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Abstract

We propose Gaussian processes (GPs) as a novel nonlinear receiver for

digital communication systems. The GPs framework can be used to solve

both classification (GPC) and regression (GPR) problems. The optimal min-

imum mean squared error solution is the expectation of the transmitted sym-

bol given the information at the receiver, which is a nonlinear function of

the received symbols for discrete inputs. GPR can be presented as a non-

linear MMSE estimator and thus capable of achieving optimal performance

from MMSE viewpoint. Also, the design of digital communication receivers

can be viewed as a detection problem, in which GPC is specially suited as

it assigns posterior probabilities to each possible transmitted symbol. In this

paper, we explore the suitability of GPC and GPR as nonlinear digital com-

munication receivers. The major advantage of GPs is that they are Bayesian
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machine learning tools that allow a formulation of a likelihood function for

its hyperparameters, which can then be set optimally. Thereby, it uses an

optimal hyperparameter setting to achieve the best nonlinear receiver for

each training sequence. GPs outperform state-of-the-art nonlinear machine

learning approaches that prespecify their hyperparameters or rely on cross-

validation, whose computational complexity is high and unpredictable. We

illustrate the advantages of GPs as digital communication receivers for lin-

ear and nonlinear channel models for short training sequences and compare

them to other state-of-the-art nonlinear machine learning tools such as sup-

port vector machines.

1 Introduction

Gaussian Processes are typically used to characterize the noise component in dig-

ital communication systems, as it is mainly caused by thermal noise fluctuations

[28]. In this paper, we propose the Gaussian processes (GPs) framework to design

nonlinear receivers in digital communication systems. GPs were initially presented

as a nonlinear estimation technique in 1978 [22] and were rapidly forgotten due to

its computation complexity. In the mid-nineties, they were independently rediscov-

ered [39]. Since then they have been shown to fit many different applications [31]

and nowadays their computational complexity is no longer a limiting issue [29].

There is a vast literature on machine learning techniques for designing digital

communication systems. The channel equalization problem has been addressed

with different machine learning tools, such as: multi-layered perceptrons (MLPs)

[10], radial basis function networks (RBFNs) [5], recurrent RBFNs [7], self-organizing

feature maps (SOFMs) [16], wavelet neural networks [4], GCMAC [13], kernel

adaline (KA) [20] or support vector machines (SVMs) [27], among many others.

Other digital communication systems that have also benefited from nonlinear de-

tection and estimation algorithms are multi-user detection [9, 35], multiple-input

multiple-output systems [32], beam forming [19], pre-distortion [12] and plant

identification [1], to name a few.

For these machine learning approaches, it is necessary to prespecify the hy-
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perparameters (structure), since standard methods for searching the optimal hy-

perparameters (i.e. cross-validation [15, 2]) require immense computational re-

sources, which are not available in most communication receivers, and also their

training time is highly variable. As a result, they use a suboptimal structure that re-

quires longer training sequences for ensuring optimal receiver performance. Also,

it makes the length of the training sequence hard to predict, as it depends on how

well the chosen structure or hypeparameters fits the current problem.

For example, SVM with a Gaussian kernel needs to fit its width, which is pro-

portional to the noise level [20, 27, 6]. If the width is too large, the SVM can

be optimized with short training sequences, but its performance is poor. If it is

too small, it requires a significantly longer training sequence to avoid overfitting.

For each instantiation of the problem there is an optimal width. This kernel width

depends not only on the channel values and noise level, as we would expect, but

also on the actual values of the noise themselves. Ideally, we would like to choose

the kernel width every time we receive a new training sequence. But this would

involve training a different SVM for each possible width and then choosing the

optimal receiver (validation). In addition, this width is not the only SVM’s hyper-

parameter. We must also validate the soft-margin that trades off the minimization

of the training errors and the maximization of the margin. Therefore, we would

have to train a set of receivers with different width and soft-margin hyperparame-

ters to find the optimal setting in each problem. However, typically, we can only

solve a single optimization problem in the receiver. We thus prespecify the SVM

hyperparameters, as it is the case with other nonlinear tools referenced earlier.

In previous work, we introduced Gaussian processes for machine learning as

a novel nonlinear tool for designing digital communication receivers. Gaussian

processes can be applied to regression and classification problems [31] and in this

paper we use both settings for tuning digital communication receivers with short

training sequences. We compare Gaussian processes for regression (GPR) and

Gaussian processes for classification (GPC) to state-of-the-art linear and nonlinear

receivers to show their strength in solving this relevant problem. We have presented
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some preliminaries results for multi-user detection in CDMA systems [21, 26] and

channel equalization in [3]. In this paper we extend these results and include GPC

in our comparisons.

Gaussian processes for machine learning are rooted in Bayesian statistics [31]

and, consequently, build a likelihood function for its hyperparameters given the

training examples. This likelihood can be optimized to set the hyperparameters.

This property makes GPs an attractive tool for designing nonlinear digital commu-

nication receivers, compared to other nonlinear machine learning tools, because the

hyperparameters can be optimally set for each instantiation of our problem with a

single optimization procedure.

For short training sequences hyperparameter mismatch significantly affects

the performance of digital communication receivers, while for longer training se-

quences this performance is not sensitive to variations in the hyperparameters.

Most papers applying nonlinear machine learning for designing digital commu-

nication receivers propose fixed hyperparameters and sufficiently long training se-

quences. We focus on short training sequences and show that fixed hyperparame-

ters underperform compared to GPR receivers with optimally trained hyperparam-

eters.

