvex.

The next definition was introduced in [63].

Definition 4.3 Let A be a subset of a metric space M . A mapping R : A → M is said to be ε-constant if
d(x, R(x)) ≤ ε for each x ∈ A.

For A as above the ε-neighborhood of A is defined as follows:

Nε(A) =
⋃

a∈A

B(a, ε).

The following fact was proved in [23] and already explained in [21, Section 4]:

Lemma 4.4 Let A be a weakly externally hyperconvex subset of a hyperconvex metric space M; then for any
ε > 0 the set Nε(A) is weakly externally hyperconvex and there is an ε-constant nonexpansive retraction of
Nε(A) on A.

The most it was known about weakly externally hyperconvex spaces and nonexpansive proximinal retrac-
tions in [23] is summarized in the following result which was already contained in [21, Section 4].

Theorem 4.5 Suppose A is a weakly externally hyperconvex subset of a metrically convex metric space M.
Then given any ε > 0 there exists a nonexpansive retraction R : M → A with the property that if u ∈ M \ A
there exists v ∈ M\ A with d(v, R(v)) = dist(v, A) and d(u, v) ≤ ε.

For a subset A of a metric space M and ε > 0 we use Sε to denote the level set

Sε = {u ∈ M : dist(u, A) = ε}.
The next two technical results were given in [20]. The first one is a consequence of the proof of Theorem 4.5.

Lemma 4.6 Let ε > 0, A and M as above, and S = ⋃
n∈N

Snε. Then the retraction given by Theorem 4.5 can
be chosen so that d(v, R(v)) = dist(v, A) for any v ∈ S.

We include the proof of the next lemma for completeness.

Lemma 4.7 Let A be a weakly externally hyperconvex subset of a metrically convex metric space M. For
each n ∈ N let εn = 1

2n ; then there exists a nonexpansive retraction rn (associated with εn) as in Corollary 4.6
such that the sequence of retractions {rn} satisfies that

d(rn(x), rm(x)) ≤
j=m∑

j=n+1

1

2 j

for x ∈ M and n < m. Moreover, {rn(x)} is convergent for each x ∈ M.
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Proof For n = 1 we take r1 as the one given by Lemma 4.6. We prove next that given ri for 1 ≤ i ≤ n as in the
statement of the lemma we can construct rn+1 as required. We consider Sεn+1 and proceed as in Theorem 4.5.
After applying Zorn’s Lemma we may assume that Hεn+1 is the maximal subset of Sεn+1 where rn+1 can be
extended as required. Then we need to prove that Sεn+1 = Hεn+1 . Suppose that there exits v ∈ Sεn+1 \ Hεn+1

and let

P(v) = (∩x∈A B(x, d(x, v))) ∩ (∩u∈Hεn+1
B(rn+1(u), d(u, v)))

∩ B

(
v,

1

2n+1

)
∩ B

(
rn(v),

1

2n+1

)
∩ A.

All we need to prove is that P(v) �= ∅. Since A is weakly hyperconvex and only one of the above balls is
centered outside A, it is enough to check that each two of such balls have nonempty intersection. In a case-by-
case check it only remains to study those cases involving the ball centered at rn(v); other cases were already
studied in [23]. For these cases it is enough to recall that d(x, rn(v)) ≤ d(x, v) for x ∈ A, now, since A is
proximinal, let pv ∈ A such that d(v, pv) = dist(v, A), so

d(v, rn(v)) ≤ d(v, pv) + d(pv, rn(v))

≤ 2dist(v, A) = 1

2n
,

and finally, for u ∈ Hεn+1 ,

d(rn+1(u), rn(v)) ≤ d(rn+1(u), rn(u)) + d(rn(u), rn(v))

≤ (by induction hypothesis)
1

2n+1 + d(u, v).

So we can consider rn+1 defined on the whole Sεn+1 as required. Next we show how to extend rn+1 to
A ∪ Sεn+1 ∪ S2εn+1 . Let v ∈ S2εn+1 = Sεn ; then the set

P(v) = (∩x∈A B(x, d(x, v))) ∩ (∩u∈Sεn+1
B(rn+1(u), d(u, v)))

∩ B

(
v,

1

2n

)
∩ B

(
rn(v),

1

2n+1

)
∩ A

is nonempty since d(rn(v), x) ≤ d(v, x) for x ∈ A,

d(rn+1(u), rn(v)) ≤ d(rn+1(u), rn(u)) + d(rn(u), rn(v))

(by induction) ≤ 1

2n+1 + d(u, v),

and, since the metric convexity of M implies that there exists v̂ ∈ Sεn+1 such that d(v, v̂) = 1
2n+1 , we have

d(v, rn(v)) ≤ d(v, v̂) + d(v̂, rn(v̂)) + d(rn(v̂), rn(v))

≤ 1

2n+1 + 1

2n+1 + 1

2n+1 = 1

2n
+ 1

2n+1 .

Now, by selecting a point in P(v) it is possible to extend rn+1 as required from Sεn+1 to Sεn+1 ∪ {v}. This same
argument shows how to extend rn+1 to A ∪ Sεn+1 ∪ S2εn+1 onto A as required.

Let S = ∪∞
i=1Siεn+1 . By proceeding as above but selecting v̂ ∈ S(i−1)εn+1 for v ∈ Siεn+1 , and using induc-

tion it follows that there exists a nonexpansive retraction rn+1 of A∪ S onto A as required. Let v ∈ M\(A∪ S);
then we consider the set

P(v) =
(

⋂

x∈A∪S

B(rn+1(x), d(x, v))

)
∩ B

(
rn(v),

1

2n+1

)
.

P(v) is nonempty from the hyperconvexity of A and the fact that, by induction hypothesis,

d(rn+1(x), rn(v)) ≤ d(rn+1(x), rn(x)) + d(rn(x), rn(v))

≤ d(x, v) + 1

2n+1 .
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Again, using induction it follows that rn+1 can defined on M as required. Hence

d(rn+1(x), rn(x)) ≤ 1

2n+1

for x ∈ M . Now let {rn} be the sequence of retractions given by the above procedure; then for m > n and
x ∈ M

d(rm(x), rn(x)) ≤
j=m∑

j=n+1

d(r j (x), r j−1(x))

≤
j=m∑

j=n+1

1

2 j
.

Hence the proof of the lemma is complete. ��
The next result answers a question from [23] in the affirmative and basically characterizes proximinal

nonexpansive retracts of hyperconvex spaces.

Theorem 4.8 Let A be a complete weakly externally hyperconvex subset of a metrically convex metric space
M. Then A is a proximinal nonexpansive retract of M.

Proof Let {rn} be the sequence of retractions given by Lemma 4.7; then we define the mapping r : M → A as

r(x) = lim
n→∞ rn(x).

From the convergence given in Lemma 4.7, r is a well-defined retraction on A. Moreover, since rn is nonex-
pansive for each n ∈ N, r is nonexpansive. Additionally we claim that d(r(x), x) = dist(x, A) for x ∈ M . For
x ∈ A there is nothing to prove, so let x ∈ M\ A. For each n ∈ N there exists vn ∈ M\ A such that

d(x, vn) ≤ 1

2n
and

d(vn, rn(vn)) = dist(v, A).

Hence we have

d(x, rn(x)) ≤ d(x, vn) + d(vn, rn(vn)) + d(rn(vn), rn(x))

≤ 1

2n
+ dist(vn, A) + 1

2n

≤ 1

2n
+ dist(x, A) + d(vn, x) + 1

2n

= 3

2n
+ dist(x, A).

