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1 Introduction
One of the most recalcitrant unsolved problems in operator theory is the invariant sub-
space problem. The question has an easy formulation. Does every operator on an infinite
dimensional, separable complex Hilbert space have a nontrivial invariant subspace?
Despite the simplicity of its statement, this is a very difficult problemand it has generated

a very large amount of literature. We refer the reader to the expository paper of Yadav []
for a detailed account of results related to the invariant subspace problem.
In this survey we discuss some applications of fixed point theorems in the theory of

invariant subspaces. The general idea is that a fixed point theorem applied to a suitable
map yields the existence of invariant subspaces for an operator on a Banach space.
In Section  we consider the striking theorem of Lomonosov [] about the existence of

invariant subspaces for algebras containing compact operators. The proof of this theorem
is based on the Schauder fixed point theorem.
In Section we present a recent result of Lomonosov, Radjavi, and Troitsky [] about the

existence of invariant subspaces for localizing algebras. The proof of this result is based
on the Ky Fan fixed point theorem for multivalued maps. The idea of using fixed point
theorems for multivalued maps in the search for invariant subspaces was first introduced
by Androulakis [].
In Section  we consider an extension of Burnside’s theorem to infinite dimensional

Banach spaces. This result is originally due to Lomonosov []. We present a proof of it in
a special case that was obtained independently by Scott Brown [] and that once again is
based on the Schauder fixed point theorem.
In Section  we address the existence of invariant subspaces for operators on the Krein

space of an indefinite product, and we present a result of Albeverio, Makarov, and Mo-
tovilov [] whose proof uses the Banach fixed point theorem.
The rest of this section contains some notation, a precise statement of the invariant

subspace problem, and a few historical remarks.
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Let E be an infinite dimensional, complex Banach space, and let B(E) denote the alge-
bra of all bounded linear operators on E. A subspace of E is by definition a closed linear
manifold in E.
A subspace M ⊆ E is said to be invariant under an operator T ∈ B(E) provided that

TM ⊆ M, and a subspace M ⊆ E is said to be invariant under a subalgebra R ⊆ B(H)
provided that M is invariant under every R ∈ R. A subalgebra R ⊆ B(H) is said to be
transitive provided that the only subspaces invariant underR are the trivial ones,M = {}
and M = E. This is equivalent to saying that the subspace {Rx : R ∈ R} is dense in E for
each x ∈ E\{}.
The commutant of a set of operators S ⊆ B(E) is the subalgebra S ′ of all operators R ∈

B(E) such that SR = RS for all S ∈ S . A subspaceM ⊆ E is said to be hyperinvariant under
an operator T ∈ B(E) provided thatM is invariant under {T}′.
The invariant subspace problem is the question of whether every operator in B(E) has a

nontrivial invariant subspace. This is one of themost important openproblems in operator
theory.
The origin of this question goes back to , when von Neumann proved the unpub-

lished result that any compact operator on a Hilbert space has a nontrivial invariant sub-
space. Aronszajn and Smith [] extended this result in  to general Banach spaces.
Bernstein and Robinson [] used nonstandard analysis to prove in  that every poly-
nomially compact operator on a Hilbert space has a nontrivial invariant subspace. Halmos
[] obtained a proof of the same result using classical methods.
Lomonosov [] proved in  that any nonscalar operator on a Banach space that com-

mutes with a nonzero compact operator has a nontrivial hyperinvariant subspace. The re-
sult of Lomonosov came into the scene like a lightning bolt in a clear sky, generalizing all
the previously known results and introducing the use of the Schauder fixed point theorem
as a new technique to produce invariant subspaces.
Enflo [] constructed in  the first example of an operator on a Banach spacewithout

nontrivial invariant subspaces. The example circulated in a preprint form and it did not
appear published until , when it was recognized as correctwork []. In themeantime,
Beauzamy [] simplified the technique, and further examples were given by Read [, ].
Very recently, Argyros and Haydon [] constructed an example of an infinite dimen-

sional, separable Banach space such that every continuous operator is the sum of a com-
pact operator and a scalar operator, so that every operator on it has a nontrivial invariant
subspace.
However, after somany decades, the question about the existence of invariant subspaces

for operators on Hilbert space is still an open problem.

2 Invariant subspaces for algebras containing compact operators
We start with a fixed point theorem that is the key to the main result in this section. The
use of this result is one of the main ideas in the technique of Lomonosov. We shall denote
by conv(S) the closed convex hull of a subset S ⊆ E.