Gaussian processes can be extended for solving classification problems. In this

case the posterior is no longer tractable and we need to use approximations to com-

pute the prediction for each class label [31]. A Gaussian distribution is typically

used to approximate the GPC’s posterior, either using Laplace [38] or expectation

propagation methods [17]. However, GPC computational complexity is signifi-

cantly higher than that of GPR and hence they might not be as suited for designing

digital communication receivers as GPR are. Moreover, their performance is not as

good as that of GPR receivers as we show and explain in the experimental section.

The rest of the paper is organized as follows. We present the design of digital

communication receivers as an optimization problem in Section 2 and show how

different nonlinear machine learning tools can be fitted in this framework. Section

3 is devoted to Gaussian processes for regression and how it can be understood as
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a nonlinear MMSE estimation. The optimization of the GPR hyperparameters is

proposed in Section 4. GPC are introduced briefly in Section 5. We present some

computer simulations in Section 6 to illustrate the benefits of GPR for channel

equalization and multi-user detection compared to other state-of-the-art nonlinear

tools. We conclude with some final remarks and proposed further work in Section

7.

2 Nonlinear optimization for communication receivers

2.1 Channel model and MMSE

We consider throughout the paper the following deterministic channel model:

x = Hs + z (1)

where s is a random variable column-vector representing the transmitted symbols,

H corresponds to the deterministic channel gains, unknown to both the transmitter

and receiver, z is zero-mean Gaussian noise, and x represents the received symbols.

This model is general enough to capture most standard communication systems.

For example:

• Inter Symbol Interference: Each element in s is a symbol transmitted at a

different time instant. H is a Toeplitz matrix, in which each row represents

the channel impulsive response.

• Multiple-Input Multiple-Output: (H)ij represents the gain from the ith re-

ceiving antenna to the jth transmitting antenna and s represents the symbols

transmitted by the antenna array.

• Fading: H is a diagonal matrix with the fading coefficients and s represents

the symbols transmitted at each time instant.

• CDMA: The columns of H collect each user’s spreading code and each ele-

ment of s represents the symbol transmitted by the users.
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We can also combine different H matrices to accommodate other communi-

cation systems. For example H = H1H2H3, where H1 is a Toeplitz matrix rep-

resenting an inter-symbol interference channel model, H2 contains the spreading

codes of a CDMA system, and H3 is a diagonal matrix assigning different power

to each user. This H matrix represents the downlink channel in a mobile commu-

nication network.

The source s that achieves capacity (maximum information transmission rate)

[8] is a zero-mean Gaussian distribution with a covariance matrix given by the right

eigenvectors of the channel matrix [30]. s being a continuous random variable, we

can estimate in the receiver the transmitted vector using a minimum mean squared

error (MMSE) detector:

fmmse(x) = argmin
f(·)

E
[
‖s− f(x)‖2

]
(2)

The function fmmse(x) is the mean value of s given the received vector x,

E[s|x], which is a linear function of x if s is Gaussianly distributed. Practical struc-

tural constraints dictate the use of discrete constellations, such as PSK and QAM,

which depart from the optimal Gaussian distributions. Although linear detectors

cannot achieve E[s|x] if s is a discrete random variable1, and thus the MMSE is

only a proxy for minimizing the probability of misclassification, still digital com-

munication receivers use linear MMSE detectors for estimating the transmitted

vector, because they can be easily implemented and hopefully their performance is

not severely degraded. The linear MMSE solution is given by:

wmmse = argmin
w

E

[(
s−w>x

)2
]

=
(
E
[
xx>

])−1
E [xs] . (3)

If H is unknown, we can replace the expectations by sample averages using a

training sequence.
1Even for a simple example, if s ∈ {±1} and equally likely and H = 1 then E[s|x] =

tanh(x/σ2
z).
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2.2 Machine learning for digital communication receivers

The design of digital communication receivers can be readily understood as a su-

pervised classification problem [10, 23], in which the receiver constructs a classi-

fier for deciding over the incoming symbols. Machine learning tools optimize the

risk of misclassification:

fopt(x) = argmin
f(·)

E [L (s, f(x))] = argmin
f(·)

∫
L (s, f(x)) p(s,x)dsdx, (4)

where L(·) is a loss-function that measures the penalty for wrongly classifying a

pattern and f(x) is the nonlinear model to predict s.

The joint density, p(s,x), is typically unknown and thus we use a training se-

quence {xi, si}ni=1 and the empirical risk minimization (ERM) inductive principle

[36] to obtain the optimal solution:

f̂opt(x) = argmin
f(·)

{
n∑
i=1

L(si, f(xi)) + λΩ(||f ||)

}
, (5)

where we have included a regularization term, λΩ(||f ||), to avoid overfitting and

to ensure that the minimum of the empirical risk converges to the minimum risk

[36] as the number of training samples increases. The number of training patterns

n determines the symbols in the preamble of each transmission needed to adjust

the receiver. This number should be small to maximize the number of bits used to

transmit information, as we need to retransmit the preamble in each burst of data.

The nonlinear machine learning approaches mentioned in the introduction can

be cast as the optimization in (5) using an appropriate nonlinear model, loss-

function and regularizer. For example: f(x) = w>φ(x), where φ(x) is a nonlin-

ear transformation to a higher dimensional space; L(si, f(xi)) = (1− siw>xi)+,

hinge-loss2; and Ω(||f ||)) = ||w||2 weight decay [2], gives an SVM for a binary

antipodal constellation, which constructs the nonlinear classifier using the ‘kernel

trick’ for φ(·) [34].