Taking limit as n → ∞ the conclusion follows. ��
Since Theorem 2.1 of [23] implies that proximinal nonexpansive retracts of hyperconvex spaces are weakly

externally hyperconvex, the previous theorem can be re-written in the following way:

Theorem 4.9 Let M be a hyperconvex metric space and A ⊆ M nonempty. Then A is a proximinal nonex-
pansive retract of M if, and only if, A is a weakly externally hyperconvex subset of M.

Now these results were applied, following the approach from [47], to the problem of best proximity pairs.

Lemma 4.10 Let M be a hyperconvex metric space and let A and B be nonempty weakly externally hyper-
convex subsets of M. Then A0 and B0 are nonempty and hyperconvex.
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Proof Since B is weakly externally hyperconvex, there exists a proximinal nonexpansive retraction PB : M →
B. Let pB denote the restriction of this retraction to A. Let d = dist(A, B) and let εn = d + 1/n. Consider
the set

An := {x ∈ A : d(x, pB(x)) ≤ εn}.
Obviously An is nonempty. We claim that An is hyperconvex. To see this, let {xα} be points of An and let
{rα} ⊆ R

+ be such that

d(xα, xβ) ≤ rα + rβ.

Let D be the weakly externally hyperconvex set

D := ∩B(xα, rα) ∩ A.

Clearly D is nonempty since A is hyperconvex. By Lemma 4.4 there exists an εn-constant retraction π that
maps Nεn (D) onto D. If x ∈ D then pB(x) ∈ Nεn (D) because

d(pB(x), x) ≤ d(pB(x), pB(xα)) + d(pB(xα), xα)

d(x, xα) + εn ≤ rα + εn .

Now define R : D → D by setting R = π ◦ pB . Since R is nonexpansive, it has a fixed point x0 ∈ D. But π
is εn-constant, so

d(x0, pB(x0)) = d(π ◦ pB(x0), pB(x0)) ≤ εn .

Therefore, x0 ∈ ∩B(xα, rα) ∩ An , which proves that An is hyperconvex.
We now have a descending sequence {An} of nonempty bounded hyperconvex subsets of A and so ∩An is

nonempty and hyperconvex. Clearly,

u ∈ ∩∞
n=1 An ⇐⇒ d(u, pB(u)) = d = diam(A, B) ⇐⇒ u ∈ A0

and so pB(u) ∈ B0. ��
Best proximity pair results follow from these results.

Theorem 4.11 Let A and B be two weakly externally hyperconvex subsets of a hyperconvex metric space M
with A bounded, and suppose T ∗ : A → 2B is such that

(i) for each x ∈ A, T ∗(x) is a nonempty admissible (more generally, externally hyperconvex) subset of B;
(ii) T ∗ : (A, d) → (2B, H) is nonexpansive (where H is the Hausdorff distance);

(iii) T ∗(A0) ⊆ B0.

Then there exists x0 ∈ A such that

dist(x0, T ∗(x0)) = dist(A, B) = inf{dist(x, T ∗(x)) : x ∈ A}.
Proof We know that A0 is nonempty. By Theorem 3.8, T ∗ admits a nonexpansive selection T . Let r be a
nonexpansive proximinal retraction of M onto A and x ∈ A0. Since r ◦ T (x) ∈ A is a best approximation to
T (x) it follows that T (x) ∈ B0. Therefore, there exists a ∈ A such that

d(T (x), a) = dist(A, B).

On the other hand, d(T (x), r ◦ T (x)) ≤ d(T (x), a). Therefore,

d(T (x), r ◦ T (x)) = dist(A, B).

Thus r ◦ T : A0 → A0 and so there exists x0 ∈ A0 such that r ◦ T (x0) = x0. It follows then that (x0, T (x0))
is a best proximity pair for T and hence also for T ∗. ��

A topological version of this result can be proved in the similar way and reads as follows:

Theorem 4.12 Let A and B be two weakly externally hyperconvex subsets of a hyperconvex metric space M
with A compact, and suppose T ∗ : A → 2B is such that
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(i) for each x ∈ A, T ∗(x) is a nonempty admissible (more generally, externally hyperconvex) subset of B;
(ii) T ∗ : (A, d) → (2B, H) is continuous;

(iii) T ∗(A0) ⊆ B0.

Then there exists x0 ∈ A such that

dist(x0, T ∗(x0)) = dist(A, B) = inf{dist(x, T ∗(x)) : x ∈ A}.
The next theorem is a version of this result under milder topological conditions, see [54] for its proof.

Theorem 4.13 Let A be an admissible subset and B a bounded externally hyperconvex subset of a hyperconvex
metric space M. Assume T ∗ : A → 2B is such that

(i) for each x ∈ A, T ∗(x) is an admissible subset of B;
(ii) T ∗ : (A, d) → (2B, H) is continuous and condensing;

(iii) T ∗(x) ∩ B0 �= ∅ for each x ∈ A0.

Then there exists x0 ∈ A such that

dist(x0, T ∗(x0)) = dist(A, B) = inf{dist(x, T ∗(x)) : x ∈ A}.
As a consequence of this kind of results we can obtain best approximation results in the spirit of Ky Fan

lemma. The next is an example of these results. Many other Ky Fan results in hyperconvex spaces can be
found, for instance, in [52].

Corollary 4.14 Let A be a bounded weakly externally hyperconvex subset of a hyperconvex metric space M
and suppose that T : A → M is a nonexpansive mapping. Then there exists x ∈ A such that

d(x, T (x)) = inf{d(y, T (x)) : y ∈ A}.
Another series of interesting related works on this kind of problems are [4,6,7]. In these works condensing

conditions as well as lower and upper semicontinuous conditions from multivalued mappings are considered.
Two results taken from these works are the following:

Theorem 4.15 Let M be a hyperconvex metric space. Suppose that F : M → 2M is an upper semicontinuous
condensing multivalued mapping with nonempty closed acyclic values. Then F has a fixed point.

Theorem 4.16 Let M be a hyperconvex metric space and A a nonempty admissible subset of M. Let F : A →
2M be a continuous condensing multivalued mapping with nonempty bounded externally hyperconvex values
and G : A → 2A an onto, quasiadmissible multivalued mappings for which G(B) is closed for each closed
set B ⊆ A. Assume that G− : A → A is a 1-set contraction. Then there exists an x0 ∈ A such that

dist(G(x0), F(x0)) = inf
x∈X

dist(x, F(x0)).

5 R-trees and fixed points

Complete R-trees can be regarded as a subclass of hyperconvex metric spaces; this fact was made clear by
Kirk in [40]. However, R-trees are important elements on their own. In fact they have been extensively applied
to graph discrete collections of data and very specifically have been applied in phylogenetics where they are
one of the most relevant tools for modeling. Fixed point results for R-tree metric spaces have existed since
long ago, see for instance [56], but the interest of theorists of metric fixed point theory on these spaces did not
begin until 2006 with [21]. That was the initial point for a burst on the systematic study of both topological and
metric fixed point properties of R-trees. The very peculiar structure of these spaces have allowed researchers
to find results much more powerful than their counterparts for other kinds of spaces as normed spaces. It is
also worth to recall that another burst in fixed point theory in the past decade has been given by the so-called
CAT(0)-spaces and that R-tree are CAT(0)-spaces too. We will not cover in this survey this fruitful and very
interesting branch of metric fixed point theory on CAT(0)-spaces neither CAT(0)-spaces themselves; for a
very extensive treatment on CAT(0)-spaces the interested reader may check [13].