Proposition . [, Proposition ] Let E be a Banach space, let C ⊆ E be a closed convex
set, and let � : C → E be a continuous mapping such that �(C) is a relatively compact
subset of C. Then there is a point x ∈ C such that �(x) = x.
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Proof Let Q denote the closure of �(C). It follows from a theorem of Mazur that conv(Q)
is a compact, convex subset of E, and since C is closed and convex, we have conv(Q)⊆ C.
Since �(C) ⊆Q, we have �(conv(Q))⊆Q ⊆ conv(Q), and now the result follows from the
Schauder fixed point theorem. �

Theorem . [, Theorem ] Let R ⊆ B(E) be a transitive algebra and let K ∈ B(E) be
a nonzero compact operator. Then there is an operator R ∈ R and there is a vector x ∈ E
such that RKx = x.

Proof We may assume, without loss of generality, that ‖K‖ = . Choose an x ∈ E such
that ‖Kx‖ > , so that ‖x‖ > . Consider the closed ball B = {x ∈ E : ‖x – x‖ ≤ }. Then,
for each R ∈ R, consider the open set GR = {y ∈ E : ‖Ry – x‖ < }. Since R is a transitive
algebra, we have

⋃
R∈R

GR = E\{}.

Since K is a compact operator, KB is a compact subset of E, and since ‖K‖ =  and
‖Kx‖ > , we have  /∈ KB. Thus, the family {GR : R ∈ R} is an open cover of KB. Hence,
there exist finitely many operators R, . . . ,Rn ∈R such that

KB ⊆
n⋃
i=

GRi .

Next, for each y ∈ KB and i = , . . . ,n we define αi(y) = max{,  – ‖Riy – x‖}. Then  ≤
αi(y) ≤ , and for each y ∈ KB, there is an i = , . . . ,n such that y ∈ GRi , so that αi(y) > .
Thus,

∑n
i= αi(y) >  for each y ∈ KB, and we may define

βi(y) =
αi(y)∑n
j= αj(y)

for i = , . . . ,n and y ∈ KB. Now, each βi is a continuous function from KB into R. Hence,
we may define a continuous mapping � : B → E by the expression

�(x) =
n∑
i=

βi(Kx)RiKx.

We claim that �(B)⊆ B. Indeed, for each x ∈ B, we have
∑n

i= βi(Kx) =  so that

∥∥�(x) – x
∥∥ =

∥∥∥∥∥
n∑
i=

βi(Kx)(RiKx – x)
∥∥∥∥∥ ≤

n∑
i=

βi(Kx)‖RiKx – x‖.

If ‖RiKx – x‖ > , then αi(Kx) =  and therefore βi(Kx) = . Hence,

∥∥�(x) – x
∥∥ ≤

n∑
i=

βi(Kx) = ,
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and this completes the proof of our claim. Finally, each operator RiK is compact so that
each RiKB is relatively compact, and it follows from an earlier mentioned theorem of
Mazur that Q = conv

⋃n
i= RiKB is compact. Since �(B) ⊆ Q, the set �(B) is a relatively

compact subset of B. Now, we apply Proposition . to find a vector x ∈ B such that
�(x) = x. Since  /∈ B, we have x �= . Then we consider the operator defined by

Rx =
n∑
i=

βi(Kx)Rix,

and we conclude that R ∈R and RKx = x, as we wanted. �

Corollary . [], [, Theorem ] Every nonscalar operator that commutes with a
nonzero compact operator has a nontrivial, hyperinvariant subspace.

Proof Let T ∈ B(E) be a nonscalar operator and suppose that T commutes with a nonzero
compact operator K . We must show that the commutant {T}′ is nontransitive. Suppose,
on the contrary, that {T}′ is transitive. We can apply Theorem . to find an operator
R ∈ {T}′ such that λ =  is an eigenvalue of the compact operator RK with an associated
finite dimensional eigenspace F = ker(RK – I). Since T commutes with RK , we observe
that T maps F into itself, and therefore, T must have an eigenvalue. Since T is nonscalar,
the corresponding eigenspaceM cannot be the whole E, and it is invariant under {T}′. The
contradiction has arrived. �

3 Invariant subspaces for localizing algebras
In this section we use the following fixed point theorem of Ky Fan []. Recall that if � is
a topological space and � :� →P(�) is a point to set map from � to the power set of �,
then � is said to be upper semicontinuous if for every x ∈ � and every open set U ⊆ �

such that �(x) ⊆U , there is a neighborhood V of x such that �(x)⊆U for every x ∈ V .
In terms of convergence of nets, this definition is equivalent to saying that for every x ∈ �,
for every net (xα) with xα → x, and for every yα ∈ �(xα) such that the net (yα) converges
to some y ∈ �, we have y ∈ �(x).