The convexity of the optimization in (5) depends on f(·), L(·, ·) and Ω(·). In

some cases, as in SVM or KA, it leads to a convex functional and in others, as in
2(y)+ = max(y, 0)

7



MLP or RBFN, it does not. But in any case, these machine learning approaches

rely on an iterative optimization tool [2, 34] for solving (5).

If we choose f(x) = w>φ(x), L(s, f(x)) = (s − w>φ(x))2 and Ω(f) =

||w||2 we get a convex functional:

wnl mmse = argmin
w

{
n∑
i=1

(si −w>φ(xi))2 + λ||w||2
}

(6)

that can be analytically optimized:

wnl mmse =
(
Φ>Φ + λI

)−1
Φ>s. (7)

where Φ = [φ(x1), . . . ,φ(xn)]> and s = [s1, . . . , sn]>. We denote this solution

as nonlinear MMSE, since it is a nonlinear extension of (3), in which we have

substituted x by φ(x) and we have replaced the expectations by sample averages.

In the next section we show (7) is equivalent to the mean solution provided by

Gaussian processes for regression with a Gaussian likelihood function and that it

can be solved using kernels [24]. Moreover, interpreting (7) as GPR allows opti-

mizing its hyperparameters by maximum likelihood (Section 4). This optimization

improves the performance of (7) with respect to other nonlinear machine learning

procedures when the number of training samples is low, because for reduced train-

ing datasets the performance of nonlinear machine learning methods significantly

depends on its hyperparameters.

3 Gaussian Processes for Regression

In the past few years a new Bayesian machine learning tool based on Gaussian

processes (GPs) has been developed for nonlinear regression estimation [39, 31,

37]. In a nutshell, Gaussian processes for regression (GPR) assume that a GP

prior governs the set of possible regressors. Consequently, the joint distribution of

training and test data is given by a multidimensional Gaussian density function and

the predicted distribution for each test point is estimated by conditioning on the

training data.
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We present GPR from the Bayesian generalized linear regression viewpoint.

Although from this opening we lose the GPs interpretation and we can only work

with Gaussian likelihood models, we believe it is a simpler way to understand GPR.

This approach mimics how most machine learning textbooks introduce nonlinear

regression [2, 34, 14] and it helps understanding GPR as a nonlinear MMSE es-

timation. Therefore, practitioners in signal processing for digital communications

can readily relate to this new tool for estimation and detection. Both interpretations

are described in [37], where they are shown to be identical for Gaussian likelihood

models. There is more to GPs than what we introduce in this summary, for inter-

ested readers GPs extensions can be found in [31].

A generalized linear regressor expresses the input-output relation as

s = w>φ(x) + ν, (8)

where φ(·) is a nonlinear transformation to a higher dimensional feature space

and ν is a random variable that measures the deviation between s and its estimate.

Given a labeled training sequence (D = {xi, si}ni=1, where the input xi ∈ Rd and

the output si ∈ R) and a statistical model for ν, we can compute the regressor w

by maximum likelihood (ML),

wML = argmax
w

n∏
i=1

p(νi) = argmax
w

n∏
i=1

p(si −w>φ(xi)). (9)

We use these ML weights to predict the outputs for future test points x∗:

s∗ = w>MLφ(x∗). (10)

In Bayesian machine learning w is considered to be a random variable and, to

predict the outcome of x∗, we use its conditional density given the training dataset,

p(w|D). This conditional density, known as the posterior of w, can be computed

through Bayes rule,

p(w|D) = p(w|s,X) =
p(s|X,w)p(w)

p(s|X)
=

p(w)
p(s|X)

n∏
i=1

p(si|xi,w), (11)
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where p(si|xi,w) is the likelihood function of w, p(w) its prior distribution and

X = [x1, . . . ,xn]>.

To predict the output for a new test point x∗ we integrate out w:

p(s∗|x∗,D)=
∫
W
p(s∗|x∗,w)p(w|D)dw, (12)

in which the conditional density of each s∗ (the likelihood of w) is weighted by

the posterior of w and sum over all possible w. As a result, we get a full statistical

description of s∗, given all the available information (x∗ andD). In this setting, we

predict the value of s∗ using the full statistical model of w, not only its maximum

likelihood estimate.

This setting is quite general, as we can use any model for the likelihood and

prior for solving the regression estimation problem. Gaussian likelihood, p(s|x,w) ∼
N (w>φ(x), σ2

ν), leads to the MMSE criterion, and a zero-mean Gaussian prior,

p(w) ∼ N (0, σ2
wI), allocates probability mass to every possible w and allows

solving (12) analytically. The posterior distribution in (11) is then a Gaussian den-

sity function, p(w|D) ∼ N (µw,Σw), where

µw = σ2
w

(
σ2
wΦ>Φ + σ2

νI
)−1

Φ>s, (13)

Σ−1
w = Φ>Φ/σ2

ν + I/σ2
w. (14)

Actually, the posterior mean in (13) is identical to the maximum a posteriori

(MAP) of (11):