In this section we take as our starting point results given in [21], where the first results for nonexpansive
mappings on R-trees were shown, to continue with the amazing sequence of results obtained by different authors
after it. Results inspiring this section can be found in some of these references [1,5,12,17,40–42,44,45,57,58].
The fact that compact R-trees have the fixed point property for continuous maps goes back to Young [66].
Some familiarity with geodesic spaces is assumed in this section, for details see [13].

We recall now the definition of R-trees, also known as metric trees.
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Definition 5.1 An R-tree is a metric space T such that

(i) there is a unique geodesic segment (denoted by [x, y]) joining each pair of points x, y ∈ T ;
(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

From (i) and (ii) it is easy to deduce
(iii) If p, q, r ∈ T, then [p, q] ∩ [p, r ] = [p, w] for some w ∈ M.

It is not hard to give examples of R-trees; however, the following two examples are among the best well
known:

Example 5.2 R
2 with the metric “river”, consider the following metric on R

2:

d(v1, v2) =
{

| y1 − y2 |, if x1 = x2,

| y1 | + | y2 | + | x1 − x2 |, if x1 �= x2,

where v1 = (x1, y1), v2 = (x2, y2) ∈ R
2. Then (R2, d) is a complete R-tree.

Example 5.3 R
2 with the radial metric, consider the following metric on R

2:

d(v1, v2) =
{

ρ(v1, v2), if 0 = (0, 0), v1, v2 are colinear,
ρ(v1, 0) + ρ(v2, 0), otherwise,

where ρ denotes the usual Euclidean metric in R
2 and v1, v2 ∈ R

2. Then (R2, d) is a complete R-tree.

The following theorem can be found in [40]:

Theorem 5.4 A metric space is a complete R-tree if, and only if, it is hyperconvex and has unique metric
segments joining its points.

The main goal of [22] was to suggest a new metric approach to the classical fixed edge theorem of
Nowakowski and Rival [56]. The first fact that is noticed in this work is the relation between R-trees and gated
sets.

Definition 5.5 Let M be a metric space and A ⊆ M. A is said to be gated if for any point x /∈ A there exists
a unique point xA ∈ A (called the gate of x in A) such that for any z ∈ A,

d(x, z) = d(x, xA) + d(xA, z).

It is immediate to see that gated sets in a complete geodesic space are always closed and convex. (Remem-
ber that a convex set in a uniquely geodesic metric space is any set which contains any segment with endpoints
in the same set.) Moreover, it was noticed in [18] that gated subsets of a complete geodesic space X are
proximinal nonexpansive retracts of X. The next lemma is not hard to prove.

Lemma 5.6 Gated subsets of an R-tree are precisely its closed and convex subsets.

Next we present a surprising fact from gated sets which is at the heart of many results obtained for R-trees.
Usually results asserting that a certain collection of descending closed sets has nonempty intersection require
that the sets are bounded; that is not necessarily the case for gated sets.

Proposition 5.7 Let M be a complete geodesic space, and let {Hα}α∈� be a collection of nonempty gated
subsets of M which is directed downward by set inclusion. If M (or more generally, some Hα) does not contain
a geodesic ray, then

⋂

α∈�

Hα �= ∅.
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Proof Let H0 ∈ {Hα}α∈�, select x0 ∈ H0 and let

r0 = sup{dist(x0, H0 ∩ Hα) : α ∈ �}.
If x0 ∈ ∩α∈�Hα we are finished. Otherwise, choose H1 ∈ {Hα}α∈� so that, H1 ⊂ H0, x0 /∈ H1, and

dist(x0, H1) ≥
{

r0 − 1 if r0 < ∞;
1 if r0 = ∞

Now take x1 to be the gate of x0 in H1. Having defined xn , let

rn = sup{dist(xn, Hn ∩ Hα) : α ∈ �}.
Now choose Hn+1 ∈ {Hα}α∈� so that xn /∈ Hn+1 (if possible), Hn+1 ⊂ Hn, and

dist(xn, Hn+1) ≥
⎧
⎨

⎩
rn − 1

n
if rn < ∞;

1 if rn = ∞
Now take xn+1 to be the gate of xn in Hn+1. Either this process terminates after a finite number of steps,
yielding a point xn ∈ ∩α∈�Hα, or we have sequences {xn}, {Hn} for which i < j ⇒ x j is the gate of xi in
Hj . Since X does not contain a geodesic ray, it must be the case that rn < ∞ for some n (and hence for all
n). By transitivity of gated sets the sequence {xn} is linear and thus lies on a geodesic in X. Since X does not
contain a geodesic ray, the sequence {xn} must in fact be Cauchy. Let x∞ = limn xn . Since each of the sets
Hn is closed, clearly x∞ ∈ ∩∞

n=1 Hn . Also
∑∞

n=1 rn < ∞, so limn rn = 0.

Now let Pα, α ∈ �, be the nearest point projection of X onto Hα, and for each n ∈ N, let yn = Pα(xn).
Then d(yn, xn) ≤ rn, and since Pα is nonexpansive, for any m, n ∈ N, d(yn, ym) ≤ d(xn, xm). It follows that
Pα(x∞) = x∞ for each α ∈ �. Therefore, x∞ ∈ ∩α∈�Hα. ��
Proposition 5.8 Let M be a complete geodesic space, and let {Hn} be a descending sequence of nonempty
gated subsets of M. If {Hn} has a bounded selection, then

∞⋂

n=1

Hn �= ∅.

Proof Here we simply describe the step-by-step procedure. Let {zn} be a bounded selection for {Hn}. Let
x0 = z0. Then let n1 be the smallest integer such that x0 /∈ Hn1 . Let x1 be the gate of x0 in Hn1 and take
x2 = zn1 . Now take n2 to be the smallest integer such that x2 /∈ Hn2 and take x3 to be the gate of x2 in Hn2 .
Continuing this procedure inductively it is clear that one generates a sequence {xn} which is isometric to an
increasing sequence of positive numbers on the real line. Since {x2n} is a subsequence of the bounded sequence
{zn} it must be the case that {xn} is also bounded. Therefore, limn xn exists and lies in ∩∞

n=1 Hn . ��
The next result also stands for gated sets and was noticed by Markin in [53].

Theorem 5.9 Let M be a complete geodesic space with a convex metric (so, in particular, balls contain geo-
desic segments with endpoints in the given ball) and T a multivalued mapping with values that are bounded
gated subsets of M. Then there is a mapping f : M → M such that f (x) ∈ T x for each x ∈ M and
d( f (x), f (y)) ≤ H(T x, T y) for each x, y ∈ M, where H stands for the Hausdorff distance.

Proof For each z ∈ M define the mapping f : M → M such that f (x) is the unique closest point to z in
T x , that is, f (x) = PT x z. Take α = d(z, f (x)) and β = d(z, f (y)) and assume that α ≥ β. Therefore
f (y) ∈ B(z, α). Let p be the gate of f (y) in T x . Since d( f (y), f (x)) = d( f (y), p)+d(p, f (x)) the point p
lies on the geodesic segment connecting f (x) and f (y). By convexity of the metric, this segment is contained
in B(z, α). This implies that p ∈ B(z, α) and so it must be the case that p = f (x). The conclusion trivially
follows now. ��

The main result in [21] requires the following lemma given in [43]:
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Lemma 5.10 Suppose M is uniquely geodesic with a convex metric, suppose T : M → M is nonexpansive,
and suppose x0 ∈ M satisfies

d(x0, T (x0)) = inf{d(x, T (x)) : x ∈ M} > 0.