Theorem . (Ky Fan fixed point theorem []) Let C be a compact convex subset of a
locally convex space, and let � : C → P(C) be an upper semicontinuous mapping such
that �(x) is a nonempty, closed convex set for every x ∈ C. Then there is an x ∈ C such
that x ∈ �(x).

A subalgebra R ⊆ B(H) is said to be strongly compact if its unit ball is precompact in
the strong operator topology. An important example of a strongly compact algebra is the
commutant of a compact operator with a dense range.We shall denote by ball(R) the unit
ball ofR.
This notion was introduced by Lomonosov [] as a means to prove the existence of

invariant subspaces for essentially normal operators on Hilbert spaces. Recall that an op-
erator T on a Hilbert space is said to be essentially normal if T∗T – TT∗ is a compact
operator. Lomonosov showed that if an essentially normal operator T has the property
that both its commutant {T}′ and the commutant of its adjoint {T∗}′ fail to be strongly
compact, then T has a nontrivial invariant subspace.
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Thus, in order to solve the invariant subspace problem for essentially normal operators,
it suffices to consider only operators with a strongly compact commutant.
Lomonosov, Radjavi, and Troitsky [] obtained a result about the existence of invari-

ant subspaces for an operator with a strongly compact commutant under the additional
assumption that the commutant of the adjoint is a localizing algebra.
A subalgebraR⊆ B(E) is said to be localizing provided that there is a closed ball B⊆ E

such that  /∈ B and such that for every sequence (xn) in B there is a subsequence (xnj ), and
a sequence of operators (Rj) inR such that ‖Rj‖ ≤  and (Rjxnj ) converges in norm to some
nonzero vector. An important example of a localizing algebra is any algebra containing a
nonzero compact operator.

Proposition . [, Proof of Theorem .] LetR⊆ B(E) be a transitive localizing algebra,
let B ⊆ E be a closed ball as above, and let T ∈R′ be a nonzero operator. Then there exists
an r >  such that for every x ∈ B we have r ball(R)(Tx)∩ B �= ∅.

Proof First, T is one-to-one because R is transitive and kerT is invariant under R. If
this is not so, then for every n ≥ , there is a vector xn ∈ B such that ‖R‖ ≥ n, whenever
R ∈ R and RTxn ∈ B. Since R is localizing, there is a subsequence (xnj ) and a sequence
(Rj) inR such that ‖Rj‖ ≤  and (Rjxnj ) converges in norm to some nonzero vector x ∈ X.
We have TRj = RjT for all j ≥ , so that (RjTxnj ) converges to Tx in norm. Now Tx �= 
because T is injective and x �= . SinceR is transitive, there is an operator R ∈R such that
RTx ∈ intB. It follows that there is a j ≥  such that RRjTxnj ∈ intB for every j ≥ j. Since
RRj ∈ R, the choice of the sequence (xn) implies that ‖RRj‖ ≥ nj for every j ≥ j, and this
is a contradiction because ‖RRj‖ ≤ ‖R‖ for every j ≥ . �

If E is a Banach space, then E∗ denotes its dual space. If R ⊆ B(E) is a subalgebra, then
R∗ denotes the subalgebra of B(E∗) of the adjoints of the elements ofR, that is,R∗ = {R∗ :
R ∈R}.

Theorem . [, Theorem .] Let E be a complex Banach space, let R ⊆ B(E) be a
strongly compact subalgebra such thatR∗ is a transitive localizing algebra and it is closed
in the weak-∗ operator topology. If T ∈ R′ is a nonzero operator, then there is an operator
R ∈R and there is a nonzero vector x∗ ∈ E∗ such that R∗T∗x∗ = x∗.Moreover, the operator
T∗ has a nontrivial invariant subspace.