µw = wMAP = argmax
w
{p(w|s,X)}

= argmax
w
{log p(s|X,w) + log p(w)}

= argmax
w

{
− 1
σ2
ν

n∑
i=1

(si −w>φ(xi))2 −
1
σ2
w

||w||2
}
, (15)

which is identical to (6) for λ = σ2
ν/σ

2
w. We can also check that (13) is equal to

(7). Therefore the GPR mean prediction can be regarded as a nonlinear MMSE

estimation for the nonlinear mapping φ(·).
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The prediction for s∗ in (12) is a Gaussian density function, p(s∗|x∗,D) ∼
N (µs∗ , σs∗):

µs∗ = φ>(x∗)µw = φ>(x∗)ΣwΦ>s/σ2
ν (16)

σ2
s∗ = φ>(x∗)Σwφ(x∗) = φ>(x∗)

(
Φ>Φ/σ2

ν + I/σ2
w

)−1
φ(x∗). (17)

There is an alternative formulation for µs∗ and σ2
s∗ , in which we do not need to

know the nonlinear mapping φ(·) and we only need to work with its inner product

or kernel, defined as:

k(xi,xj) = σ2
wφ>(xi)φ(xj). (18)

To obtain this alternative formulation, we first define the covariance matrix C as:

(C)ij = k(xi,xj) + σ2
νδij , (19)

which can be related to Σw as follows:

Σ−1
w Φ> =

(
Φ>Φ/σ2

ν + I/σ2
w

)
Φ> = Φ>

(
σ2
wΦΦ> + σ2

νI
)
/(σ2

νσ
2
w) = Φ>C/(σ2

νσ
2
w).

(20)

Now if we pre-multiply (20) by Σw and post-multiply it by C−1, we obtain the

following equivalency: ΣwΦ>/σ2
ν = σ2

wΦ>C−1, which can be used to simplify

(16) and express the GPR prediction mean as:

µs∗ = φ>(x∗)σ2
wΦ>C−1s = k>C−1s, (21)

where

k = σ2
wφ>(x∗)Φ> = [k(x∗,x1), . . . , k(x∗,xn)]>. (22)

To compute the prediction for any vector x∗, we do not need to know the non-

linear mapping φ(·), only its kernel. The complexity of computing µs∗ in (21) is

linear, because we can pre-compute the vector C−1s that does not depend on x∗
and we only need to filter k with it for each new test pattern.
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We can also define the variance of our predictor using kernels as:

σ2
s∗ = k(x∗,x∗)− k>C−1k, (23)

which is achieved after applying the matrix inversion lemma [33] to (14).

Equations in (21) and (23) represent the predictions for x∗ given by the Gaus-

sian processes view of GPR. The matrix C is the covariance matrix of a multidi-

mensional Gaussian distribution, hence its name, that describes the training data,

and the vector k represents the covariance vector between the training dataset and

the test vector. Therefore, the function k(·, ·) has to be a positive-definite function

to ensure that the Gaussian processes covariance matrix C is also positive-definite.

4 Hyperparameter optimization

If either φ(·) or k(·, ·) are known, we can analytically predict the output of any

incoming sample using (21). But for most estimation problems the best nonlinear

transformation (or its kernel) is unknown. As discussed in the Section 2, the opti-

mal setting of the hyperparameters could be obtained by cross-validation, similarly

to any other nonlinear machine learning method. In this case the nonlinear MMSE

would be as good as any of the other methods, as it would require either to try

different settings or to rely on a prespecify one.

From the point of view of Bayesian machine learning, we can proceed as we

did for the parameters w in Section 3. First, we compute the likelihood of the

hyperparameters of the kernel given the training dataset:

p(s|X, θ) =
∫
p(s|wX, θ)p(w|D, θ)dw =

1√
(2π)n|Cθ|

exp
(
−1

2
s>C−1

θ s
)
,

(24)

where θ represents the hyperparameters of the covariance function or kernel. We

have added θ to the covariance matrix, likelihood and posterior to explicitly indi-

cate that they depend on the kernel’s hyperparameters. This was omitted in the

GPR presentation in Section 3 for clarity purposes.
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Second, we can define a prior for the hyperparameters, p(θ), that can be used

to construct its posterior density:

p(θ|D) =
p(s|X, θ)p(θ)

p(s|X)
. (25)

Third, we can integrate out the hyperparameters to obtain the predictions:

p(s∗|x∗,D) =
∫
p(s∗|x∗,Dθ)p(θ|D)dθ. (26)

However, in this case, the hyperparameters’ likelihood does not have a con-

jugate prior and the posterior is non-analytical. Hence the integration has to be

done either by sampling or approximations. Although this approach is well princi-

pled, it is computational intensive and it is not feasible for digital communications

receivers. For example, Markov-chain Monte Carlo (MCMC) methods require sev-

eral hundreds to several thousands samples from the posterior of θ to integrate it

out in (26). For the interested readers, further details can be found in [31].

Alternatively, we can use the likelihood function of the hyperparameters and

compute its maximum to obtain its optimal setting [39], which is used to describe

the kernel for the test samples. Although setting the hyperparameters by maximum

likelihood is not a purely Bayesian solution, it is fairly standard in the community

and it allows using Bayesian solutions in time sensitive applications. The maxi-

mum likelihood hyperparameters are given by:

θML = argmax
θ

p(s|X, θ) = argmax
θ

log p(s|X, θ) = argmax
θ

{
−s>C−1

θ s− log |Cθ|
}

(27)

This optimization is non-convex [18]. But as we increase the number of train-

ing samples the likelihood becomes a unimodal distribution around the maximum

likelihood hyperparameters and the ML solution can be found using gradient ascent

techniques. See [31] for further details.