Then the sequence {T n(x0)} is unbounded and lies on a geodesic ray.

Theorem 5.11 Let M be a complete R-tree, and suppose K is a closed convex subset of M which does not
contain a geodesic ray. Then every commuting family F of nonexpansive self-mappings on K has a nonempty
common fixed point set.

Proof Let T ∈ F. We first show that the fixed point set of T is nonempty. Let

d = inf{d(x, T (x)) : x ∈ K }
and let

Fn :=
{

x ∈ K : d(x, T (x)) ≤ d + 1

n

}
.

Since K is a closed convex subset of a complete R-tree, K itself is hyperconvex and {Fn} is a descending
sequence of nonempty closed convex (hence gated) subsets of K . Since K does not contain a geodesic ray,
Proposition 5.7 implies F := ∩∞

n=1 Fn �= ∅. Therefore, there exists z ∈ K such that

d(z, T (z)) = d.

Since K does not contain a geodesic ray, in view of Lemma 5.10, d = 0.
Because R-trees are uniquely geodesic, the fixed point set F of T is closed and convex, and hence again

an R-tree. Now suppose G ∈ F. Since G and T commute it follows that G : F → F, and by applying the
preceding argument to G and F we conclude that G has a nonempty fixed point set in F. In particular, the
fixed point set of T and the fixed point set of G intersect. Since these are gated sets in X, by the Helly property
of gated sets we conclude that every finite subcollection of F has a nonempty common fixed point set (which
is itself gated). Now let A be the collection of all finite subcollections of F, and for α ∈ A, let Hα be the
common fixed point set of α. Then given α, β ∈ A, Hα∪β ⊆ Hα ∩ Hβ, so clearly the family {Hα}α∈A is
directed downward by set inclusion. Since these are all gated sets, we again apply Proposition 5.7 to conclude
that ∩α∈AHα �= ∅, and thus that F has a nonempty common fixed point set. ��
Remark 5.12 The significance of this result is the fact that K itself is not assumed to be bounded. This result
might also be compared with Theorem 32.2 of [28] where it is shown that the complex Hilbert ball with a
hyperbolic metric has the fixed point property for nonexpansive mappings if and only if it is geodesically
bounded.

Surprisingly enough, Kirk noticed in [42] that when considered Theorem 5.11 on just one mapping the
nonexpansiveness condition can be replaced by continuity.

Theorem 5.13 Let M be a geodesically bounded complete R-tree. Then every continuous mapping T : X → X
has a fixed point.

Proof For u, v ∈ M we let [u, v] denote the unique metric segment joining both points and let [u, v) =
[u, v]\{v}. To each x ∈ M associate φ(x) as follows: For each t ∈ [x, T x], let ξ(t) be the point in M for which

[x, T x] ∩ [x, T t] = [x, ξ(t)].
Such a point always exists since M is an R-tree. If ξ(T x) = T x take φ(x) = T x . Otherwise, it must be the
case that ξ(T x) ∈ [x, T x). Let

A = {t ∈ [x, T x] : ξ(t) ∈ [x, t]};
B = {t ∈ [x, T x] : ξ(t) ∈ [t, T x]}.

Now a connectedness reasoning yields that there exists φ(x) ∈ A ∩ B. If φ(x) = x , then T x = x and we are
fare. Otherwise, x �= φ(x) and

[x, T x] ∩ [x, T φ(x)] = [x, φ(x)].
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Let x0 ∈ M and let xn = φn(x0). Assuming that the process does not terminate upon reaching a fixed point
of T , by construction, the points {x0, x1, x2, . . .} are linear and thus lie on a subset of M which is isometric
with a subset of the real line, that is, on a geodesic. Since M does not contain a geodesic of infinite length, it
must be the case that {xn} is a Cauchy sequence. Let z be the limit of {xn}; then, by continuity, T z is the limit
of {T xn}. Now, by construction,

d(T xn, T xn+1) = d(T xn, xn+1) + d(xn+1, T xn+1).

From where it finally follows that z = T z. ��
The next result that we find in [42] is a non-self version of Theorem 5.13.

Theorem 5.14 Let M be a complete R-tree and K a closed convex subset of M which does not contain
a geodesic ray, suppose int(K ) �= ∅ and that T : K → M is a continuous mapping. Suppose there exists
p0 ∈ int(K ) such that x is not in [p0, T x] for any x ∈ ∂K . Then T has a fixed point in K .

The technique developed to prove Theorem 5.13 would have a big impact and was applied by many other
authors in different versions and extensions of this theorem. Among these new versions those ones dealing
with multivalued mappings were to surprise us by the constantly and unexpected weakening of the required
conditions.

Definition 5.15 Let T : X → 2Y be a multivalued mapping with nonempty values; then

• T is said to be upper semicontinuous at x0 ∈ X if for each open V ⊆ Y such that T (x0) ⊆ Y there exists
an open set U ⊆ X with contains x0 such that

T (U ) ⊆ V .

• T is said to be almost lower semicontinuous at x0 ∈ X if for each ε > 0 there is an open neighborhood
U ⊆ X of x0 such that

⋂

x∈U

Nε(T (x)) �= ∅.

• T is said to be ε-semicontinuous at x0 ∈ X if for each ε > 0 there is an open neighborhood U of x0 such
that

T (x) ∩ Nε(T (x0)) �= ∅
for all x ∈ U .

A best approximation result was given by upper semicontinuous mappings by Kirk and Panyanak in [44]
while a similar one for almost lower semicontinuous mappings was obtained by Markin in [53]. However, both
were unified by Pia̧tek in [57]. In fact the concept of ε-semicontinuity was introduced in [57] with the goal of
unifying both results. The following proposition, not very hard to prove, was shown in [57]:

Proposition 5.16 If a multivalued mapping is either almost lower semicontinuous or upper semicontinuous
then it is ε-semicontinuous too.

Then the following result, which contains those of [44,53] as particular cases, was proved in [57].

Theorem 5.17 Let M be a complete R-tree and let K be a nonempty convex closed and geodesically bounded
subset of M. If F : K → 2K is an ε-semicontinuous mapping with nonempty convex closed values then F has
a fixed point.

Proof Let x ∈ X and let r(x) = PF(x)(x). If x is not a fixed point then d(x, r(x)) > 0. For each t ∈ [x, r(x)]
we define ξ(t) as

[x, r(x)] ∩ [x, r(t)] = [x, ξ(t)].
Let

A = {t ∈ [x, r(x)] | ξ(t) ∈ [x, t]},
B = {t ∈ [x, r(x)] | ξ(t) ∈ [t, r(x)]}.
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Clearly r(x) ∈ A and x ∈ B and A and B are closed. Indeed, let (tn) be a sequence of elements of B such
that tn → t . Assume that t ∈ A\B. Then d(t, ξ(t)) = ε > 0. Let n ∈ N be such that d(t, tn) < ε/2. For each
u ∈ F(t) and v ∈ F(tn) we obtain

r(t) ∈ [u, ξ(t)], ξ(t) ∈ [r(t), ξ(tn)], ξ(tn) ∈ [ξ(t), r(tn)], r(tn) ∈ [ξ(tn), v].
Then we have

[ξ(t), ξ(tn)] ⊂ [u, v]
and finally inf z∈F(tn) d(z, F(t)) ≥ d(ξ(t), ξ(tn)) > ε/2 for each n ∈ N sufficiently large which contradicts
the ε-semicontinuity of F .