Proof We shall apply Proposition . to the algebraR∗. Let B∗ ⊆ E∗ be a closed ball as in
the definition of a localizing algebra, let r >  be a positive number as in Proposition .,
and define a multivalued map � : B∗ →P(B∗) by the expression

�
(
x∗) = r ball

(R∗)(T∗x∗) ∩ B∗.

Then, �(x∗) is a nonempty, convex subset of B∗. Also, �(x∗) is weak-∗ closed because
ball(R∗)(T∗x∗) is weak-∗ compact as the image of ball(R∗) under the map R∗ → R∗T∗x∗,
which is continuous from B(E∗) with the weak-∗ operator topology into E∗ with the
weak-∗ topology, and ball(R∗) is compact in the weak-∗ operator topology.
We claim that� is upper semicontinuous for theweak-∗ topology. Indeed, let x∗, y∗ ∈ B∗,

and let (x∗
α) and (y∗

α) be two nets in B∗ with x∗
α → x∗, y∗

α → y∗ in the weak-∗ topology

http://www.fixedpointtheoryandapplications.com/content/2012/1/197
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and such that y∗
α ∈ �(x∗

α). We must show that y∗ ∈ �(x∗). Since y∗
α ∈ �(x∗

α), there is an
R∗

α ∈ ball(R∗) such that y∗
α = rR∗

αT∗x∗
α . Since ball(R) is precompact in the strong operator

topology, there exists a subnet (Rαβ
) that converges in the strong operator topology to

some R ∈ B(E). Thus, R∗
αβ

→ R∗ in the weak-∗ operator topology. Notice that ball(R∗)
is compact in this topology because ball(B(E∗)) is compact in this topology and R∗ is
closed in this topology. It follows that R∗ ∈ ball(R∗). Let x ∈ E and notice that ‖TRαβ

x –
TRx‖ → . Then

〈
x, y∗

αβ

〉
=

〈
x, rR∗

αβ
T∗x∗

αβ

〉
= r

〈
TRαβ

x,x∗
αβ

〉
= r

〈
TRαβ

x – TRx,x∗
αβ

〉
+ r

〈
TRx,x∗

αβ

〉
.

We have 〈TRαβ
x – TRx,x∗

αβ
〉 →  and 〈TRx,x∗

αβ
〉 → 〈TRx,x∗〉 = 〈x,R∗T∗x∗〉, so that

〈
x, y∗

αβ

〉 → 〈
x, rR∗T∗x∗〉.

Since x ∈ E is arbitrary, y∗
αβ

→ rR∗T∗x∗ in the weak-∗ topology, and it follows that y∗ =
rR∗T∗x∗. This shows that y∗ ∈ �(x∗), and the proof of our claim is complete.
Since the map � is upper semicontinuous and B∗ is compact in the weak-∗ topology,

it follows from the Ky Fan fixed point theorem that there is a vector x∗ ∈ B∗ such that
x∗ ∈ �(x∗); that is, there is an operator R ∈ ball(R) such that x∗ = rR∗T∗x∗.
Finally, consider the closed subspace defined as M = ker(R∗T∗ – I). Notice that M is

invariant under T∗ and M �= {}. If T∗ is not invertible then M �= E and we are done. If
T∗ is invertible, pick any λ ∈ σ (T∗) and put S = λ – T∗. Then S is not invertible and the
preceding argument applied to S shows that S has a nontrivial invariant subspace. It is
clear that such subspace is also invariant under T∗. �

Corollary . [, Corollary .] Let T ∈ B(E) be an operator such that {T}′ is a strongly
compact algebra and {T∗}′ is a localizing algebra. Then T∗ has a nontrivial invariant sub-
space.

Proof If T∗ has a hyperinvariant subspace then there is nothing to prove, and otherwise
{T∗}′ is a transitive algebra so that Theorem . applies. �

Notice that the assumptions of Corollary . are met whenever T is a compact operator
with a dense range.

4 An infinite dimensional version of Burnside’s theorem
Burnside’s classical theorem is the assertion that for a finite dimensional linear space F ,
the only transitive subalgebra ofB(F) is the whole algebraB(F). Lomonosov [] obtained a
generalization of Burnside’s theorem to infinite dimensional Banach spaces. Scott Brown
[] proved the same result independently for the special case of a Hilbert space and a com-
mutative algebra. Lindström and Schlüchtermann [] provided a relatively short proof
of the Lomonosov result in full generality. In this section we present a proof of the Scott
Brown result that is based on the Schauder fixed point theorem.
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Let H be a complex, infinite dimensional, and separable Hilbert space. Let T ∈ B(H),
and let ‖T‖e denote the essential norm of T , that is, the distance from T to the space of
compact operators.