4.1 Covariance matrix

To optimize the kernel hyperparameters in (27) we need to describe a kernel in a

parametric form. Kernel design is one of the most challenging open problems in
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machine learning, as it is mainly driven by each particular application. We need to

incorporate our prior knowledge into the kernel, but, at the same time, we want the

kernel to be flexible to explain previously unknown trends in the data. In [31], a list

of flexible kernels –i.e. linear, Gaussian, neural networks, Matérn, among others–

and their properties are described. The rules on how to combine them are also

described –e.g. the sum or product of two kernel functions is also a valid kernel

function–.

For example, if we know the optimal solution to be linear, we could use the

linear kernel: k(x,x′) = σ2
wx>x′. The only unknown hyperparameters in this

case are σ2
ν and σ2

w, as we do not need to know these variances a priori. In the

remaining of this text, we consider, without loss of generality, the last term in

(19) to be part of the designed kernel, as δij is a valid kernel and the weighted

sum of kernel functions (with nonnegative weights) is also a kernel. In general,

kernel functions are more complex and they incorporate several hyperparameters.

For example, the Gaussian kernel with automatic relevance determination (ARD)

proposes one nonnegative weight, γ`, per input dimension:

k(xi,xj) = α1 exp

(
−

d∑
`=1

γ` (xi` − xj`)2
)

+ α2x>i xj + α0δij . (28)

where we have added a linear kernel to use this covariance function for designing

digital communication receivers. For this kernel function we define the hyper-

parameters as θ = [logα0, logα1, logα2, log γ`], because these hyperparameters

need to be positive to ensure that k(·, ·) is a positive semi-definite function. Hence,

we can apply unconstrained optimization tools if we work over θ.

The covariance function in (28) is a good kernel for designing digital commu-

nication receivers using GPR, because it contains a linear and a universal nonlinear

part, as the RBF kernel has an infinite VC dimension [36]. The proposed co-

variance function is a good match for designing digital communication receivers.

The linear part can mimic the best linear decision boundary and the nonlinear part

modifies it, where the linear explanation is not optimal to obtain the expectation

of s given x. If the channel is linear, then the ML solution sets α1 = 0 and
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there is no interference of the nonlinear term with the nonlinear one in the solu-

tion. Also, using a radial basis kernel for the nonlinear part seems an appropriate

choice to achieve nonlinear decisions for digital communication receivers, because

the received symbols form a constellation of clouds of points with Gaussian spread

around its centers.

4.2 Discussion

Gaussian Processes for regression is a nonlinear regression tool that, given the

covariance function, provides an analytical solution to any regression estimation

problem. Moreover, it does not only give point estimates, but it also assigns confi-

dence intervals for them. In GPR, we perform the optimization step to set the co-

variance function hyperparameters by maximum likelihood, unlike SVM or other

nonlinear machine learning tools, in which the optimization is used to set the opti-

mal parameters. In these methods, the hyperparameters have to be either prespeci-

fied or estimated by cross-validation [15].

Cross-validation optimizes several functionals (typically less than 10) for each

possible setting of the hyperparameters [2]. The number of hyperparameters that

can be tuned is quite limited (at most 2 or 3), as the computational complexity

of cross-validation increases exponentially with the number of hyperparameters.

These remarkable drawbacks limit the application of these nonlinear tools to dig-

ital communications receivers, since we face complex nonlinear problems with

reduced computational resources and short training sequences. By exploiting the

GPs framework, as stated in this paper, we can avoid them.

5 Gaussian process for classification

Gaussian process for classification is a bit trickier than the regression counterpart,

because we cannot rely on a Gaussian likelihood function to predict the labels

of each class as the outcomes come from a discrete set [31]. Thereby to predict

the class labels we need to resort to numerical integration or approximations to
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tractable density models. A generalized linear binary classifier predicts for an input

x the class label as follow:

p(s = +1|w,x) = p(s = +1|f) = σ(f), (29)

where f = w>φ(x) is an underlying continuous function, σ(·) is a sigmoid3 that

squashes f between 0 and 1, and p(s = −1|f) = 1− p(s = +1|f).

Given a labeled training sequence (D = {xi, si}ni=1, where the input xi ∈ Rd

and the output si ∈ {±1}), we can compute the posterior over the underlying

function f = [f1, . . . , fn]> using Bayes rule, as we did in Section 3 for GPR with

w, and we can integrate out f to predict the class label for any new test point x∗.

We can compute the class label for the test samples as follows:

p(s∗ = +1|x∗,D) =
∫
σ(f∗)p(f∗|x∗,D)df∗ (30)

where

p(f∗|x∗,D) =
∫
p(f∗|x∗,X, f)p(f |D)df (31)

and

p(f |D) = p(f |X, s) =
∏
i p(si|fi)p(f |X)

p(s|X)
. (32)

In (31) we compute the distribution for the underlying function in the test point

and in (30) we integrate out the underlying function to predict the probability that

the class label of that point is +1. Both integrals are intractable due to the likeli-

hood model employed for f in (29). GPC typically relies on a Gaussian approx-

imation4 for the posterior density p(f |D), to analytically solve (31), and (30) is a

one-dimensional integral that can be easily solved numerically. Further details on

how to approximate the posterior and train the covariance function hyperparame-

ters can be found in [31].
3This function is typically the logistic or the cumulative density function of a Gaussian [31].
4The standard approximations to the posterior are Laplace or expectation propagation, as ex-

plained in [17].
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6 Experimental Results