Since A is compact there is ϕ(x) ∈ [x, r(x)] such that d(x, ϕ(x)) = inf t∈A d(x, t). Moreover, ϕ(x) ∈ A∩B
what implies that

[x, r(x)] ∩ [x, r(ϕ(x))] = [x, ϕ(x)]. (1)

Now suppose that F has not a fixed point in X . Therefore, we have

d(x, ϕ(x)) > 0, x ∈ X. (2)

Let us choose any x0 ∈ X . We define a transfinite sequence (xα)α<� such that

d(x0, xα) =
∑

β<α

dβ (3)

and

d(x0, ϕ(xα)) = d(x0, xα) + d(xα, ϕ(xα)) (4)

where � is the order type of the set {α | ᾱ ≤ ℵ0} and dβ = d(xβ, ϕ(xβ)).
Let α be a limit ordinal number. By the geodesically boundedness of X and (3) the countable sum

∑
β<α dβ

is bounded. So there is a sequence of points xαn such that limn→∞
∑

β<αn
= ∑

β<α and xαn → x̄ ∈ X . Let
us define xα := x̄ . Clearly (3) and (4) are satisfied. The proof of (4) is not different from the proof of the
closedness of B.

If α = β + 1 we define xα := ϕ(xβ). By (1) with x = xβ , (3) and (4) we obtain d(x0, xα) = d(x0, xβ) +
d(xβ, xα) = ∑

γ<α dγ and d(x0, ϕ(xα)) = d(x0, xα) + dα .
Now let us define

m := sup
α<�

∑

β<α

dβ. (5)

If m were equal to infinity, points xα would lie on the geodesic ray. Hence m < ∞ and one can find a
sequence αn for which d(x0, xαn ) → m. Clearly there is α < � such that αn < α for each n ∈ N. Moreover,
d(x0, xα) = m what implies that d(x0, xα+1) = d(x0, ϕ(xα)) > m. This contradicts (5). ��

The non-self version of this result is also given in [57].

Theorem 5.18 Let M and K be as in the previous theorem with F : K → 2M an ε-semicontinuous mapping
with nonempty closed convex values. Then there exists a point x0 ∈ K for which

dist(x0, Fx0) = inf
x∈K

dist(x, Fx0).

Also invariant approximation theorems have been given for R-trees. The next one has been taken from
[54].

Theorem 5.19 Let M be a complete R-tree and K a closed bounded convex subset of M. Assume t : K → K
and T : K → 2M are nonexpansive mappings with T x closed convex and T x ∩ K �= ∅ for x ∈ K . If the
mappings t and T commute then there is z ∈ K such that z = t (z) ∈ T z.
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Selections is also a very important feature of R-trees and hyperconvex spaces [37,62]. This topic was
already covered in [21, Section 9]. For the particular case of R-trees check also Theorem 5.9 above or [1]. Very
recently, in [25] we can find a result providing nice selections of a kind of generalized nonexpansive notion
for multifunction mappings on R-trees.

The nonexpansiveness condition (C), also known as Suzuki condition, was introduced in [65] to study
mild nonexpansiveness conditions which still imply existence of fixed points.

Definition 5.20 Let M be a metric space, K ⊆ M and T : K → X . Then f satisfies condition (C) if

1

2
d(x, T x) ≤ d(x, y) �⇒ d(T x, T y) ≤ d(x, y),

for all x, y ∈ K .

This definition has been adapted for multivalued mappings in different ways. The next one was given in
[59].

Definition 5.21 Let M be a metric space and K ⊆ M and T : K → 2M . The mapping T satisfies condition
(C) if for each x, y ∈ K and ux ∈ T x such that

1

2
d(x, ux ) ≤ d(x, y),

there exists uy ∈ T y such that

d(ux , uy) ≤ d(x, y).

This condition was extended to the multivalued case by different authors and studied, among other places,
in [25]. It was in [25] that a new condition, weakening the multivalued version of (C) and called (C ′), was
introduced. This condition happened to work especially well for R-trees.

Definition 5.22 Let M be a metric space, K ⊆ M and T : K → 2M . The mapping T satisfies condition (C ′)
if for each x, y ∈ K and ux ∈ T x with

d(x, ux ) = dist(x, T x) and
1

2
d(x, ux ) ≤ d(x, y),

there exists uy ∈ T y such that

d(ux , uy) ≤ d(x, y).

We prove next a selection theorem in R-trees for multivalued mappings satisfying condition (C ′).

Theorem 5.23 Let M be an R-tree, K ⊆ M and T : K → 2M a mapping with nonempty closed and convex
values which satisfies (C ′). Then the mapping f : K → M defined by f (x) = PT x (x) for each x ∈ K is a
selection of T that satisfies condition (C).

Proof Let x, y ∈ K such that f (x) �= f (y) and (1/2)d(x, f (x)) ≤ d(x, y). Consider p(x) = PT y( f (x))
and p(y) = PT x ( f (y)).
First, suppose p(x) �= f (y) and p(y) �= f (x). Since p(x) is the projection of f (x) onto T y it follows that

d( f (x), f (y)) = d( f (x), p(x)) + d(p(x), f (y)),

i.e., p(x) ∈ [ f (x), f (y)]. Since T y is convex, [p(x), f (y)] ⊆ T y. This implies [ f (x), f (y)] ∩ [ f (y), y] =
{ f (y)} because otherwise the minimality of f (y) would be contradicted. Thus, f (y) ∈ [ f (x), y]. Simi-
larly, f (x) ∈ [ f (y), x]. Then f (x), f (y) ∈ [x, y] (otherwise supposing for example that z ∈ [x, f (y)] ∩
[ f (y), y] with z �= f (y) we have that f (x) ∈ [z, f (y)] and f (y) ∈ [z, f (x)] which is false). Therefore,
d( f (x), f (y)) ≤ d(x, y). In fact, d( f (x), f (y)) = d(x, y) − dist(x, T x) − dist(y, T y).
Now assume p(x) = f (y). Then d( f (x), f (y)) = dist( f (x), T y) and so, by condition (C ′),

d( f (x), f (y)) = dist( f (x), T (y)) ≤ d(x, y).
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Finally, suppose p(x) �= f (y) and p(y) = f (x). As above, if p(x) �= f (y), we have that f (y) ∈ [ f (x), y].
If (1/2)d(y, f (y)) ≤ d(x, y) then (C ′) yields that

d( f (x), f (y)) = dist( f (y), T x) ≤ d(x, y).

Otherwise, if (1/2)d(y, f (y)) > d(x, y), then

d( f (x), f (y)) + 2d(x, y) < d( f (x), f (y)) + d( f (y), y) = d( f (x), y) ≤ d( f (x), x) + d(x, y)

≤ 2d(x, y) + d(x, y).

Consequently, d( f (x), f (y)) ≤ d(x, y). ��
An immediate consequence of this result is its fixed point partner.