Theorem . [, Theorem .] Let R be a commutative subalgebra of B(H). Then there
exist nonzero vectors x, y ∈H such that for any R ∈R we have |〈Rx, y〉| ≤ ‖R‖e.

Proof Consider the set E = {R ∈ R : ‖R‖e ≤ /}. We claim that there is some x ∈ H\{}
such that the set Ex is not dense in H . The result then follows easily because in that case
there is some y ∈H\{} such that |〈Rx, y〉| ≤  for all R ∈ E . Now, for the proof of our claim,
we proceed by contradiction. Suppose that the set Ex is dense in H for every x ∈ H\{}.
Choose x ∈H with ‖x‖ =  and consider the closed ball B = {x ∈H : ‖x– x‖ ≤ }. Then,
for every vector x ∈ B, there is an operator Rx ∈ E such that ‖Rxx – x‖ < /. Next, there
is a bounded operator Tx and a compact operator Kx such that Rx = Tx + Kx and ‖Tx‖ ≤
/. Since Kx is a compact operator, it is weak-to-norm continuous on bounded sets so
that there exists an open neighborhood of x in the weak topology, say Vx ⊆ H , such that
‖Kxy –Kxx‖ < / for all y ∈ Vx ∩ B. Then consider the set Ux = Vx ∩ B and notice that Ux

is an open neighborhood of x in the weak topology relative to B. Moreover, for y ∈ Ux we
have

‖Rxy – Rxx‖ ≤ ‖Txy – Txx‖ + ‖Kxy –Kxx‖ <  · 

+


=


,

and therefore ‖Rxy – x‖ < . Hence, RxUx ⊆ B. Since B is compact in the weak topology,
there exist finitely many vectors x, . . .xn ∈ B such that

B ⊆
n⋃
j=

Uxj .

Choose some weakly continuous functions f, . . . , fn on B such that supp(fj) ⊆ Uj,  ≤
fj(x)≤ , and

n∑
j=

fj(x) =  for all x ∈ B.

Define a weakly continuous mapping � : B→ B by the expression

�(x) =
n∑
j=

fj(x)Rxjx for all x ∈ B,

and apply the Schauder fixed point theorem to find a vector y ∈ B such that �(y) = y.
Finally, consider the operator R ∈R defined by the expression

R =
n∑
j=

fj(y)Rxj .

Hence, Ry = y. Notice that R �= I because ‖R‖e ≤ /. Then, the eigenspace M = {x ∈ H :
Rx = x} is a closed nontrivial invariant subspace for the algebraR. Thus, any vector x ∈M
has the property that the set Ex is not dense in H . The contradiction has arrived. �
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5 Invariant subspaces for operators on the Krein space
LetH,H be twoHilbert spaces and consider the orthogonal direct sumH =H ⊕H. Let
P, P denote the orthogonal projections from H onto H, H, respectively. Consider the
operator J := P – P. The Krein space is the space H provided with the indefinite product

[x, y] := 〈Jx, y〉, x, y ∈H .

Notice that J is a selfadjoint involution, that is, J∗ = J and J = I . The operator J is some-
times called the fundamental symmetry of the Krein space.
A vector x ∈ H is said to be nonnegative provided that [x,x]≥ , and a subspaceM ⊆H

is said to be nonnegative provided that [x,x]≥  for all x ∈ M.
Every operator T ∈ B(H) has a matrix representation

T =
[
T T

T T

]

with respect to the decomposition H =H ⊕H.
There is a natural, one-to-one and onto correspondence between the maximal non-

negative invariant subspaces M of an operator T ∈ B(H) and the contractive solutions
X ∈ B(H,H) of the so-called operator Riccati equation

XTX +XT – TX – T = .