We carry out two sets of experiments. First, we design a receiver for a CDMA sys-

tem with strong near-far requirements and inter-symbol interference. In the second

experiment, we deal with a channel equalization problem with a nonlinear ampli-

fier in the receiver. The results in these experiments allow drawing some general

conclusions about the advantages of GPs for designing digital communication re-

ceivers. For both experiments the channel model is given by:

h(z) = 0.3763 + 0.8466z−1 + 0.3763z−2. (33)

For all these systems we train a linear MMSE receiver (denoted by ‘MMSE’

and a dashed line), a GPR (‘GPR’ and a solid line) and a GPC with an EP approx-

imation to its posterior (‘GPC’ and a dash-dotted line). We approximate the GPC

posterior using the EP algorithm, because it provides superior performances than

the Laplace approximation as suggested in [17]. For the GPs receivers we work

with the covariance matrix in (28). We also report a linear SVM receiver (‘SVMl’

and a dotted line with circles) and a nonlinear SVM (‘SVMnl’ and a dotted line

with bullets) with an RBF kernel [34]. For the SVMs we train a set of receivers with

different hyperparameters and we report the best result. We use C = 0.5, 1, 2, 5

and 10 and σ = kσz with k = 1, 2, 5 and 10. Thereby, the comparison is biased in

favor of the SVM when compared to the GPR and GPC solutions. All the figures

are obtained for 100 independently trained trials with 105 test symbols.

6.1 Linear multi-user detection

In our first experiment we employ Gold spreading codes with 31 chips per user, be-

cause they have favorable cross-correlation properties that limit the interferences

by other users and their delayed replicas [11]. We report results for systems oper-

ating with 3 and 16 users and we assume the user of interest is 50dB bellow the

other users. This is a fairly standard scenario when one of the users is close to the

base station and it is assigned little power. We use the received 31 chips to detect

each transmitted symbol.
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Figure 1: We report the BER versus the snr for a multi-user detector with 3 users

in (a) and 16 users in (b). The dashed line represents the linear MMSE receiver,

the solid line the GPR, the dash-dotted line the GPC, the dotted line with circles

the linear SVM and the dotted line with bullets the nonlinear SVM.

We show the bit error rate (BER) versus the signal to noise ratio (snr) for 3

users in Figure 1(a) and 16 users in Figure 1(b) with 512 training symbols. The

solution is almost linear and all the receivers perform similarly well except for the

nonlinear SVM for 16 users. The training sequence for the nonlinear SVM with

16 users is not long enough, and hence the nonlinear SVM is unable to detect the

transmitted bits and reports chance level performances. The GPR solution is quite

similar to the MMSE solution, because it almost shuts down its nonlinear part in

(28). As we show in Section 3, the GPR with a linear kernel and the linear MMSE

provide equivalent solutions in this case. This result is quite relevant, as we do

not tell the GPR receiver that the solution is linear. It finds out on its own, when

it maximizes the hyperparameters’ likelihood. The GPC also cancels its nonlinear

part and it is able to avoid overfitting. The linear SVM detector presents the worse

performance among the proposed methods that converge in both cases, although it

is barely noticeable in the figures.

The optimal solution is almost linear and all the proposed procedures perform
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Figure 2: We report the BER versus the length of the training sequence for a multi-

user detector with 3 users and snr=14dB in (a) and 16 users and snr=18dB in

(b). The dashed line represents the linear MMSE receiver, the solid line the GPR,

the dash-dotted line the GPC, the dotted line with circles the linear SVM and the

dotted line with bullets the nonlinear SVM.

equally well, once the training sequence is long enough. The training sequence

of 512 symbols is not long enough for the nonlinear SVM with 16 users and it is

unable to correctly tune its multi-user detector. If we had increased the training

sequence to several thousands samples, the nonlinear SVM would converge and it

would provide a solution close to the other algorithms. The differences in BER are

not significant to decide which method is best, but the differences in training time

might lead us to choose one over the others, as we discuss in short.

We report the BER as a function of the training examples for 3 users in Figure

2(a) and 16 users in Figure 2(b). For this experiment, these results are more mean-

ingful than the BER versus snr reported in Figure 1, because there is a significant

disparity between the performances of the different methods. For 3 users (Figure

2(a)) the GPR and linear SVM are able to reduce the BER for very short training

sequences while GPC, MMSE and nonlinear SVM need substantially longer train-

ing sequences before they provide non-chance level performances. For 32 training
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symbols, there are 3 orders of magnitude difference in BER between the former

and latter methods.

From these 2 plots, we can easily understand why the nonlinear SVM is unable

to converge for 16 users with 512 training symbols. For 3 users the nonlinear SVM

needs longer training sequences than the other methods, before it can significantly

reduce the BER. For 16 users, the learning problem is harder and it needs several

thousands samples to achieve convergence.

The GPR, MMSE and linear SVM learn the solution as the number of training

examples increases and they behave almost equally well for 16 users. The GPC

needs the training sequence to be long enough before it can produce a meaning-

ful solution. It needs at least 64 symbols for 3 users and 256 for 16 to be able to

produce non-chance level performances. But once the training sequence is long

enough, it converges to the optimal solution. It does not provide intermediate so-

lutions as the other methods do.