Corollary 5.24 Let M be a bounded complete R-tree. Suppose T : M → 2M with nonempty closed and
convex values satisfies condition (C ′). Then Fix(T ) is a nonempty complete R-tree.

More on fixed points on R-trees has been done in the past year. Of particular interest are results on uniformly
Lipschitzian mappings which can be found in [2,16].

Definition 5.25 Let M be a metric space; then a mapping T : M → M is said to be k-uniformly Lipschitzian
if

d(T nx, T n y) ≤ kd(x, y)

for any x, y ∈ M and n ∈ N.

The study of uniformly Lipschitzian mappings in metric fixed point theory was initiated by Goebel and
Kirk in [27] (see also [26, Chapter 16]). The following result can be found in [2] where, surprisingly enough, it
is shown that fixed points for uniformly Lipschitzian mappings in R-trees are guaranteed under less restrictive
conditions than, for instance, in Hilbert spaces.

Theorem 5.26 Let M be a nonempty complete R-tree and T : M → M a k-uniformly Lipschitzian mapping
with bounded orbits and k < 2. Then T has a fixed point.

6 Compact extensions of mappings

One of the main motivations for the seminal work of Aronszajn and Panitchpakdi [8] about extension of uni-
formly continuous mappings was to find a metric characterization of injectivity, that is, a metric property that
characterizes those spaces which may play the role of the real line in Hahn–Banach’s theorem. The solution to
this problem was given by the intersecting condition of balls defining hyperconvex metric spaces. Therefore,
hyperconvex metric spaces are intrinsically related to the notion of extension of operators. The next theorem
was proved in [8] and was very generously explained in [21, Section 4].

Definition 6.1 A metric space M is said to be injective if it has the following extension property: whenever Y
is a subspace of X and T : Y → M is nonexpansive, then T has a nonexpansive extension of the whole X .

Theorem 6.2 Let M be a metric space. The following are equivalent:

1. M is hyperconvex
2. M is injective.

Actually, Theorem 6.2 is presented in a more general form in [8]; instead of dealing with nonexpansive
mappings, they work with uniformly continuous mappings with subadditive modulus of continuity and find
extensions preserving the same modulus of continuity.
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Definition 6.3 An extended valued nonnegative function δ : [0,+∞) → [0,+∞] is said to be a modulus of
continuity if it is nondecreasing and limε→0+ δ(ε) = 0. If T is a mapping from a metric space (X, d1) into a
metric space (Y, d2), we say that δ(ε) is a modulus of continuity of T if

δ(ε) ≥ sup{d2(T (x), T (y)) : x, y ∈ X and d1(x, y) ≤ ε}.
A modulus of continuity is called subadditive if

δ(ε1 + ε2) ≤ δ(ε1) + δ(ε2)

for any ε1 > 0 and ε2 > 0.

Extension of Lipschitz mappings has been a very important topic in linear spaces which also became
very important in metric spaces after the work of Ball [10]. Lindenstrauss [51] studied compact extension of
compact operators between linear spaces. The main object in this work turned out to be a certain class of linear
spaces which satisfies a mild hyperconvexity condition, the so-called ℵ0-hyperconvexity.

Definition 6.4 A metric space M is said to be ℵ0-hyperconvex if given any family {xα ∈ �} of points of M ,
with |�| < ∞, and any family {rα}α∈� of real numbers satisfying

d(xα, xβ) ≤ rα + rβ

it is the case that
⋂

α∈�

B(xα, rα) �= ∅.

Under the light of [51] a characterization of ℵ0-hyperconvex metric spaces in terms of compact exten-
sions of compact uniformly continuous mappings was intended in [24]. These efforts led to the following
characterization:

Theorem 6.5 Let M be a metric space, then the following are equivalent:

1. M is an ℵ0-hyperconvex complete metric space.
2. If Y is a metric space, T : Y → M is a uniformly continuous compact mapping with a subadditive modulus

of continuity δT , and Z is a metric space containing Y metrically, then there exists a uniformly continuous
compact extension T̃ of T to the whole of Z into M such that

δT̃ (ε) = max{(1 + η)εδT (1), (1 + η)δT (ε)}
is a subadditive modulus of continuity of T̃ . (Recall that T : Y → X is said to be compact if it is continuous
and T (A) is relatively compact in X for every bounded subset A of Y .)

In 2005 Lancien and Randrianantoanina [49] presented new results on extension of Hölder mappings on
spaces of continuous functions. The fact that spaces of continuous functions treated in [49] are ℵ0-hypercon-
vex, and that extensions found in [49] were mainly compact extensions, make it pertinent to try to revisit [49]
from the approach given in [24]. What we offer next are some consequences of this approach.

Henceforth, uniformly continuous mappings are supposed to have a subadditive modulus of continuity.

Definition 6.6 For K > 0 and α ∈ (0, 1], a mapping T as above is said to be (K , α)-Hölder continuous if
δ(ε) = K εα is a modulus of continuity of T .

For C ≥ 1, BC (X, Y ) denotes the set of all α ∈ (0, 1] such that any (K , α)-Hölder mapping T from a
subset of X into Y can be extended to a (C K , α)-Hölder mapping from X to Y . In [49] the sets

A(X, Y ) = B1(X, Y ) and Ã(X, Y ) =
⋂

C>1

BC (X, Y )

are studied for Y a space of converging real sequences. In particular, it is obtained (Theorem 2.2 in [49])
that A(X, c0) = (0, 1] for X a finite dimensional normed vector space. It is interesting to point out that the
extensions given by this result share the same modulus of continuity than the extended mapping.
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It is well known that spaces of continuous functions on compact Hausdorff domains are ℵ0-hypercon-
vex; hence, in particular, the spaces of null real convergent sequences c0 and real convergent sequences are
ℵ0-hyperconvex.

Notice that, under the terminology of Lancien–Randrianantoanina in [49], it follows from Theorem 6.5
that Ã(Y, X) = (0, 1] for compact Hölder mappings whenever Y is a metric space and X is an ℵ0-hyperconvex
metric space.

For a metric space X , Isbell defined in [32] the set of extremal functions ε(X) of X as the set of all functions
f : X → R such that it satisfies f (x) + f (y) ≥ d(x, y) for all x and y in X and it is pointwise minimal
(see [32] or [21, Section 8] for details). The following theorem shows that ε(X) can also be regarded as the
hyperconvex hull of X :

Theorem 6.7 Let X be a metric space and ε(X) the set of extremal functions on X. Then

1. ε(X) is a hyperconvex metric space with the metric dε(X)( f, g) = supx∈X | f (x) − g(x)|.
2. X is isometrically embedded into ε(X) by the mapping IX : X → ε(X) defined by IX (x)(·) = d(x, ·).
3. If X is relatively compact, then ε(X) is compact.

Next lemma adds some information on statement 3 from Theorem 6.7 above.

Lemma 6.8 If X is a boundedly compact metric space then ε(X) is boundedly compact too.