The correspondence X ↔ M is given by M = {x ⊕ Xx : x ∈ H}, where ‖X‖ ≤ . The
operator T is usually called the Hamiltonian operator of the operator Ricatti equation.
An operator T ∈ B(H) is said to be J-selfadjoint provided that [Tx, y] = [x,Ty] for every

x, y ∈H . This is equivalent to saying that JT = T∗J , or in other words, T∗
 = T, T∗

 = T,
and T∗

 = –T.
A classical theorem of Krein is the assertion that if the Hamiltonian operator T is

J-selfadjoint and the corner operator T is compact, then there exists a maximal non-
negative invariant subspace for T .
Albeverio, Makarov, and Motovilov [] addressed the question of the existence and

uniqueness of contractive solutions to the operator Riccati equation under the condi-
tion that the diagonal entries in the Hamiltonian operator have disjoint spectra, that is,
σ (T)∩ σ (T) = ∅. They proved the following

Theorem . [, Theorem . and Lemma .] There is some universal constant c > 
such that whenever the corner operator T satisfies the condition

‖T‖ < c · dist
[
σ (T),σ (T)

]
,

there is a unique solution X to the operator Riccati equation with ‖X‖ ≤ .

An earlier result in this direction was given by Motovilov [, Corollary ] with the
stronger assumption that the corner operator T is Hilbert-Schmidt. Adamjan, Langer,
and Tretter [] extended the technique to the case that the Hamiltonian operator is not

http://www.fixedpointtheoryandapplications.com/content/2012/1/197
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J-selfadjoint. Kostrykin,Makarov, andMotovilov [] adopted the assumption that σ (T)
lies in a gap of σ (T) and they showed that the best constant, in that context, is c =

√
.

We present a proof of Theorem . that is based on the Banach fixed point theorem.
This method can be found in the paper of Albeverio, Motovilov, and Shkalikov [, The-
orem .]. A basic tool is the bounded linear operator R defined for X ∈ B(H,H) by the
expression

R(X) := TX –XT.

It follows from the Rosenblum theorem that the map R is invertible. Themain result is the
following

Theorem . [, Theorem .] If the operators T, T have disjoint spectra and the
corner operator T satisfies the estimate

‖T‖ < 
‖R–‖ ,

then there is a unique solution X to the operator Riccati equation with ‖X‖ ≤ .

The following upper bound on the norm of the inverse R– can be found in the work
of Albeverio, Makarov, and Motovilov [, Theorem .]. See also the paper by Bhatia and
Rosenthal [, p.] for this interesting result and other related issues.

Theorem . [, Theorem .] If the operators T, T have disjoint spectra, then

∥∥R–∥∥ ≤ π


· 

dist[σ (T),σ (T)]
.

Notice that Theorem . becomes a corollary of Theorem . and Theorem . with the
constant c = /π .

Proof of Theorem . Consider the quadratic map Q defined for X ∈ B(H,H) by the ex-
pression

Q(X) := XTX – T.

It is clear that the operator Riccati equation can be expressed as

Q(X) – R(X) = ,

or equivalently, X = R–(Q(X)). Thus, the solutions of the operator Riccati equation are
the fixed points of the map S := R– ◦ Q. Now, let us check that the map S takes the unit
ball of B(H,H) into itself. Indeed, if ‖X‖ ≤ , then

∥∥S(X)∥∥ =
∥∥R–(Q(X))∥∥ ≤ ∥∥R–∥∥ · ∥∥Q(X)∥∥

≤ ∥∥R–∥∥ · (‖T‖ · ‖X‖ + ‖T‖
)

≤ ∥∥R–∥∥ · (‖T‖ + ‖T‖
)
= 

∥∥R–∥∥ · ‖T‖ < .

http://www.fixedpointtheoryandapplications.com/content/2012/1/197
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Also, the map S is contractive, for if ‖X‖,‖Y‖ ≤ , then

∥∥Q(X) –Q(Y )
∥∥ = ‖XTX – YTY‖

≤ ‖XTX –XTY‖ + ‖XTY – YTY‖
≤ (‖X‖ + ‖Y‖) · ‖T‖ · ‖X – Y‖ ≤ ‖T‖ · ‖X – Y‖,

and from this inequality it follows that

∥∥S(X) – S(Y )
∥∥ =

∥∥R–(Q(X) –Q(Y )
)∥∥

≤ ∥∥R–∥∥ · ∥∥Q(X) –Q(Y )
∥∥ ≤ 

∥∥R–∥∥ · ‖T‖ · ‖X – Y‖

so that the map S satisfies a Lipschitz condition with a Lipschitz constant ‖R–‖ ·
‖T‖ < . The result now follows at once as a consequence of the Banach fixed point the-
orem. �
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