For 16 users, the GPR receiver presents the fastest learning curve closely fol-

lowed by the linear MMSE and linear SVM solutions. We conjecture this is due to

the GPR optimal training of its hyperparameter, because it is able to adjust them

for each training sequence, while the linear SVM uses a constant setting, which

might be good for a long training sequence, but not as good for shorter ones.

In this example we can readily understand the advantages of using GPR for

solving multi-user detection problems, as for very short training sequences we are

able to obtain the best possible solution, and if it is linear, it even improves the

linear MMSE solution. The GPR and linear MMSE detectors provide the same so-

lution as the number of samples increases, but for short training sequence the GPR

detector is able to optimally set its hyperparameters to provide better performance

than the linear MMSE. Also, as we see in the next example, if the solution is non-

linear, it is able to achieve nonlinear multi-user detectors, significantly improving

the linear MMSE solution.
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6.2 Nonlinear multi-user detection

We repeat the Experiment 2 in [6], in which 3 users transmit with an orthogonal

8-dimension spreading code. The solution for user 2 is highly nonlinear and we

report the BER versus the snr in Figure 3. The linear SVM and MMSE clearly

underperform compared to the nonlinear methods. The GPR and nonlinear SVM

achieve almost identical results. The GPC for low snr mimics the results of the

nonlinear methods (snr < 14dB) and for high snr it reports the same results as

the linear receivers (snr > 16dB). This behavior is explained by the length and

diversity of the training sequence. If the training sequence is long enough, the

GPC receiver provides the best nonlinear decision function, otherwise it reports

the best linear decision function to avoid overfitting. For low snr, 512 symbols is

long enough for the GPC to achieve the best nonlinear decision function and the

GPC receiver trains its hyperparameters to obtain this nonlinear detector. For high

snr there is not enough diversity in a training sequence with 512 symbols and it

is only able to report the best linear detector, as it shuts down its nonlinear part to

avoid overfitting. In the first experiment, we already saw that GPC receivers need

longer training sequences than GPR, even to achieve the best linear detector. It is

clear in this experiment that for nonlinear decision function, GPC receivers even

need longer training sequences.

In these two experiments, we are able to show that the GPR with the covariance

function in (28) is able to obtain the best results in both scenarios. If the solution is

linear, it performs as the linear MMSE, needing shorter training sequences. If the

solution is nonlinear the GPC receiver builds a nonlinear detector that significantly

improves the linear MMSE and reports the same solution as a nonlinear SVM. The

nonlinear SVM is not as good as the GPR with the covariance matrix in (28), be-

cause for (almost) linear solutions, it needs significantly longer training sequences,

which is a waste of resources in wireless communication systems, as the preamble

must be as short as possible. Also a SVM cannot use a kernel as in (28), because it

would need to cross validate (or hand pick) too many hyperparameters.

21



2 4 6 8 10 12 14 16 18
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

snr

B
E

R

n=512

 

 

MMSE
GPR
GPC
SVMl
SVMnl

Figure 3: We report the BER versus snr for a multi-user detector with 3 users and

a training sequence of 512 symbols. The dashed line represents the linear MMSE

receiver, the solid line the GPR, the dash-dotted line the GPC, the dotted line with

circles the linear SVM and the dotted line with bullets the nonlinear SVM. The

linear SVM is on top of the linear MMSE line.

6.3 Nonlinear channel equalization

Now we turn to the channel equalization problem, in which the channel is repre-

sented by (33), and we add a memoryless nonlinearity to the receiver that trans-

forms each received signal as follows:

xi = x̂i + 0.2x̂2
i − 0.1x̂3

i + zi (34)

where x̂i = (Hs)i. This channel model is typically used to described nonlinear

amplifiers in wireless communication receivers as explained in [20]. To construct

the equalizers, we use 6 received samples to predict each transmitted symbol with

a delay of 2 samples.
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In Figure 4, we show the BER versus the snr for all equalizers and n = 512.

For snr less than 22dB the nonlinear GPR equalizer achieves the minimum BER

with a gain larger than 3dB for BER around 10−3. For larger snr the performance

of this nonlinear equalizer degrades and the linear equalizers perform significantly

better. The nonlinear SVM equalizer performs as the GPR equalizer for snr lower

than 17dB, but for larger snr the training sequence is not long enough and its solu-

tion degrades (overfiting). For snr larger than 20dB, the nonlinear SVM equalizer

is not able to reduce the achieved BER. The nonlinear SVM and the GPR as the

snr increases are not able to get optimal equalizers, because there is not enough

diversity in the training sequence and they overfit to it. The GPR performance is

better than the SVM for large snr, because it uses a covariance function in (28)

that incorporates a linear term. Although it overfits the nonlinear part, the linear

component allows the GPR to reduce the BER for large snr. If we had increased

the training sequence, the SVM and GPR would perform better than the linear

methods for larger values of the snr.

The GPC shuts down the nonlinear part and performs as the linear SVM. This

is the same effect that we saw for large snr in Figure 3, the training set is not long

enough to ensure it can train the nonlinear part of its covariance function and it

consequently sets it to zero. In Figure 4 for snr less than 10dB, although we can

barely notice it, the GPC equalizer follows the nonlinear solutions, as the training

sequence is long enough to train its nonlinear component in this case.

The linear SVM and GPC are able to perform significantly better than the lin-

ear MMSE, because the channel model is nonlinear. For a nonlinear channel the

received constellation is no longer symmetric and penalizing the squared error is

suboptimal, as it forces that all the detected symbols to be equally far from its op-

timal value. The SVM and GPC equalizers only care if the points are correctly

classified and they only focus on those that might not be, which explains the BER

gap between the linear MMSE equalizer and the GPC and linear SVM ones.