Proof Let { fn} ⊆ ε(X) a bounded sequence of functions. Let x0 ∈ X fixed and f m
n be the restriction of fn to

B(x0, m). Then, since { f 1
n } is a bounded sequence of equicontinuous functions on a compact set, the Alaoglu

theorem implies that it has a convergent subsequence { f 1
nk

}. If we apply the same reasoning to { f 2
nk

}, iterate
the process and make use of the diagonalization technique at the end, the conclusion follows: ��

In [24, Lemma 2.1] it was proved that if X is a complete ℵ0-hyperconvex space and A ⊆ X is relatively
compact, then there exists a compact hyperconvex set h(A) such that A ⊆ h(A) ⊆ X . After Lemma 6.8
and this remark it is tempting to prove whether the same remains true for boundedly compact subsets of
ℵ0-hyperconvex spaces. The following example, however, shows that this is not the case:

Example 6.9 Let c0 be the space of null convergent real sequences with the maximum norm and consider the
set A = {nen} where {en} is the standard basis of c0. Trivially A is boundedly compact; however, there is not
any hyperconvex set h(A) such that A ⊆ h(A) ⊆ c0. In fact, it is enough to consider the following intersection
of balls

B(e1, 1)
⋂

⎛

⎝
⋂

n≥2

B(nen, n − 1)

⎞

⎠ = [0, 2] × {1}N.

The next definition will help with the exposition.

Definition 6.10 A metric space X will be said boundedly compact hyperconvex (BCH for short) if for any
boundedly compact subset A of X there exists a boundedly compact hyperconvex set h(A) such that A ⊆
h(A) ⊆ X .

It trivially follows that if a metric space is BCH then it is ℵ0-hyperconvex, and, by [21, Lemma 2.1], any
bounded ℵ0-hyperconvex space is BCH. The following proposition shows that hyperconvex metric spaces are
BCH:

Proposition 6.11 If a metric space X is hyperconvex then it is BCH.

Proof Given A ⊆ X nonempty it is known that for any hyperconvex set h(A) such that A ⊆ h(A) there exists
another hyperconvex set h′(A) such that A ⊆ h′(A) ⊆ h(A) which can be isometrically embedded into X .
Now Lemma 6.8 implies the proposition. ��

There are, however, nonbounded ℵ0-hyperconvex spaces which are BCH. An example of such spaces is
the set of null convergent sequences with bounded tiles, i.e.,

c̃0 = R
n × [−1, 1]N,

endowed with the maximum norm.
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Proposition 6.12 The space c̃0 is BCH and ℵ0-hyperconvex.

Proof It is immediate to see that c̃0 is ℵ0-hyperconvex. To see that c̃0 is additionally BCH it is enough to recall
that R

n is hyperconvex and the set of null convergent sequences defined on [−1, 1]N with the maximum norm
is bounded and ℵ0-hyperconvex. Hence, if A ⊆ c̃0 boundedly compact, we can write A ⊆ A1 × A2 where

A1 = {x ∈ R
n : there exists y ∈ A such that x(i) = y(i) for 1 ≤ i ≤ n}, (6)

A2 = {x ∈ [−1, 1]N : there exists y ∈ A such that x(i) = y(i) for i > n} (7)

are also boundedly compact. So there exist boundedly compact hyperconvex sets h(A1) and h(A2) such that
A1 ⊆ h(A1) ⊆ R

n and A2 ⊆ h(A2) ⊆ [−1, 1]N; hence h(A1) × h(A2) is boundedly compact hyperconvex
and such that A ⊆ h(A1) × h(A2) ⊆ c̃0. ��

The following theorem states an extension property for BCH spaces:

Theorem 6.13 Let X be a metric space and Y a BCH metric space. Let M ⊆ X be a nonempty set. If
T : M → Y is a uniformly continuous compact mapping with a subadditive modulus of continuity δ, then there
exists a uniformly continuous compact extension T̃ : X → Y of T for which δ is a modulus of continuity.

Proof Let x0 ∈ M fixed. We first extend T from M to M ∪ BX (x0, 1). Let y ∈ M, d1 = sup{δ(d(x, x0)) : x ∈
B(x0, 1)} and d2(y) = inf{d(x, y) : x ∈ B(x0, 1)}. Then we consider the nonempty set

M̃ = {y ∈ M : d1 + d(T x0, T y) ≥ δ(d2(y))}.
Since T is a compact mapping, by construction, T (M̃) is boundedly compact. Now let h(T (M̃)) be the

boundedly compact hyperconvex between T (M̃) and Y . Hence we may apply Theorem 4 of [8] to obtain an
extension of T to M̃ ∪ B(x0, 1) into h(T (M̃)) ⊆ Y such that d(T y, T x) ≤ δ(d(y, x)) for any y ∈ M̃ and
x ∈ B(x0, 1). We check next that T : M ∪ B(x0, 1) → Y has the same modulus of continuity as T . It suffices
to check that d(T x, T y) ≤ δ(d(x, y)) for y ∈ M\M̃ and x ∈ B(x0, 1); in fact,

d(T x, T y) ≤ d(T x, T x0) + d(T x0, T y) ≤ δ(d(x, x0)) + d(T x0, T y)

≤ d1 + d(T x0, T y) < δ(d2(y)) ≤ δ(d(x, y)).

Now the result follows by induction on B(x0, n) as n ∈ N. ��
To prove the following corollary it is enough to recall Proposition 6.11. Notice that the next corollary

guarantees compact extensions.

Corollary 6.14 If in the previous theorem Y is hyperconvex then the same conclusion follows.

To state our next result we need to introduce the following definition:

Definition 6.15 Let X be a metric space. We say that M ⊆ X is a proximately centered set in X if for any
x ∈ X there exists �(x) = {xα}α∈A ⊆ M bounded such that for any y ∈ M there exists α ∈ A such that
d(y, xα) ≤ d(x, y).

We say that M is boundedly proximately centered in X if
⋃

x∈B

�(x)

is bounded for any B ⊆ X bounded.

The next example shows that the above definitions are not redundant.

Example 6.16 Let {en} be as in Example 6.9 and, for n ∈ N, xn ∈ c0 such that

xn(i) =
{

1, if 1 ≤ i ≤ n,

0, if n < i.

Take M = {nen : n ∈ N}, B = {xn : n ∈ N} and X = M ∪ B ⊆ c0. Then, for n ∈ N,

‖xn − iei‖ =
{

i − 1, if 1 ≤ i ≤ n,

i, if n < i,

and ‖iei − je j‖ = max{i, j}. Thus, M is proximately centered in M , but it is not boundedly proximately
centered since �(xn) = {iei : 1 ≤ i ≤ n}.
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Our next result is an extension of [49, Theorem 2.2].

Theorem 6.17 Let X be a metric space and M ⊆ X boundedly proximately centered in X. If T : M → c0
is a compact uniformly continuous mapping, then there exists a compact extension T̂ : X → c0 of T with the
same modulus of continuity.

Proof Let x0 ∈ X \ M and consider B(x0, 1) \ M . We first find T̂ : M ∪ B(x0, 1) → c0 as desired. Let
� = {�(x) : x ∈ B(x0, 1)\M}; we take x ∈ B(x0, 1)\M and pick ε = ε(x) such that ε < 1

2δ(dist(x, M)).
Then, since � is bounded and T compact there exists N ∈ N such that |T (y)(n)| < ε for n ≥ N and y ∈ �.

Now, since �∞ is hyperconvex, Corollary 6.14 implies that there exists a compact extension G : M ∪
B(x0, 1) → �∞ of T with the same modulus of continuity. For x as above we make G(x) = (ηn). Hence, for
n ≤ N we fix T̂ (x)(n) = ηn . For n > N , let δn ∈ {−1, 1} be the sign of ηn . Now we set

T̂ (x)(n) = δn min

{
|ηn|, sup

y∈�

|T (y)(n)|
}

.

Since T is compact, T̂ : B(x0, 1) ∪ M → c0. Next we prove that it admits the same modulus of continuity as
T . We first show that d(T̂ x, T y) = supn∈N |T̂ (x)(n) − T (y)(n)| ≤ δ(d(x, y)) when x ∈ B(x0, 1)\ M and
y ∈ M . For n ≤ N it follows from the properties of G. For n > N we have four cases:

1. If |T (y)(n)| ≤ |T̂ (x)(n)|, then

|T (y)(n) − T̂ (x)(n)| ≤ 2ε ≤ δ(d(x, y)).

2. If |T (y)(n)| > |T̂ (x)(n)|, sgn(T (y)(n)) = δn , and |T̂ (x)(n)| = |ηn|, then, by construction,

|T (y)(n) − T̂ (x)(n)| ≤ δ(d(y, x)).

3. If |T (y)(n)| > |T̂ (x)(n)|, sgn(T (y)(n)) = δn , and |T̂ (x)(n)| = supy∈� |T (y)(n)|, then let y0 ∈ � such
that d(y, y0) ≤ d(y, x) and so

|T (y)(n) − T̂ (x)(n)| = |T (y)(n)| − |T̂ (x)(n)| ≤ |T (y)(n) − T (y0)(n)|
+|T (y0)(n)| − |T̂ (x)(n)| ≤ δ(d(y, y0)) ≤ δ(d(y, x)).

4. If |T (y)(n)| > |T̂ (x)(n)| and sgn(T (y)(n)) �= δn , then

|T (y)(n) − T̂ (x)(n)| = |T (y)(n)| + |T̂ (x)(n)| ≤ |T (y)(n)| + |ηn| = |T (y)(n) − ηn| ≤ δ(d(y, x)).

Now we take x, y ∈ B(x0, 1) \ M and let G(x) = (ηn) and G(y) = (νn). We want to check that
d(T̂ (x), T̂ (y)) ≤ δ(d(x, y)). Again, for n ≤ N it follows from the properties of G. For n > N we have
four cases:

1. If supy∈� |T (y)(n)| ≤ min{|ηn|, |νn|} and sgn(ηn) = sgn(νn), then

|T̂ (x)(n) − T̂ (y)(n)| = 0.

2. If supy∈� |T (y)(n)| ≤ min{|ηn|, |νn|} and sgn(ηn) �= sgn(νn), then

|T̂ (x)(n) − T̂ (y)(n)| ≤ |ηn − νn| ≤ δ(d(x, y)).

3. If |ηn| ≤ supy∈� |T (y)(n)| ≤ |νn|, then

|T̂ (x)(n) − T̂ (y)(n)| = |ηn − sgn(νn) sup
y∈�

|T (y)(n)|| ≤ |ηn − νn|.

4. If supy∈� |T (y)(n)| ≥ max{|ηn|, |νn|}, then

|T̂ (x)(n) − T̂ (y)(n)| = |ηn − νn|.
Hence T̂ : B(x0, 1) → c0 is uniformly continuous with modulus of continuity δ. Moreover T̂ is compact

as a consequence of the fact that G is compact.
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The proof is completed by induction on N as we extend successively from B(x0, n−1)∪ M to B(x0, n)∪ M
by adding B(x0, n)\(B(x0, n − 1) ∪ M) to the domain of the new extension as above. ��

The big question after this theorem is if c0 can be replaced by a more general ℵ0-hyperconvex space.

Remark 6.18 1. The condition of boundedness in the proximately centered character of M is required only
for the compactness of the extension. The same result holds for noncompact extensions without this
uniformity condition.

2. The boundedness condition is not required at all if X is supposed to be boundedly compact since the
compactness of the extension follows from its continuity. This is the case in [49, Theorem 2.2].

3. The condition about M being centered cannot be dropped from the previous theorem. In fact, consider
A = {nen} where {en} is the standard basis of c0. It is readable to check that A is not proximately centered
in A ∪ 1, where 1 stands for the constant unit sequence, with the supremum norm. Now Example 6.9
shows that the identity map id : A → c0 cannot be extended as a nonexpansive map to A ∪ 1.

Our next result requires the notion of λ-hyperconvexity (see [29,39] for more on this topic). Although the
notion we present here is slightly different to that one given in [39], we still name it the same.

Definition 6.19 Let X be a metric space and λ ≥ 1. We say that X is a λ-hyperconvex metric space if for
every family of closed balls {B(xα, rα)}α∈A, each of radius rα , centered at xα ∈ X for α ∈ A, the condition
d(xα, xβ) ≤ rα + rβ for every α, β ∈ A, implies

⋂

α∈A
B(xα, λrα) �= ∅.

In [49] some results for the so-called L∞
λ normed spaces are obtained. Our next definition is an extension

of this notion to the metric setting.

Definition 6.20 We say that a metric space X is compactly almost hyperconvex if for every λ > 1 and M ⊆ X
boundedly compact there exists N ⊆ X boundedly compact, λ-hyperconvex and such that M ⊆ N .

It is easy to check that L∞
λ -spaces are compactly almost hyperconvex. Our next result is related to [49,

Proposition 3.1].

Theorem 6.21 Let Y be a boundedly compact metric space, M ⊆ Y, X a compactly almost hyperconvex
space, and T : M → X a compact uniformly continuous mapping with modulus of continuity δ. Then, for
ε > 0, there exists T̂ : Y → X uniformly continuous extension of T with modulus of continuity (1 + ε)δ.

Proof Let x0 ∈ Y\M and consider B(x0, 1); then we take M̃ as in the proof of Theorem 6.13. Hence T (M̃) is
boundedly compact and so, for ε > 0, there exists a boundedly compact and (1 + ε)-hyperconvex subset Nε

of X such that T (M̃) ⊆ Nε. Now notice that
⋂

x∈M̃

B(T (x), (1 + ε)δ(d(x, x0))),

is nonempty. If we define T̂ (x0) as any point in the above intersection T̂ : M ∪ {x0} → X is an extension of T
with modulus (1 + ε)δ. We complete the extension to the whole B(x0, 1) as follows: let (xn) a dense sequence
in B(x0, 1)\M . For a given ε > 0 we take (εn) so that

∏
n≥1(1 + εn) < 1 + ε. Iterating the above procedure

on n and extending by continuity we finally have T̃ : M ∪ B(x0, 1) → X .
The theorem follows by repeating the previous procedure in each B(x0, n)\ B(x0, n − 1) and picking an

adequate sequence (εn). ��
We finish this work with the following remarks:

Remark 6.22 1. Since Y is supposed to be boundedly compact all the mappings in the above theorem are
compact.

2. Under the terminology of [49] the above theorem states that Ã(X, Y ) = (0, 1] whenever X is boundedly
compact and Y compactly almost hyperconvex.

123



462 Arab J Math (2012) 1:439–463

3. If in Definition 6.20 we impose that for each N and λ we can choose Nλ so that ∪λ∈�Nλ is boundedly
compact, then it is possible to replace Y boundedly compact by Y separable in the above theorem. We
do not know, however, whether in this case being compactly almost hyperconvex implies BCH. Indeed,
if Definition 6.20 is modified so that ∪λ∈�Nλ is boundedly compact for any choice of Nλ we make, then
it is possible to prove that we have nothing else but BCH.
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