In any case, for the snr of interests between 10 and 20dB, the GPR receivers

(and nonlinear SVM) are significantly better than the linear methods and the GPC.
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Figure 4: We report the BER versus snr for a channel equalization problem with

a nonlinear channel model. The dashed line represents the linear MMSE receiver,

the solid line the GPR, the dash-dotted line the GPC, the dotted line with circles

the linear SVM and the dotted line with bullets the nonlinear SVM.

For this range of snr the BER is not low enough for most digital communication

applications, but we can significantly reduce the BER using channel coding strate-

gies [18] with high data rates, instead of increasing the snr.

6.4 Discussion

In the experiments we show the behavior of GPR for designing digital communica-

tion receivers and we show it has many favorable properties for solving such task

when we use it with the covariance function in (28):

• If the solution is linear, the GPR receiver shuts down the nonlinear part of

the covariance function and performs as the linear MMSE detector for long
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training sequences. It converges faster than the MMSE detector to the opti-

mal solution. It does not degrade its performance when canceling the non-

linear part of the kernel.

• If the solution is nonlinear, the GPR receiver is able to achieve very good

performances, comparable to a nonlinear SVM receiver with optimal hyper-

parameters, and it needs shorter training sequences to achieve such solutions.

The GPR receiver performs significantly better than the linear detectors.

• The GPR receiver performs a single optimization procedure. This is a highly

desirable quality as in one step we get the optimal hyperparameters without

needing to try several solutions and check which one is best. The GPR de-

cides if it needs a linear or a nonlinear solution in that single optimization

without relying on a ‘genie’ or another procedure to check if the optimal

solution is linear.

• The GPR can overfit if the training sequence is not sufficiently long, as we

can see in Figure 4. But in this case the overfitting does not degrade the

solution as much as it does for the nonlinear SVM. It only happens for very

large snr in which we do not typically transmit.

• The GPR receiver uses a least square lost function, which is not ideal for

solving classification problems when we are interested in minimizing the

misclassification error. But for digital communication problems in which

the noise is Gaussian, the use of this loss-function is not critical and the

GPR-receiver performs as well as the receivers based on classification loss-

functions (GPC and SVM).

The GPC would initially seems like a better choice for designing digital com-

munication receivers, because it minimizes the misclassification error and it can

optimize the hyperparameters, just as the GPR does. But in our experiments we

show that GPC receivers usually need longer training sequences before it can tune

its nonlinear part and it decides to train a linear detector in cases where a nonlinear
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detector clearly performs better. We believe that in order for GPC to perform bet-

ter than (as well as) GPR receivers, we need far longer training sequences, which

might not be available in digital communication systems. We conjecture that this

limitation of GPC for training digital communication receiver is due to the pos-

terior approximation, because its loss-function is more suitable than the ones the

GPR uses and we train the GPC receiver with the same covariance function.

The SVM performs as well as GPR for the proposed problem, but it needs

longer training sequence to deal with its fixed hyperparameters or longer training

resources to fine-tune its hyperparameters. We do not believe there is an intrinsic

advantage for GPR for this problem. Although we believe that GPR being able

to tune its hyperparameters by maximum likelihood allows solving the problem

easier, as we build the receiver with a single optimization procedure.

7 Conclusions

We have proposed GPR and GPC for designing digital communication receivers.

GPR follows a wide range of machine learning tools that have been successfully

applied to the design of digital communication receivers. But GPR presents sev-

eral properties that we believe make it a much better candidate for designing these

receivers. First of all, GPR can be viewed as a nonlinear MMSE. MMSE is the

standard criterion used for designing digital communication receivers, as it trades

off inverting the channel and not amplifying the noise. Second, its solution is ana-

lytical given the nonlinear function, while most machine learning methods need to

perform an optimization problem to achieve their solution. Third, it can train its hy-

perparameters by maximum likelihood, while others machine learning algorithms

need to cross validate their hyperparameters or structure. Forth, its computation

complexity is not a limiting issue as addressed in [29].

To highlight the advantages of GPs as digital communications receivers we

compare their performances to that of SVM. SVM provides solutions as good as

the GPR does, but it needs more training samples. The GPR fits its covariance

function by maximum likelihood, and hence it does not suffer from this problem.
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The GPC could be initially thought of as a better candidate for designing digital

communication receivers, since we are solving a classification problem. However,

as we have shown in this paper it needs significantly longer training sequences to

provide the same accuracy level as GPR receivers. One possible advantage of GPC

compared to GPR for digital communication receivers is that they provide posterior

probability estimates for the received bits, which could be sequentially used by a

channel decoder to improve the BER. Some preliminary results of this idea can be

found in [25].
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[26] F. Pérez-Cruz and J.J. Murillo-Fuentes. Gaussian processes for digital com-

munications. In ICASSP, volume V, pages 781–784, Tolousse, France, May

2006.

[27] F. Pérez-Cruz, A. Navia-Vázquez, P. L. Alarcón-Diana, and A. Artés-

Rodrı́guez. SVC-based equalizer for burst TDMA transmissions. Signal

Processing, 81(8):1681–1693, Aug. 2001.

[28] M. Salehi J. G. Proakis. Communication Systems Engineering. Prentice Hall,

New York, 2 edition, 2001.
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